Лазерная виброметрия
Электрическая схема лазерного виброметра. Основы измерения вибрации. Простейшее гармоническое колебание. Динамика механических систем. Измерения амплитуды вибрации. Краткая справка по единицам измерения амплитуды. Сложная вибрация. Определение линейности.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 07.08.2013 |
Размер файла | 707,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
В первую очередь все сигналы делятся на стационарные и нестационарные. Стационарный сигнал имеет постоянные по времени статистические параметры. Если вы посмотрите несколько мгновений на стационарный сигнал и затем через какое-то время опять вернетесь к нему, то он будет выглядеть, по существу, тем же самым, то есть его общий уровень, распределение амплитуды и стандартное отклонение будут почти неизменными. Роторные машины производят, как правило, стационарные вибрационные сигналы. Стационарные сигналы подразделяются далее на детерминированные и случайные. Случайные (нестационарные) сигналы непредсказуемы по своему частотному составу и уровням амплитуды, однако их статистические характеристики все-таки почти постоянны. Примеры случайных сигналов - дождь, падающий на крышу, шум реактивной струи, турбулентность в потоке газа или жидкости и кавитация.
Детерминированный сигнал
Детерминированные сигналы представляют собой специальный класс стационарных сигналов. Они сохраняют относительно постоянный частотный и амплитудный состав в течение длительного периода времени. Детерминированные сигналы генерируются роторными машинами, музыкальными инструментами и электронными генераторами. Они подразделяются в свою очередь на периодические и квазипериодические. Временная реализация периодического сигнала непрерывно повторяется через равные отрезки времени. Частота повторения квазипериодической временной формы варьируется во времени, однако на глаз сигнал кажется периодическим. Иногда роторные машины производят квазипериодические сигналы, особенно это относится к оборудованию с ременной передачей.
Детерминированные сигналы - это, по-видимому, наиболее важный тип для анализа вибраций машин, а их спектры схожи с приведенным здесь:
Периодические сигналы всегда имеют спектр с дискретными частотными компонентами, называемыми гармониками или гармоническими последовательностями. Сам термин гармоника пришел из музыки, где гармоники - это целые кратные фундаментальной (опорной) частоты.
Нестационарный сигнал
Нестационарные сигналы подразделяют на непрерывные и переходные. Примеры нестационарного непрерывного сигнала - вибрация, производимая отбойным молотком или артиллерийская канонада. Переходным, по определению, называют сигнал, начинающийся и заканчивающийся на нулевом уровне и длящийся конечное время. Он может быть очень коротким или довольно долгим. Примеры переходного сигналы - удар молотка, шум пролетающего самолета или вибрация машины на разгоне и выбеге.
Примеры временных реализаций и их спектров
Ниже приведены примеры временных реализации и спектров, иллюстрирующих важнейшие понятия частотного анализа. Хотя данные примеры в некотором смысле идеализированы, поскольку они были получены с помощью электронного генератора сигналов с последующей обработкой БПФ-анализатором. Тем не менее, они, определяют некоторые характерные черты, присущие спектрам вибрации машин.
Синусоидальное колебание содержит только одну частотную компоненту, а ее спектр - это единичная точка. Теоретически, истинное синусоидальное колебание существует в неизменном виде бесконечное время. В математике преобразование, переводящее элемент из временной области в элемент частотной области, называют преобразованием Фурье. Такое преобразование сжимает всю информацию, содержащуюся в синусоидальном колебании бесконечной продолжительности до единственной точки. На приведенном выше спектре единственный пик имеет конечную, а не нулевую ширину, что обусловлено погрешностью применяемого алгоритма численного расчета, называемого БПФ (см. далее).
В машине с дисбалансом ротора возникает синусоидальная возбуждающая сила с частотой 1Х, то есть один раз за один оборот. Если бы отклик такой машины был абсолютно линейным, то результирующая вибрация была бы также синусоидальной и подобна приведенной выше временной реализации. Во многих плохо сбалансированных машинах временная реализация колебаний действительно напоминает синусоиду, а в спектре вибрации имеется большой пик на частоте 1Х, то есть на оборотной частоте.
На следующем рисунке представлен гармонический спектр периодического колебания типа обрезанной синусоиды.
Этот спектр состоит из компонент, разделенных постоянным интервалом, равным 1/(период колебания). Самая низшая из этих компонент (первая после нуля), называется основной, а все остальные - ее гармониками. Такое колебание было получено с помощью генератора сигналов, и, как видно из рассмотрения временного сигнала, оно несимметрично относительно нулевой оси (положения равновесия). Это означает, что сигнал имеет постоянную составляющую, превращающуюся в спектре в первую линию слева. Данный пример иллюстрирует способность спектрального анализа воспроизводить частоты вплоть до нулевой (нулевая частота соответствует постоянному сигналу или, другими словами, отсутствию колебаний).
Как правило, при вибрационном анализе машин нежелательно проводить спектральный анализ на таких низких частотах по ряду причин. Большинство датчиков вибраций не обеспечивают правильные измерения до 0 Гц, и только специальные акселерометры, применяемые, например, в инерциальных навигационных системах, позволяют это делать. Для машинных вибраций наименьшая представляющая интерес частота обычно составляет 0,3Х. В некоторых машинах это может быть ниже 1 Гц, Чтобы измерять и интерпретировать сигналы ниже в диапазоне ниже 1 Гц необходимы специальные методики.
При анализе вибрационных характеристик машин не так уж редко приходится видеть временные реализации, срезанные наподобие приведенной выше. Обычно это означает, что в машине возникла какая-то разболтанность, и что-то ограничивает движение ослабленного элемента в одном из направлений.
Показанный далее сигнал аналогичен предыдущему, но срез в нем имеет место, как с положительной, так и с отрицательной сторон.
В результате временной график колебания (временная реализация) получается симметричным. Сигналы подобного типа могут возникать в машинах, в которых движение ослабленных элементов ограничено в обоих направлениях. В этом случае в спектре также будут спектр периодического сигнала присутствовать гармонические составляющие, однако это будут только нечетные гармоники. Все четные гармонические составляющие отсутствуют. Любое периодическое симметричное колебание будет обладать похожим спектром. Спектр сигнала квадратной формы также выглядел бы подобно этому. Иногда похожий спектр встречается в машине с очень сильной разболтанностью, в которой смещение вибрирующих частей ограничено с каждой стороны. Примером этого является разбалансированная машина с ослабленными затяжными болтами крепления.
Спектр короткого импульса, полученный с помощью генератора сигналов, очень широкий.
Обратите внимание, что его спектр не дискретный, а непрерывный. Другими словами энергия сигнала распределена по всему частотному диапазону, а не сосредоточена на нескольких отдельных частотах. Это характерно для недетерминированных сигналов, таких как случайный шум. и переходные процессы. Заметьте, что, начиная с определенной частоты, уровень равен нулю. Эта частота обратно пропорциональна длительности импульса, поэтому, чем короче импульс, тем шире его частотный состав. Если бы в природе существовал бесконечно короткий импульс (говоря математически,- дельта-функция), то его спектр занимал бы весь частотный диапазон от 0 до +.
При исследовании непрерывного спектра обычно невозможно сказать, принадлежит ли он случайному сигналу или переходному. Это ограничение присуще частотному анализу Фурье, поэтому, сталкиваясь с непрерывным спектром полезно изучить его временную реализацию. Применительно к анализу вибрации машины, это позволяет отличить удары, имеющие импульсные временные реализации, и случайный шум, вызванный, например, кавитацией.
Единичный импульс, подобный этому, редко встречается в роторных машинах, однако при ударном тесте этот тип возбуждения используется специально для возбуждения машины. Хотя ее вибрационный отклик не будет такой классически гладкой кривой, какая приведена выше, но, тем не менее он будет непрерывным в широком частотном диапазоне и иметь пики на собственных частотах конструкции. Это означает, что удар является очень хорошим типом возбуждения для выявления собственных частот, так как его энергия распределена непрерывно в широком частотном диапазоне.
Если импульс, имеющий приведенный выше спектр, повторяется с постоянной частотой, то
результирующий спектр, который показан, здесь, будет уже не непрерывным, а состоящим из гармоник частоты повторения импульса, а его огибающая будет совпадать с формой спектра единичного импульса.
Подобные сигналы производят подшипники с дефектами (выбоины, царапины и т.п.) на одном из колец. Эти импульсы могут быть очень узкими, причем они всегда вызывают появление большой серии гармоник.
Модуляция
Модуляцией называют нелинейное явление, при котором несколько сигналов взаимодействуют друг с другом таким образом, что в результате получается сигнал с новыми частотами, отсутствовавшими в исходных.
Модуляция - это бич звукоинженеров, поскольку она вызывает модуляционное искажение, досаждающее любителям музыки. Существует множество форм модуляции, включая частотную и амплитудную модуляцию. Давайте рассмотрим по отдельности основные ее типы. Показанная здесь частотная модуляция (frequency modulation - FM) есть варьирование частоты одного сигнала под воздействием другого, имеющего обычно более низкую частоту.
Модулируемая частота называется несущей. На представленном спектре максимальная по амплитуде компонента и есть несущая, а другие составляющие, которые похожи на гармоники, называют боковыми полосами. Последние располагаются симметрично по обеим сторонам от несущей с шагом, равным величине модулирующей частоты Частотная модуляция часто встречается в спектрах вибрации машин, особенно в зубчатых передачах, где частота зацепления зубьев модулируется оборотной частотой колеса. Она также имеет место в некоторых акустических динамиках, хотя и на очень низком уровне.
Амплитудная модуляция
Частота временной реализации амплитудно-модулированного сигнала, кажется постоянной, а ее амплитуда колеблется с постоянным периодом
Этот сигнал был получен посредством быстрого варьирования усиления на выходе электронного генератора сигналов в процессе записи. Периодическое изменение амплитуды сигнала с определенным периодом называют амплитудной модуляцией. Спектр в этом случае имеет максимальный пик на несущей частоте и по одной компоненте с каждой стороны. Эти дополнительные компоненты суть боковые полосы. Обратите внимание, что в отличие от частотной модуляции, приводящей к большому количеству боковых полос, амплитудная модуляция сопровождается только двумя боковыми полосами, которые располагаются относительно несущей симметрично на расстоянии, равном величине модулирующей частоты (в нашем примере модулирующая частота - это частота, с которой играли ручкой усиления при записи сигнала). В данном примере модулирующая частота значительно ниже модулируемой, или несущей, однако на практике они часто оказываются близкими друг к другу (например, на много роторных машинах, имеющих близкие частоты вращения роторов). Кроме того, в реальной жизни и модулирующий, и модулируемый сигналы имеют более сложную форму, чем приведенные здесь синусоиды.
Связь между амплитудной модуляцией и боковыми полосами можно наглядно представить в векторном виде. Представим временной сигнал в виде вращающегося вектора, величина которого равна амплитуде сигнала, а угол в полярных координатах - фазе. Векторное представление синусоидального колебания - это просто вектор постоянной длины, вращающийся вокруг своего начала со скоростью, равной частоте колебания. Каждый цикл временной реализации соответствует одному обороту вектора, т.е. один цикл - это 360 градусов.
Амплитудная модуляция синусоидального колебания в векторном представлении выглядит как сумма трех векторов: несущей модулируемого сигнала и двух боковых полос, Векторы боковых полос вращаются один чуть быстрее, а другой чуть медленней несущего.
Добавление этих боковых полос к несущей приводит к изменениям амплитуды суммы. При этом несущий вектор кажется неподвижным, как если бы мы находились в системе координат, вращающейся с несущей частотой. Заметим, что при вращении векторов боковых полос между ними поддерживается постоянное фазовое соотношение, поэтому суммарный вектор вращается с постоянной частотой (с частотой несущей).
Чтобы представить подобным образом частотную модуляцию, достаточно ввести небольшое изменение фазовых соотношений боковых векторов. Если боковой вектор меньшей частоты развернуть на 180 градусов, то возникнет частотная модуляция. При этом результирующий вектор качается вперед и назад вокруг своего начала. Это означает возрастание и убывание его частоты, то есть частотную модуляцию. Следует отметить также, что результирующий вектор изменяется по амплитуде. То есть наряду с частотной присутствует и амплитудная модуляция. Чтобы получить векторное представление чистой частотной модуляции, необходимо ввести в рассмотрение множество боковых векторов, имеющих точно определенные фазовые соотношения друг с другом. В вибрации оборудования почти всегда присутствует как амплитудная, так и частотная модуляция. В таких случаях, некоторые боковые полосы могут складываться в противофазе, в результате чего верхние и нижние боковые полосы будут иметь различные уровни, то есть не будут симметричны относительно несущей.
Биения
Приведенная временная реализация похожа на амплитудную модуляцию, однако, в действительности, это лишь сумма двух синусоидальных сигналов с немного отличающимися частотами, которая называется биение.
Из-за того, что эти сигналы немного различаются по частоте, их разность фаз изменяется в пределах от нуля до 360 градусов, а это означает, что их суммарная амплитуда будет то усиливаться (сигналы в фазе), то ослабляться (сигналы в противофазе). В спектре биения присутствуют компоненты с частотой и амплитудой каждого сигнала, и полностью отсутствуют боковые полосы. В данном примере амплитуды двух исходных сигналов различны, поэтому они не полностью взаимоуничтожаются в нулевой точке между максимумами. Биение - это линейный процесс: оно не сопровождается появлением новых частотных компонент.
Электродвигатели часто генерируют вибрационные и акустические сигналы, напоминающие биения, в которых частота лжебиения равна удвоенной частоте проскальзывания. В действительности, это есть амплитудная модуляция вибрационного сигнала удвоенной частотой проскальзыаания. Такое явление в электродвигателях иногда также называют биением, вероятно, по той причине, что при нем механизм звучит как расстроенный музыкальный инструмент, "бьет".
Этот пример биений аналогичен предыдущему, однако уровни складывающихся сигналов равны, поэтому они полностью взаимоуничтожаются в нулевых точках. Подобное полное взаимоуничтожение весьма редко встречается в реальных вибрационных сигналах роторного оборудования.
Выше мы видели, что биения и амплитудная модуляция имеют похожие временные реализации. Это действительно так, но с небольшой поправкой- в случае биений имеет место сдвиг фазы в точке полного взаимоуничтожений сигналов.
Логарифмическая частотная шкала
До сих пор мы рассматривали только один тип частотного анализа, в котором частотная шкала была линейной. Такой подход применим в том случае, когда частотное разрешение постоянно во всем частотном диапазоне, что характерно для так называемого узкополосного анализа, или анализа в полосах частот с постоянной абсолютной шириной. Именно такой анализ выполняют, например, БПФ-анализаторы.
Существуют ситуации, когда нужно провести частотный анализ, но узкополосный подход не обеспечивает представление данных в наиболее удобной форме. Например, когда изучается неблагоприятное воздействие акустического шума на организм человека. Человеческий слух реагирует не столько на сами частоты, сколько на их соотношения. Частота звука определяется по высоте тона, воспринимаемого слушателем, причем изменение частоты в два раза воспринимается как изменение тона на одну октаву, независимо от того, каковы точные значения частот. Например, изменение частоты звука со 100 Гц до 200 Гц соответствует увеличению высоты на одну октаву, но и увеличение с 1000 до 2000 Гц также есть сдвиг на одну октаву. Этот эффект настолько точно воспроизводится в широком частотном диапазоне, что удобно определить октаву, как полосу частот, у которой верхняя частота в два раза выше нижней, хотя в обыденной жизни октава есть лишь субъективная мера изменения звука.
Подводя итог, можно сказать, что ухо воспринимает изменение частоты пропорционально ее логарифму, а не самой частоте. Поэтому разумно выбирать для частотной оси акустических спектров логарифмическую шкалу, что и делается почти повсеместно. Например, частотные характеристики акустического оборудования всегда даются производителями в виде графиков с логарифмической частотной осью. При осуществлении частотного анализа звука также принято использовать логарифмический частотный масштаб.
Октавный и 1/3-октавный анализ
Октава представляет собой настолько важный частотный интервал для человеческого слуха, что анализ в так называемых октавных полосах утвердился в качестве стандартного типа акустических измерений. На рисунке показан типичный октавный спектр, в котором используются значения центральных частот в соответствии с международными стандартами ISO. Ширина каждой октавной полосы равна приблизительно 70% ее центральной частоты. Иными словами, ширина анализируемых полос увеличивается пропорционально их центральным частотам. По вертикальной оси октавного спектра обычно откладывают уровень в дБ.
Можно возразить, что частотное разрешение при октавном анализе слишком низкое для исследования вибрации машин. Однако можно определить более узкие полосы с постоянной относительной шириной. Наиболее общим примером этого является третьоктавный спектр, где ширина полос составляет примерно 27% от центральных частот. Три третьоктавные полосы укладываются в одну октаву, поэтому разрешение в таком спектре в три раза лучше, чем при октавном анализе. При нормировании вибрации и шума машин третьоктавные спектры часто применяются.
Важным преимуществом анализа в полосах частот с постоянной относительной шириной является возможность представления на едином графике очень широкого частотного диапазона с достаточно узким разрешением на низких частотах. Конечно, при этом страдает разрешение на высоких частотах, однако это не вызывает проблем в некоторых приложениях, например, при отыскании неисправностей в машинах.
Для диагностики машин узкополосные спектры (с постоянной абсолютной шириной полосы) очень полезны для обнаружения высокочастотных гармоник и боковых полос, однако для обнаружения многих простых неисправностей машин такое высокое разрешение часто не требуется. Оказывается, что спектры виброскорости большинства машин спадают на высоких частотах, и поэтому спектры с постоянной относительной шириной полосы являются, обычно, более однородными в широком частотном диапазоне, Это означает, что подобные спектры позволяют лучше использовать динамический диапазон приборов. Третьоктавные спектры достаточно узки при низких частотах, что позволяет выявить первые несколько гармоник оборотной частоты, и могут эффективно использоваться для обнаружения неисправностей с помощью построения трендов.
Следует, однако, признать, что использование спектров с постоянной относительной шириной полосы в целях вибродиагностики не очень широко принято в промышленности, за исключением, быть может, нескольких достойных внимания примеров, таких как подводный флот.
Линейный и логарифмический амплитудные масштабы
Может показаться, что лучше всего исследовать спектры вибрации в линейном масштабе амплитуды, который дает истинное представление измеренной амплитуды вибрации. При использовании линейной амплитудной шкалы очень легко выявить и оценить наивысшую компоненту в спектре, зато меньшие компоненты можно совершенно упустить или, в лучшем случае, возникнут большие трудности при оценке их величины. Человеческий глаз способен различить в спектре компоненты, которые приблизительно в 50 раз ниже максимальной, но все, что меньше этого будет упущено.
Линейный масштаб может применяться, если все существенные компоненты имеют примерно одинаковую высоту. Однако в случае вибрации машин, зарождающиеся неисправности в таких деталях, как, подшипники, порождают сигналы с очень малой амплитудой. Если мы хотим надежно отследить развитие этих спектральных компонент, толучше всего откладывать на графике логарифм амплитуды, а не ее саму. При таком подходе мы легко сможем изобразить на графике и визуально интерпретировать сигналы, отличающиеся по амплитуде в 5000, т.е. иметь динамический диапазон по меньшей мере в 100 раз больший, чем позволяет линейный масштаб.
Различные типы амплитудного представления для одной и той же вибрационной характеристики (линейный и логарифмический масштабы амплитуды) представлены на рисунке.
Обратите внимание, что на линейном спектре линейная амплитудная шкала большие пики читаются очень хорошо, но пики с низким уровнем трудно разглядеть. При анализе вибрации машин, однако, часто интересуются именно малыми компонентами в спектре (например, при диагностике подшипников качения). Не забывайте, что при мониторинге вибрации нас интересуют рост уровней конкретных спектральных компонент, указывающий на развитие зародившейся неисправности. В шариковом подшипнике двигателя может развиваться небольшой дефект на одном из колец или на шарике, а уровень вибрации на соответствующей частоте поначалу будет очень маленьким. Но это не означает, что им можно пренебречь, ибо преимущество обслуживания по состоянию в том и заключается, что оно позволяет обнаружить неисправность в начальной стадии развития. Необходимо следить за уровнем этого небольшого дефекта, чтобы предсказать, когда он превратится в существенную проблему, требующую вмешательства.
Очевидно, что, если уровень вибрационной компоненты, соответствующей какому-то дефекту, удваивается, то значит с этим дефектом произошли большие изменения. Мощность и энергия вибрационного сигнала пропорциональны квадрату амплитуды, поэтому ее удвоение означает, что в четыре раза больше энергии диссипирует в вибрацию. Если мы попытаемся отследить спектральный пик с амплитудой около 0.0086 мм/с, то нам придется очень непросто, потому что он окажется слишком маленьким по сравнению с гораздо более высокими компонентами.
На 2-м из приведенных спектров представлена не сама амплитуда вибрации, а ее логарифм. Поскольку в этом спектре используется логарифмическая амплитудная шкала, умножение сигнала на любую константу означает простой сдвиг спектра вверх без изменения его формы и соотношений между компонентами.
Как известно, логарифм произведения равен сумме логарифмов множителей. Это означает, что если изменение коэффициента усиления сигнала, не влияет на форму его спектра в логарифмическом масштабе. Этот факт значительно упрощает визуальную интерпретацию спектров, измеренных при различных коэффициентах усиления - кривые просто смещаются на графике вверх или вниз, В случае использования линейной шкалы форма спектра резко изменяется при изменении коэффициента усиления прибора. Обратите внимание, что хотя по вертикальной оси на приведенном графике используется логарифмическая шкала, единицы измерения амплитуды остаются линейными (мм/с, дюймы/с), что соответствует увеличению количества нулей после запятой.
И в данном случае мы получили огромное преимущество для визуальной оценки спектра, так как вся совокупность пиков и их соотношения теперь стала видимой. Другими словами, если мы будем теперь сравнивать логарифмические спектры вибраций машины, у которой подшипники испытывают износ, то мы увидим рост уровней только у подшипниковых тонов, тогда как уровни других компонент будут оставаться неизменными. Форма спектра сразу изменится, что можно будет обнаружить невооруженным глазом.
На следующем рисунке приведен спектр, где по вертикальной оси отложены децибелы. Это особый тип логарифмической шкалы, который очень важен для вибрационного анализа.
Децибел
Удобной разновидностью логарифмического представления является децибел, или дБ. По существу, он представляет собой относительную единицу измерения, в которой используется отношение амплитуды к некоторому опорному уровню. Децибел (дБ) определяется по следующей формуле:
Lv= 20 lg (U/Uo),
где L= Уровень сигнала в дБ;
U - уровень вибрации в обычных единицах ускорения, скорости или смещения;
Uo - опорный уровень, соответствующий 0 дБ.
Понятие децибела было впервые введено в практику компанией Bell Telephone Labs еще в 20-е годы. Первоначально оно применялось для измерений относительных потерь мощности и отношения сигнал-шум в телефонных сетях. Вскоре децибел стал использоваться в качестве меры уровня звукового давления.Будем обозначать уровень виброскорости в дБ как VдБ (от слова Velocity скорость), и определим его следующим образом:
Lv= 20 lg (V/Vo),
Lv= 20 lg {V/(5х10-8 м/с2)}
Опорный уровень в 10-9 м/с2 достаточен для того, чтобы все измерения вибраций машины в децибелах были бы положительными. Указанный стандартизованный опорный уровень соответствует международной системе СИ, однако он не признается в качестве стандарта в США и других странах. Например, в ВМС США и многих американских отраслях промышленности в качестве опорного берется значение 10-8 м/с. Это приводит к тому, что американские показания для той же виброскорости будут на 20 дБ ниже, чем в СИ. (В российском стандарте используется опорный уровень виброскорости 5х10-8 м/с, поэтому российские показания Lv еще на 14 дБ ниже американских).
Таким образом, децибел - это логарифмическая относительная единица амплитуды колебаний, которая позволяет легко проводить сравнительные измерения. Любое увеличение уровня на 6 дБ соответствует удвоению амплитуды, независимо от исходного значения. Аналогично, любое изменение уровня на 20 дБ означает рост амплитуды в десять раз. То есть при постоянном соотношении амплитуд их уровни в децибелах будут различаться на постоянное число, независимо от их абсолютных значений. Такое свойство очень удобно при отслеживании развития вибрации (трендов): рост на б дБ всегда указывает на удвоение ее величины.
ДБ и соотношения амплитуд
В приведенной ниже таблице показана взаимосвязь между изменениями уровня в дБ и соответствующими отношениями амплитуд.
Мы настоятельно рекомендуем использовать в качестве единиц измерения амплитуды вибрации именно децибелы, так как в этом случае становится доступно гораздо больше информации по сравнению с линейными единицами. Кроме того, логарифмическая шкала в дБ значительно нагляднее, чем логарифмическая шкала с линейными единицами.
виброметр лазерный вибрация амплитуда
Преобразование единиц измерений
Изменение уровня в дБ |
Соотношение амплитуд |
Изменение уровня в дБ |
Соотношение амплитуд |
|
0 |
1 |
30 |
31 |
|
3 |
1,4 |
36 |
60 |
|
6 |
2 |
40 |
100 |
|
10 |
3,1 |
50 |
310 |
|
12 |
4 |
60 |
1000 |
|
18 |
8 |
70 |
3100 |
|
20 |
10 |
80 |
10,000 |
|
24 |
16 |
100 |
100,000 |
Виброускорение и вибросмещение могут также выражаться в децибелах. Чтобы различать между ними, будем обозначать децибелы ускорения - АдБ (от Acceleration - ускорение), децибелы скорости - Vд Б (от Velocity -скорость), а децибелы смещения - DдБ (от Displacement - смещение). Шкала АдБ является одной из наиболее употребительных; в качестве опорного уровня ускорения обычно используют значение 1 мкg (в России стандартный опорный уровень виброускорения - 1мкм/с2, то есть почти в 10 раз ниже; это означает, что значение La в АдБ, взятое в соответствии с российским стандартом, будет на 20 дБ выше американского).
Оказывается, что при 3,16 Гц уровни виброскорости в Vд Б и виброускорения в АдБ совпадают (в американской системе это имеет место на частоте 159,2 Гц). Приведенные ниже формулы определяют взаимосвязи между уровнями виброускорения, скорости и смещения в АдБ, VдБ и DдБ соответственно:
LV = LA - 20 lg(f) + 10,
LV = LD + 20 lg(f) - 60,
LD = LA - 20 lg(f2) + 70,
Примечание
Ускорение и Скорость в линейных единицах могут быть получены из соответствующих уровней по формулам:
Заметим, что для временных реализации во временной области всегда используются линейные единицы измерения амплитуды: мгновенное значение сигнала может быть и отрицательным, и поэтому его невозможно логарифмировать.
Ниже приведена удобная таблица соответствия уровней в VдБ и амплитуды в мм/с
\/дБ |
мм/с |
\/дБ |
мм/с |
\/дБ |
мм/с |
|
60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 |
0,05 0,063 0,079 0,1 0,13 0,16 0,2 0,25 0,32 0,4 0,5 0,63 0,79 1 1,3 |
90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 |
1,6 2 2,5 3,2 4 5 6,3 7,9 10 13 16 20 25 32 40 |
120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 |
50 63 79 100 130 160 200 250 320 400 500 630 790 1000 1300 |
Размещено на Allbest.ru
...Подобные документы
Особенности внешнего вида лазерной рулетки - инструмента для измерения длины. Преимущества лазерных дальномеров, минимизация погрешностей. Свойства и возможности лазерных рулеток и их преимущества по сравнению с простыми ручными устройствами измерения.
презентация [1,6 M], добавлен 18.11.2014Расчёт основных частот вибрации компрессора, исследование узлов блока. Выбор режимов работы и снятие параметров вибрации с узлов агрегата для средств диагностирования. Выявление дефектов, определение для них степеней развития и способы их устранения.
курсовая работа [173,2 K], добавлен 12.03.2012Характеристика современных телевизоров. Стандарты телевизионного вещания. Доверительные границы случайной погрешности результата измерения. Прямые измерения с многократными наблюдениями. Результат измерения, оценка его среднего квадратического отклонения.
курсовая работа [1,0 M], добавлен 14.11.2013Классификация средств измерения. Виды поверки и поверочная схема. Сущность и сравнительная характеристика методов поверки: непосредственное сличение, прямые и косвенные измерения. Порядок разработки и требования к методикам поверки средств измерения.
реферат [24,5 K], добавлен 20.12.2010Выбор методов и средств для измерения размеров в деталях типа "Корпус" и "Вал"; разработка принципиальных схем средств измерений и контроля, принцип их функционирования, настройки и процесса измерения. Схема устройства для контроля радиального биения.
курсовая работа [3,7 M], добавлен 18.05.2012Линейные, угловые измерения. Альтернативный метод контроля изделий. Калибры для гладких цилиндрических деталей. Контроль размеров высоты и глубины, конусов и углов. Измерения формы и расположения поверхностей, шероховатости, зубчатых колес и передач.
шпаргалка [259,9 K], добавлен 13.11.2008Характеристика методов измерения и назначение измерительных приборов. Устройство и применение измерительной линейки, микроскопических и штанген-инструментов. Характеристика средств измерения с механическим, оптическим и пневматическим преобразованием.
курсовая работа [312,9 K], добавлен 01.07.2011Современные методы и средства измерения расстояний в радиолокационной практике. Специфика эксплуатации контрольно-измерительных оптических дальномеров. Средства измерения, испытания и контроля, методики и стандарты, регламентирующие их выполнение.
курсовая работа [5,9 M], добавлен 05.12.2013Решение задач контроля и регулирования нефтяных месторождений с помощью глубинных манометров. Требования к глубинным манометрам. Необходимость и особенности измерения температуры. Недостатки скважинных термометров. Необходимость измерения расхода.
контрольная работа [327,0 K], добавлен 15.01.2014Схема и принцип работы устройства для измерения вязкости и модуля упругости веществ. Анализ по законам развития технических систем. Формула изобретения, статическая и динамическая модели технического противоречия при помощи катастрофы типа сборка.
курсовая работа [1,2 M], добавлен 04.11.2012Температура и температурные шкалы, условия ее измерения. Классификация термометрических свойств. Выпускаемые пирометрические датчики, промышленные устройства для дистанционного измерения температуры. Расчеты, подтверждающие работоспособность устройства.
курсовая работа [3,2 M], добавлен 31.07.2010Методика расчета оптимальных параметров работы виброплиты: мощности двигателя на соответствующих оборотах и амплитуды вибрации. Определение параметров оптимальной работы и уплотнения обрабатываемой поверхности. Расчет параметров резания автогрейдера.
курсовая работа [1,0 M], добавлен 26.11.2010Контроль температуры различных сред. Описание принципа бесконтактного метода измерения температуры. Термометры расширения и электрического сопротивления. Манометрические и термоэлектрические термометры. Люминесцентный метод измерения температуры.
курсовая работа [93,1 K], добавлен 14.01.2015Общие сведения о вибрации. Параметры, характеризующие вибрационное состояние трубопроводов. Причины вибрации трубопроводов. Обзор методов защиты от вибрации. Конструкция и расчет высоковязкого демпфера. Расчет виброизолятора для устранения проблемы.
курсовая работа [1,1 M], добавлен 14.11.2017Расшифровка технического требования к детали. Торцевое и полное торцевое биение. Средства измерения и установочные устройства, их техническая характеристика. Схема, методика и порядок измерения. Частные виды отклонений от плоскостности (прямолинейности).
контрольная работа [1,2 M], добавлен 14.09.2012Автоматизация и повышение точности измерения длины материала в рулоне. Методы и средства измерений,а также схемы измерения, факторы и особенности технологии влияющих на точность измерения линейных параметров длинномерных легкодеформируемых материалов.
реферат [6,3 M], добавлен 24.09.2010Назначение нефтеперекачивающей станции. Система механического регулирования давления. Функциональная схема автоматизации процесса перекачки нефти. Современное состояние проблемы измерения давления. Подключение по электрической принципиальной схеме.
курсовая работа [2,8 M], добавлен 15.06.2014Определение шероховатости поверхности по результатам обработки профилограммы. Определение погрешности, возникающей от наклона нутромера. Расчет годности конуса по результатам измерения угла на синусной линейке. Этапы оценки годности зубчатого колеса.
контрольная работа [1,8 M], добавлен 15.03.2014Принцип построения систем единиц физических величин Гаусса, базирующийся на метрической системе мер с отличающимися друг от друга основными единицами. Диапазон измерения физической величины, возможности и методы ее измерения и их характеристика.
реферат [304,1 K], добавлен 31.10.2013Понятие вибрации в процессе резания, методы и аппаратура для ее исследования. Корреляционная зависимость между параметрами колебаний и величиной износа режущего инструмента. Методы уменьшения вибраций. Разработка конструкций виброгасящих устройств.
дипломная работа [1,3 M], добавлен 27.10.2017