Метод сил

Особенности метода сил как способа раскрытия статической неопределимости стержневых и рамных систем. Некорректные преобразования заданной системы в основные по причине кинематической изменяемости. Пример расчета рамы, суммарной эпюры изгибающих моментов.

Рубрика Производство и технологии
Вид лекция
Язык русский
Дата добавления 30.07.2013
Размер файла 191,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Метод сил

Наиболее широко применяемым в машиностроении общим методом раскрытия статической неопределимости стержневых и рамных систем является метод сил. Он заключается в том, что заданная статически неопределимая система освобождается от дополнительных связей как внешних, так и взаимных, а их действие заменяется силами и моментами. Величина их в дальнейшем подбирается так, чтобы перемещения в системе соответствовали тем ограничениям, которые накладываются на систему отброшенными связями. Таким образом, при указанном способе решения неизвестными оказываются силы. Отсюда и название «метод сил». Такой прием не является единственно возможным. В строительной механике широко применяются и другие методы, например метод деформаций, в котором за неизвестные принимаются не силовые факторы, а перемещения в элементах стержневой системы.

Итак, раскрытие статической неопределимости любой рамы методом сил начинается с отбрасывания дополнительных связей. Система, освобожденная от дополнительных связей, становится статически определимой. Она носит название основной системы.

а-д) модификации основной системы

Рис.1. Пример стержневой рамы

Для каждой статически неопределимой стержневой системы можно подобрать, как правило, сколько угодно основных систем. Например, для рамы, показанной на рис. 1, можно предложить основные системы, а), б),..., которые получены путем отбрасывания семи дополнительных связей в различных комбинациях. Вместе с тем нужно помнить, что не всякая система с семью отброшенными связями может быть принята как основная. На рис. 2 показано три примера для той же рамы, в которой также отброшено семь связей, однако сделано это неправильно, так как оставшиеся связи не обеспечивают кинематической неизменяемости системы, с одной стороны, и статической определимости во всех узлах,-- с другой.

Рис.2.Некорректные преобразования заданной системы в основные по причине кинематической изменяемости - а) б), или статической определимости во всех узлах -- в)

После того как дополнительные связи отброшены и система превращена в статически определимую, необходимо, как уже говорилось, ввести вместо связей неизвестные силовые факторы. В тех сечениях, где запрещены линейные перемещения, вводятся силы. Там, где запрещены угловые смещения, вводятся моменты. Как в том, так и в другом случае неизвестные силовые факторы будем обозначать Xi-, где i -- номер неизвестного. Наибольшее значение i равно степени статической неопределимости системы. Заметим, что для внутренних связей силы Xi, -- являются взаимными. Если в каком-либо сечении рама разрезана, то равные и противоположные друг другу силы и моменты прикладываются как к правой, так и к левой частям системы.

а)-д) по отношению к заданной системе

Рис.3. Пять разновидностей основных систем

Основная система, к которой приложены все внешние заданные силы и неизвестные силовые факторы, носит название эквивалентной системы. На рис. 3 показано пять эквивалентных систем, которые соответствуют приведенным выше основным системам (рис. 1). Принцип приложения неизвестных силовых факторов становится ясным без дальнейших пояснений.

Теперь остается составить уравнения для определения неизвестных.

Обратимся к некоторому конкретному примеру. Рассмотрим, например, первую эквивалентную систему из числа представленных на рис. 3,4. Тем, что рассматривается конкретно взятая семь раз статически неопределимая система, общность рассуждений не будет нарушена. Перейдем теперь к составлению уравнений для определения неизвестных силовых факторов. Условимся через обозначать взаимное смещение точек системы.

Рис.4. Пример расчета рамы

Первый индекс при соответствует направлению перемещения, а второй -- силе, вызвавшей это перемещение. В рассматриваемой раме в точке А отброшена неподвижная опора. Следовательно, горизонтальное перемещение здесь равно нулю и можно записать:

Индекс 1 означает, что речь идет о перемещении по направлению силы Х1, а индекс [Х1, Х2,..., Р] показывает, что перемещение определяется суммой всех сил, как заданных, так и неизвестных.

Аналогично можно записать:

Так как под величиной понимается взаимное смещение точек, то обозначает вертикальное смещение точки В относительно С, -- горизонтальное взаимное смещение тех же точек, есть взаимное угловое смещение сечений В и С. Угловым смещением будет также в рассматриваемой системе величина .

В точках A и D смещения являются абсолютными. Но абсолютные смещения можно рассматривать как смещения, взаимные с неподвижными отброшенными опорами. Поэтому принятые обозначения приемлемы для всех сечений системы.

Пользуясь принципом независимости действия сил, раскроем выражения для перемещений

Аналогичным образом запишем и остальные пять уравнений: каждое из слагаемых , входящих в уравнение, обозначает перемещение в направлении силы с первым индексом под действием силы, стоящей во втором индексе. Поскольку каждое перемещение пропорционально соответствующей силе, величину можно записать в следующем виде:

Что касается перемещений , и т. д., то под индексом Р будем понимать не просто внешнюю силу Р, а вообще систему внешних сил, которая может быть произвольной Поэтому величины , ,... в уравнениях оставим неизменными.

Теперь уравнения примут вид:

Эти уравнения являются окончательными и носят название канонических уравнений метода сил. Число их равно степени статической неопределимости системы. В некоторых случаях, как увидим далее, когда имеется возможность сразу указать значения некоторых неизвестных, число совместно решаемых уравнений снижается. Остается теперь выяснить, что представляют собой коэффициенты и как следует их определять. Для этого обратимся к выражению (6.1).

Если , то

Следовательно, коэффициент это есть перемещение по направлению i-го силового фактора под действием единичного фактора, заменяющего k-й фактор. Например, коэффициент уравнения представляет собой взаимное горизонтальное смещение точек B и С, которое возникло бы в раме, если бы к ней вместо всех сил была приложена только единичная сила в точке А (рис. 5 а). Если, например, вместо сил приложив единичные силы, а все прочие силы с эквивалентной системы снять (рис. 5 б), то угол поворота в сечении D под действием этих сил будет , горизонтальное перемещение в точке А будет и т. д.

а) , б) и

Рис.5. Интерпретация коэффициентов уравнений метода сил

Весьма существенно отметить, что в проделанном выводе совершенно не обусловливается то, каким образом возникают перемещения . Хотя мы и рассматриваем раму, работающую на изгиб, все сказанное с равным успехом может быть отнесено, вообще, к любой системе, работающей на кручение, растяжение и изгиб или на то, другое и третье совместно.

Обратимся к интегралам Мора. Для того чтобы определить величину , следует вместо внешних сил рассматривать единичную силу, заменяющую k-й фактор. Поэтому внутренние моменты и силы , , , , и в интегралах Мора заменим на , , , , и , понимая под ними внутренние моменты и силы от единичного k-го фактора. В итоге получим:

где , … -- внутренние моменты и силы, возникающие под действием i-го единичного фактора. Таким образом, коэффициенты получаются как результат перемножения i-го и k-го внутренних единичных силовых факторов. Индексы i и k непосредственно указывают, какие факторы должны быть перемножены под знаком интегралов Мора. Если рама состоит из прямых участков и можно пользоваться правилом Верещагина, то представляет собой результат перемножения i-х единичных эпюр на k-е единичные эпюры.

Очевидно, что

Это следует, с одной стороны, непосредственно из выражений для , а с другой стороны, из теоремы о взаимности перемещений, поскольку перемещения и возникают под действием одной и той же силы, равной единице. Величины , входящие в канонические уравнения, представляют собой перемещения в направлениях 1, 2,..., возникающие под действием заданных внешних сил в эквивалентной системе. Они определяются перемножением эпюры моментов заданных сил на соответствующие единичные эпюры.

Пример

Раскрыть статическую неопределимость и построить эпюру изгибающих моментов для рамы, показанной на рис. 6.

Рис.6. Заданная расчетная схема

Рама три раза статически неопределима. Выбираем основную систему, отбрасывая левую заделку. Действие заделки заменяем двумя силами , и моментом и определяем эквивалентную систему (рис. 7).

Рис.7. Динамика решения: от эквивалентной системы и силовой эпюры Р, включая эпюры моментов от единичных сил: 1, 2, 3 в точках приложения неизвестных , ,

Канонические уравнения (6.2) принимают для рассматриваемой системы такой вид:

Основные перемещения в рассматриваемой раме определяются изгибом. Поэтому, пренебрегая сдвигом и сжатием стержней, строим эпюры изгибающих моментов от заданной силы P и от трех единичных силовых факторов (рис. 7). Определяем коэффициенты уравнений, считая, что жесткость на изгиб всех участков рамы постоянна и равна EJ. Величина определяется перемножением первой единичной эпюры самой на себя. Для каждого участка берется, следовательно, площадь эпюры и умножается на ординату этой же эпюры, проходящую через ее центр тяжести:

Заметим, что величины при всегда положительны, поскольку площади эпюр и ординаты имеют общий знак.

Определяем, далее, и остальные коэффициенты уравнений, перемножая эпюры с соответствующими номерами:

, , , , , , , .

Подставляем найденные коэффициенты в канонические уравнения. После сокращений получаем:

, ,

Решая эти уравнения, находим:

, ,

метод сила эпюра момент

Раскрытие статической неопределимости на этом заканчивается.

Рис.8. Суммарная эпюра изгибающих моментов.

Эпюра изгибающих моментов может быть получена наложением на эпюру моментов заданных сил трех единичных эпюр, увеличенных соответственно в , и раза Суммарная эпюра изгибающих моментов представлена на рис. 8. Там же пунктиром показана форма изогнутой оси рамы.

Размещено на Allbest.ru

...

Подобные документы

  • Кинематический анализ статически определимых стержневых систем, проектирование их поэтажных схем. Вычисление степени статической неопределимости. Расчет опорных реакций и усилий в стержнях. Построение эпюр участков, моментов, поперечных и продольных сил.

    контрольная работа [3,6 M], добавлен 07.02.2014

  • Расчет закрепленного вверху стального стержня, построение эпюры продольных усилий, перемещений поперечных сечений бруса. Выбор стальной балки двутаврового поперечного сечения. Построение эпюры крутящих, изгибающих моментов в двух плоскостях для вала.

    контрольная работа [1,1 M], добавлен 06.08.2013

  • Ознакомление с простыми видами деформаций. Определение значения реакции в заделке и построение эпюры нормальных сил. Определение скручивающего момента в заделке. Построение эпюры поперечных сил и изгибающих моментов. Определение опорных реакций.

    курсовая работа [837,8 K], добавлен 30.11.2022

  • Особенности силового расчета механизма. Анализ метода подбора электродвигателя и расчета маховика. Построение кривой избыточных моментов. Характеристика и анализ схем механизмов поршневого компрессора. Основные способы расчета моментов инерции маховика.

    контрольная работа [123,0 K], добавлен 16.03.2012

  • Построение эпюр внутренних силовых факторов. Выбор коэффициентов, учитывающих концентрацию напряжений, размеры вала, качество обработки поверхности, упрочняющую технологию. Конструирование участка вала. Раскрытие статической неопределимости рамы.

    курсовая работа [2,3 M], добавлен 10.06.2015

  • Энергокинематический расчет редуктора: расчёт косозубой и клиноременной передачи, входного вала. Выбор подшипников, определение запаса прочности и выбор шпонок, эпюры изгибающих и крутящих моментов. Выбор смазывающих материалов и систем смазывания.

    курсовая работа [889,6 K], добавлен 08.07.2012

  • Виды нагрузок, типы опор и балок. Шарнирно-неподвижная опора: схематическое устройство и условное обозначение. Растяжение-сжатие прямого бруса. Плоские и пространственные статистические определяемые рамы. Построение эпюр изгибающих и крутящих моментов.

    реферат [407,8 K], добавлен 11.10.2013

  • Определение вращающих моментов и окружных усилий на каждом зубчатом колесе. Расчет диаметров вала по участкам. Проверочный расчет вала на выносливость и на жёсткость. Определение углов поворота сечений вала в опорах. Эпюры крутящих и изгибающих моментов.

    курсовая работа [530,1 K], добавлен 08.01.2016

  • Эпюры внутренних усилий. Составление уравнения равновесия и определение опорных реакций. Определение внутренних усилий и построение эпюр. Расчетная схема балки. Значения поперечных сил в сечениях. Определение значений моментов по характерным точкам.

    контрольная работа [35,9 K], добавлен 21.11.2010

  • Выбор материала зубчатой передачи и определение допускаемых напряжений. Определение нагрузок на валах. Расчетная схема быстроходного вала редуктора. Определение реакций в опорах. Расчет изгибающих моментов. Построение эпюр изгибающих и крутящих моментов.

    курсовая работа [261,2 K], добавлен 13.07.2012

  • Проектный расчет вала редуктора рабочей машины. Построение эпюры изгибающих моментов. Подбор подшипника для вала. Подбор размера шпонки. Определение длины концевого участка вала. Редуктором - механизм, состоящий из зубчатых или червячных передач.

    курсовая работа [754,6 K], добавлен 17.04.2009

  • Расчеты значения продольной силы и нормального напряжения для ступенчатого стального бруса. Центральные моменты инерции сечения. Построение эпюры поперечных сил и изгибающих моментов от расчетной нагрузки. Определение несущей способности деревянной балки.

    контрольная работа [1,8 M], добавлен 01.02.2011

  • Эпюры изгибающих моментов ступенчатого вала в вертикальной и горизонтальной плоскости. Влияние изменения длины стойки на величину допускаемой нагрузки. Удельная потенциальная энергия деформаций стального кубика. Сопротивление поперечного сечения балки.

    контрольная работа [875,5 K], добавлен 29.11.2013

  • Постановка задачи расчета вала. Определение силы реакций в подшипниках, эпюры на сжатых волокнах. Построение эпюры крутящих моментов. Определение суммарных реакций в подшипниках, их грузоподъемности по наиболее нагруженной опоре и его долговечности.

    курсовая работа [111,3 K], добавлен 26.01.2010

  • Кинематический расчет привода графоаналитическим методом. Эпюры изгибающих и крутящих моментов. Расчет режимов резания. Номинальная долговечность подшипников в часах. Расчет шпоночных и шлицевых соединений. Техника безопасности при работе на станках.

    курсовая работа [421,4 K], добавлен 20.05.2015

  • Изображение заданной системы в критическом деформированном состоянии. Выявление сжато-изогнутых, изогнутых элементов, назначение числа ненулевых координат вектора отклонений для сжато-изогнутых элементов. Разбор оси системы на участки. Расчет сечения.

    научная работа [409,7 K], добавлен 13.11.2008

  • Основные зависимости, характеризующие работу пусковых систем. Особенности проведения расчета двигателя: выбор стартера, определение моментов сопротивления, мощности стартера, проектирование стартерного электродвигателя по проведённым расчётам параметров.

    курсовая работа [518,5 K], добавлен 29.01.2010

  • Решение задачи определения напряженно-деформированного состояния сооружения, ее этапы. Особенности статически определимой системы. Определение опорных реакций. Внутренние усилия стержневой системы. Алгоритм метода простых сечений. Метод вырезания узла.

    лекция [75,6 K], добавлен 24.05.2014

  • Выбор конструкции ротора; определение опорных реакций вала: расчет изгибающих моментов на отдельных участках и среднего, построение эпюры. Определение радиуса кривизны участка и момента инерции. Расчет критической скорости и частоты вращения вала.

    контрольная работа [122,7 K], добавлен 24.05.2012

  • Техническая характеристика стана ХПТ-55. Расчет станины рабочей клети. Моменты инерции сечений. Расчет валков на прочность и жесткость. Схема действия сил на рабочий валок и эпюры изгибающих и крутящих моментов. Расчет подушек валков, напряжение изгиба.

    курсовая работа [332,7 K], добавлен 26.11.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.