Анализ формулы Эйлера
Определение наименьшей критической силы для стержня. Нахождение величины критического напряжения. Составление условия устойчивости. Расчетная схема стержня с жесткозакрепленным одним концом. Влияние способа закрепления концов стержня на устойчивость.
Рубрика | Производство и технологии |
Вид | лекция |
Язык | русский |
Дата добавления | 30.07.2013 |
Размер файла | 74,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Лекция № 43.
Анализ формулы Эйлера
Значениям критической силы высших порядков соответствуют искривления по синусоидам с двумя, тремя и т. д. полуволнами (Рис.1):
(1)
Таким образом, чем больше точек перегиба будет иметь синусоидально-искривленная ось стержня, тем большей должна быть критическая сила. Более полные исследования показывают, что формы равновесия, определяемые формулами (1), неустойчивы; они переходят в устойчивые формы лишь при наличии промежуточных опор в точках В и С (рис.1).
Рис.1
Таким образом, поставленная задача решена; для нашего стержня наименьшая критическая сила определяется формулой
а изогнутая ось представляет синусоиду
Величина постоянной интегрирования а осталась неопределенной; физическое значение ее выяснится, если в уравнении синусоиды положить ; тогда (т. е. посредине длины стержня) получит значение:
Значит, а -- это прогиб стержня в сечении посредине его длины. Так как при критическом значении силы Р равновесие изогнутого стержня возможно при различных отклонениях его от прямолинейной формы, лишь бы эти отклонения были малыми, то естественно, что прогиб f остался неопределенным.
Он должен быть при этом настолько малым, чтобы мы имели право применять приближенное дифференциальное уравнение изогнутой оси, т. е. чтобы было по прежнему мало по сравнению с единицей.
Получив значение критической силы, мы можем сейчас же найти и величину критического напряжения , разделив силу на площадь сечения стержня F; так как величина критической силы определялась из рассмотрения деформаций стержня, на которых местные ослабления площади сечения сказываются крайне слабо, то в формулу для входит момент инерции поэтому принято при вычислении критических напряжений, а также при составлении условия устойчивости вводить в расчет полную, а не ослабленную, площадь поперечного сечения стержня . Тогда
Таким образом, критическое напряжение для стержней данного материала обратно пропорционально квадрату отношения длины стержня к наименьшему радиусу инерции его поперечного сечения. Это отношение называется гибкостью стержня и играет весьма важную роль во всех проверках сжатых стержней на устойчивость.
Из последнего выражения видно видно, что критическое напряжение при тонких и длинных стержнях может быть весьма малым, ниже основного допускаемого напряжения на прочность . Так, для стали 3 с пределом прочности допускаемое напряжение может быть принято ; критическое же напряжение для стержня с гибкостью при модуле упругости материала будет равно
Таким образом, если бы площадь сжатого стержня с такой гибкостью была подобрана лишь по условию прочности, то стержень разрушился бы от потери устойчивости прямолинейной формы.
Влияние способа закрепления концов стержня
Формула Эйлера была получена путем интегрирования приближенного дифференциального уравнения изогнутой оси стержня при определенном закреплении его концов (шарнирно-опертых). Значит, найденное выражение критической силы справедливо лишь для стержня с шарнирно-опертыми концами и изменится при изменении условий закрепления концов стержня. Закрепление сжатого стержня с шарнирно-опертыми концами мы будем называть основным случаем закрепления. Другие виды закрепления будем приводить к основному случаю. Если повторить весь ход вывода для стержня, жестко защемленного одним концом и нагруженного осевой сжимающей силой на другом конце (Рис.2), то мы получим другое выражение для критической силы, а следовательно, и для критических напряжений.
Рис.2. Расчетная схема стержня с жесткозакрепленным одним концом.
Предоставляя право студентам проделать это во всех подробностях самостоятельно, подойдем к выяснению критической силы для этого случая путем следующих простых рассуждений.
Пусть при достижении силой Р критического значения колонна будет сохранять равновесие при слабом выпучивании по кривой АВ. Сравнивая два варианта изгиба видим, что изогнутая ось стержня, защемленного одним концом, находится совершенно в тех же условиях, что и верхняя часть стержня двойной длины с шарнирно-закрепленными концами.
Значит, критическая сила для стойки длиной с одним защемленным, а другим свободным концами будет та же, что для стойки с шарнирно-опертыми концами при длине :
Если мы обратимся к случаю стойки, у которой оба конца защемлены и не могут поворачиваться (Рис.3), то заметим, что при выпучивании, по симметрии, средняя часть стержня, длиной , будет работать в тех же условиях, что и стержень при шарнирно-опертых концах (так как в точках перегиба С и D изгибающие моменты равны нулю, то эти точки можно рассматривать как шарниры).
Рис.3. Расчетная схема с жесткозакреплеными торцами.
Поэтому критическая сила для стержня с защемленными концами, длиной , равна критической силе для стержня основного случая длиной :
Полученные выражения можно объединить с формулой для критической силы основного случая и записать:
здесь -- так называемый коэффициент длины, равный:
· при шарнирных концах (основной случай) ,
· одном свободном, другом защемленном ,
· обоих защемленных концах .
Для стержня, изображенного на рис.4, с одним защемленным, а другим шарнирно-опертым концами, коэффициент оказывается примерно равным , а критическая сила:
Рис.4. Потеря устойчивости стержня с одним жесткозакрепленным и другим шарнирно-опорным торцом
критический сила стержень напряжение
Величина называется приведенной (свободной) длиной, при помощи коэффициента длины любой случай устройства опор стержня можно свести к основному; надо лишь при вычислении гибкости вместо действительной длины стержня ввести в расчет приведенную длину . Понятие о приведенной длине было впервые введено профессором Петербургского института инженеров путей сообщения Ф. Ясинским).
На практике, однако, почти никогда не встречаются в чистом виде те закрепления концов стержня, которые мы имеем на наших расчетных схемах.
Вместо шаровых опор обычно применяются цилиндрические шарниры. Подобные стержни следует считать шарнирно-опертыми при выпучивании их в плоскости, перпендикулярной к оси шарниров; при искривлении же в плоскости этих осей концы стержней следует считать защемленными (с учетом оговорок, приведенных ниже для защемленных концов).
В конструкциях очень часто встречаются сжатые стержни, концы которых приклепаны или приварены к другим элементам, часто еще с добавлением в месте прикрепления фасонных листов.
Такое закрепление, однако, трудно считать защемлением, так как части конструкции, к которым прикреплены эти стержни, не являются абсолютно жесткими.
Между тем, достаточно возможности уже небольшого поворота опорного сечения в защемлении, чтобы оно оказалось в условиях, очень близких к шарнирному опиранию.
Поэтому на практике недопустимо рассчитывать такие стержни, как стойки с абсолютно защемленными концами. Лишь в тех случаях, Когда имеет место очень надежное защемление концов, допускается небольшое (процентов на 10--20) уменьшение свободной длины стержня.
Наконец, на практике встречаются стержни, опирающиеся на соседние элементы по всей плоскости опорных поперечных сечений. Сюда относятся деревянные стойки, отдельно стоящие металлические колонны, притянутые болтами к фундаменту, и т. д.
При тщательном конструировании опорного башмака и соединения его с фундаментом можно считать эти стержни имеющими защемленный конец. Сюда же относятся мощные колонны с цилиндрическим шарниром при расчете их на выпучивание в плоскости оси шарнира.
Обычно же трудно рассчитывать на надежное и равномерное прилегание плоского концевого сечения сжатого стержня к опоре. Поэтому грузоподъемность таких стоек обычно мало превышает грузоподъемность стержней с шарнирно-опертыми концами.
Значения критических нагрузок могут быть получены в виде формул типа эйлеровой и для стержней переменного сечения, а также при действии нескольких сжимающих сил.
Размещено на Allbest.ru
...Подобные документы
Непротиворечивый вариант геометрически нелинейной теории плоских криволинейных стержней в квадратичном приближении. Алгоритм численного решения задачи устойчивости плоского криволинейного стержня. Линеаризованные уравнения нейтрального равновесия.
дипломная работа [4,0 M], добавлен 13.07.2014Расчет стержня на кручение. Механизм деформирования стержня с круглым поперечным сечением. Гипотеза плоских сечений. Метод сопротивления материалов. Касательные напряжения, возникающие в поперечном сечении бруса. Жесткость стержня при кручении.
презентация [515,8 K], добавлен 11.10.2013Физико-механические свойства материала подкрепляющих элементов, обшивок и стенок тонкостенного стержня. Определение распределения перерезывающей силы и изгибающего момента по длине конструкции. Определение потока касательных усилий в поперечном сечении.
курсовая работа [7,5 M], добавлен 27.05.2012Изгиб вызывается внешними силами, направленными перпендикулярно продольной оси стержня, а также парами внешних сил, плоскость действия которых проходит через эту ось. Внутренние силы в поперечных сечениях изгибаемых стержней определяются методом сечений.
реферат [1,1 M], добавлен 13.01.2009Определение физико-механических характеристик (ФМХ) конструкции: подкрепляющих элементов, стенок и обшивок. Расчет внутренних силовых факторов, геометрических и жесткостных характеристик сечения. Расчет устойчивости многозамкнутого тонкостенного стержня.
курсовая работа [8,3 M], добавлен 27.05.2012Определение геометрических характеристик сечения тонкостенного подкрепленного стержня. Расчет нормальных напряжений в подкрепляющих элементах. Распределение напряжений по контуру. Определение потока касательных сил от перерезывающей силы, по контуру.
курсовая работа [2,2 M], добавлен 22.04.2012Методика и основные этапы расчета стержня. Построение эпюры нормальных напряжений. Определение параметров статически неопределимого стержня. Вычисление вала при кручении. Расчет консольной и двухопорной балки. Сравнение площадей поперечных сечений.
контрольная работа [477,1 K], добавлен 02.04.2014Расчетное и экспериментальное определение критических сил стержней большой и средней гибкости. Сравнительный анализ результатов расчета и эксперимента. Построение диаграммы критических напряжений, определение расчетных значений критической силы стержня.
лабораторная работа [341,9 K], добавлен 06.10.2010Влияние граничных условий на величину критической силы при потере устойчивости. Пределы применимости формулы Эйлера. Расчет продольно-сжатых стержней с использованием коэффициента снижения допускаемых напряжений. Использование коэффициента в расчетах.
контрольная работа [309,0 K], добавлен 11.10.2013Площадь поперечного сечения стержня. Изменение статических моментов площади сечения при параллельном переносе осей координат. Определение положения центра тяжести сечения, полукруга. Моменты инерции сечения. Свойства прямоугольного поперечного сечения.
презентация [1,7 M], добавлен 10.12.2013Выбор материала, его характеристик и допускаемых напряжений. Расчет прочности и жесткости балок и рам, ступенчатого стержня и стержня постоянного сечения, статически неопределимой стержневой системы при растяжении-сжатии и при кручении. Построение эпюр.
курсовая работа [628,4 K], добавлен 06.12.2011Расчеты на прочность статически определимых систем растяжения-сжатия. Геометрические характеристики плоских сечений. Анализ напряженного состояния. Расчет вала и балки на прочность и жесткость, определение на устойчивость центрально сжатого стержня.
контрольная работа [1,5 M], добавлен 29.01.2014Построение эпюры продольных сил и выражение наибольшего по модулю нормального напряжения. Определение полного удлинения бруса и его потенциальной энергии. Нагружение стержня вследствие температурных деформаций. Координаты центра тяжести составной фигуры.
контрольная работа [1,7 M], добавлен 07.03.2011Выбор и обоснование способа изготовления отливки детали "корпус". Обоснование положения отливки в форме. Конструирование стержня. Составление баланса металла. Технология приготовления смесей. Расчет массы пригруза, а также и капитальных вложений.
дипломная работа [344,0 K], добавлен 01.04.2013Построение эпюр нормальных и поперечных сил, изгибающих и крутящих моментов. Напряжения при кручении. Расчет напряжений и определение размеров поперечных стержней. Выбор трубчатого профиля стержня, как наиболее экономичного с точки зрения металлоёмкости.
контрольная работа [116,5 K], добавлен 07.11.2012Расчетные формулы для кручения стержня в форме тонкостенного профиля, с круговым и не круглым поперечным сечением. Определение величин полярного момента инерции сечения и сопротивления. Эпюра касательных напряжений для бруса прямоугольного сечения.
презентация [515,8 K], добавлен 21.02.2014Определение допустимого параметра нагрузки и расчет перемещения свободного конца консольного стержня переменного сечения. Выбор размеров поперечных сечений балки. Вычисление угла поворота свободного конца вала. Условия прочности заклепочного соединения.
контрольная работа [1,1 M], добавлен 26.05.2014Оценка размеров поперечного сечения. Нахождение момента инерции относительно центральных осей. Расчет прочно-плотного заклепочного шва. Построение эпюр поперечных сил и изгибающих моментов. Проектный расчет вала при совместном действии кручения и изгиба.
курсовая работа [535,6 K], добавлен 19.11.2012Определение размеров деталей или внешних нагрузок, при которых исключается возможность появления недопустимых с точки зрения нормальной работы конструкции деформаций. Напряжения в точках поперечного сечения при изгибе с кручением. Расчет на прочность.
курсовая работа [1017,9 K], добавлен 29.11.2013Проектировочный расчет винта домкрата, расчет напряжения кручения в опасном сечении. Величина критической силы винта. Определение внешнего диаметра гайки домкрата, расчетная схема. Расчет длины и диаметра рукоятки, фактическое напряжение изгиба.
контрольная работа [723,3 K], добавлен 16.02.2012