Служба огнеупоров в электропечах

Главные особенности электропечи, их задачи и функции. Характеристика огнеупоров для футеровки дуговых печей. Сущность подины и откосов, их использование. Температурные условия работы внутренней поверхности стен и свода. Футеровка индукционных печей.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 05.09.2013
Размер файла 713,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки РФ

ФГАОУ ВПО «УрФУ им. первого Президента России Б.Н. Ельцина»

Кафедра «Обработки металла давлением»

Реферат

Тема: Служба огнеупоров в электропечах

Выполнил: Халфина Е.А.

Группа: Мт-490803

Проверил: Земляной К.Г.

Екатеринбург 2013

Введение

К плавильным электропечам относят все установки, предназначенные для плавления металлов с использованием электрической энергии. В основу классификации электропечей положен наиболее общий и во многих случаях определяющий все остальные особенности признак -- способ превращения электрической энергии в тепловую. По этому признаку все электрические печи можно разбить на четыре группы: печи сопротивления, дуговые печи, индукционные печи и установки электроннолучевого нагрева.

1. Огнеупоры для футеровки дуговых печей

Так как огнеупорных материалов, в которых сочетаются одновременно все требуемые свойства, не существует, то футеровку дуговых печей приходится изготовлять состоящей из нескольких слоев, выполняющих те или иные функции. Это приводит к тому, что в футеровке дуговых печей используют разнообразные огнеупорные материалы, обладающие разными свойствами и используемые для разных целей. В зависимости от технологического процесса футеровку дуговых печей можно выполнять из кислых или основных огнеупорных материалов.

Для изготовления кислой футеровки используют кварцит и изделия из него (динас) с содержанием основного компонента (SiO2) в количестве 95--97%. При изготовлении динасового кирпича в качестве связующего материала применяют известковый раствор (2,0-- 2,2%) и раствор сульфитного щелока или патоки. Для футеровки печей с основной кладкой применяют материалы и изделия из магнезитового порошка с добавлением бедной хромистой и железной руды. На ряде заводов в качестве огнеупорного материала для футеровки электропечей применяют доломит и изделия из него. На отечественных заводах для изготовления основной футеровки используют главным образом магнезитовый порошок. Качество его зависит от химического и гранулометрического состава, а также плотности, позволяющей судить о степени обжига порошка. Содержание примесей в магнезитовых порошках, используемых для набивки подин и заправки откосов электропечей, не превышает по СаО 2,5--4,0% „ по SiO2 4,0--5,0%; потери при прокаливании находятся в пределах 0,6--0,8% . Зерновой состав указанных порошков должен быть в следующих пределах: мельче 0,5 мм -- не более 60%, мельче 1 мм -- не более 80%.

Для кладки сводов используют высокоогнеупорные обожженные магнезитохромитовые изделия, изготавливаемые из магнезитового порошка и хромовой руды. Изделия прессуют под большим давлением и подвергают высокотемпературному обжигу при температуре.

Высокоогнеупорные магнезитохромитовые изделия подразделяют на следующие марки: ПШСП -- периклазошпинелидные магнезитохромитовые плотные с тонкомолотой хромовой рудой в шихте; МХСП -- магнезитохромитовые плотные с крупнозернистым хромитом в шихте; ПШСО -- периклазошпинелидные магнезитохромитовые обычные с тонкомолотой хромовой рудой в шихте; МХСО -- магнезитохромитовые обычные с крупнозернистой хромовой рудой в шихте. Основной составляющей (65--70%) этих изделий является окись магния. Содержание хромовой руды в зависимости от марки кирпича находится в пределах 7--18% при применении кимперсайской руды и в пределах 5--12% при применении сарановской руды. Плотные изделия (ПШСП и МХСП) предназначены для изготовления работающих в особо тяжелых условиях сводов электропечей емкостью более 40 т. Обычные изделия (ПШСО и МХСО) могут быть использованы для изготовления сводов дуговых печей меньшей емкости. Изделия указанных марок изготавливают в виде прямого и пятового кирпичей. Длина прямого кирпича (и, следовательно, толщина свода) составляет 230, 300, 380, 460 и 520 мм.

Для кладки стен и изготовления сводов электропечей малой и средней емкости применяют высокоогнеупорные хромомагнезитовые изделия огнеупорностью не ниже 2000° С, изготавливаемые из хромита и спекшегося магнезита. Содержание основных компонентов в этих изделиях (кирпичах) должно быть в следующих пределах: окиси магния не менее 42%, окиси хрома не менее 15%. Кладку подин и откосов выполняют из магнезитовых (периклазовых) изделий огнеупорностью выше 2000° С, изготовляемых прессованием из обожженного до спекания магнезита. Магнезитовые изделия подразделяют в зависимости от химического состава на три марки: М-91 (магнезитовые изделия обычной плотности, предназначаемые для кладки подин и откосов электросталеплавильных печей ниже уровня шлака), МП-91 (изделия плотные, предназначаемые главным образом для кладки откосов в районе шлакового пояса), МП-89 (плотные изделия, используемые для кладки футеровки электропечей в исключительных случаях). Для тепловой изоляции подины и стен, а также для футеровки сливного желоба используют шамотный кирпич, который обладает низкой теплопроводностью и высокой термостойкостью. Вследствие низкой огнеупорности (1680--1730° С) шамотный кирпич нельзя использовать для изготовления рабочего слоя футеровки, но вследствие высокой термостойкости его широко применяют для футеровки сталеразливочных ковшей и сталеразливочного припаса. Шамотные изделия обычно содержат 60--62% Si02 и 35--37% Al2O3. Изготавливают их методом пластической формовки или полусухого прессования, причем метод полусухого прессования сейчас преобладает. В футеровке для тепловой изоляции применяют также асбест, порошок шамота и другие теплоизоляционные материалы.

2. Особенности службы футеровки дуговых печей

При выборе огнеупорных материалов для футеровки дуговых сталеплавильных печей необходимо учитывать, что отдельные участки футеровки работают в разных условиях. В связи с этим следует отдельно рассматривать условия службы огнеупоров подины и откосов, стен и свода.

Подина и откосы.

В течение длительного времени огнеупорная футеровка подины непосредственно контактирует с расплавленными металлом и шлаком. После выпуска плавки и при загрузке холодной шихты происходит резкое охлаждение подины. При загрузке шихты корзиной подина в целом испытывает механический удар, а поверхностный слой подины повреждается врезающимися кусками скрапа. В период плавления при неудачно составленной завалке, когда под электродами оказывается легковесная шихта, электроды могут опуститься до подины прежде, чем на ней образуется достаточный слой жидкого металла. Горящие при тонком слое металла дуги перегревают и вымывают материал подины, образуя ямы. Во время плавления и в окислительный период футеровка подины насыщается закисью железа. В восстановительный период окислы железа переходят в обратном направлении -- из футеровки подины и откосов в металл и шлак. Восстановительная среда после выпуска плавки снова меняется и становится окислительной. При сливе и после слива металла футеровка подины непосредственно контактирует со шлаком и насыщается им. В значительно большей степени, чем подина, воздействию шлаков при высоких температурах подвержена футеровка откосов, поэтому откосы являются наиболее слабым участком футеровки электропечей. Футеровка подины и откосов не только подвержена влиянию указанных выше факторов, но и сама влияет на ход процесса в сталеплавильной ванне. Попадающая в шлак окись магния снижает жидкотекучесть шлака, уменьшает его химическую активность. В связи с этим не только увеличивается расход огнеупорных материалов, но и требуется больше времени на рафинирование металла, повышается расход шлакообразующих на нейтрализацию вредного влияния MgO, увеличивается расход электроэнергии. Исходя из назначения и условий работы футеровки подины и откосов, к ней можно предъявить ряд требований. Рабочий слой подины, непосредственно контактирующий с металлом и шлаком, должен обладать высокой огнеупорностью, термостойкостью, противостоять химическому и механическому воздействию металла и шлака. Подина в целом должна быть достаточно механически прочной, чтобы воспринимать механические удары при загрузке шихты, и обладать большим тепловым сопротивлением.

Подина печи состоит, как правило, из трех слоев: верхнего набивного, образующего после спекания монолитную массу, кирпичной кладки, являющейся основанием для набойки, и теплоизоляционного слоя. Возможна работа печи и без набивного слоя, но при этом толщина кирпичной кладки должна быть увеличена. На большинстве электропечей общая толщина футеровки подины равна максимальной глубине ванны. На печах, оборудованных располагаемым под днищем механизмом электромагнитного перемешивания металла, толщину подины уменьшают, что улучшает магнитную связь между ванной и перемешивающим устройством, позволяет уменьшить мощность перемешивающего устройства, его стоимость и расход электроэнергии. Но выигрыш в стоимости перемешивающего устройства по мере уменьшения толщины подины уменьшается, а опасность прорыва металла через подину увеличивается; при этом быстро возрастают и тепловые потери через подину. Поэтому на печах, оборудованных электромагнитным перемешивающим устройством, толщину подины целесообразно принимать равной 70--80% от глубины ванны. Толщина огнеупорной футеровки по центру 100-т дуговой печи , оборудованной механизмом электромагнитного перемешивания, составляет 800--900 мм . На металлическое днище укладывают изоляционный слой футеровки, состоящий из листового асбеста толщиной около 20 мм, шамотного порошка и двух рядов на плашку шамотного кирпича. Для перекрытия швов кладки подины каждый последующий ряд кирпича разворачивают на 45° по отношению к нижележащему. Магнезитовую кладку подины выполняют из пяти-шести рядов кирпича марки М-91, уложенного на ребро. Швы между кирпичами засыпают сухим подогретым магнезитовым порошком. На ряде заводов футеровку подины ведут «елочкой» от центра дуговой печи к периферии. Для уплотнения кладки и хорошего заполнения швов после каждого ряда кирпичи тщательно простукивают деревянными молотками. Между кладкой подины и изоляцией стенок кожуха оставляют температурный зазор 70--80 мм, который засыпают порошкообразным асбестом 5, 6. Откосы выкладывают прямым и клиновым кирпичом 7, 8 марки М-91 или МП-91. До недавнего времени рабочую часть подины (150--200 мм) набивали из смоломагнезитовой массы, которую готовили из мелкозернистого магнезитового порошка (крупность зерен до 2 мм) и каменноугольной смолы с содержанием влаги не более 0,4%. Для обезвоживания смолу предварительно кипятили в течение суток, после чего в нее добавляли 10% каменноугольного песка. Перед замешиванием магнезитовый порошок подогревали до 80--100° С и добавляли в него 10--12% смеси смолы с песком. Набивку вели слоями не более 50 мм при помощи пневматических трамбовок. Такой трудоемкий и длительный (2--3 суток) способ изготовления набивной подины еще сохранился на некоторых предприятиях и в настоящее время. В 1961--1962 гг. был опробован и внедрен способ набивки подины, заключающийся в следующем. Магнезитовый порошок марки МПП-85 (зерновой состав: фракции мельче 0,1 мм 15--25%, З-т-6 мм 10--30% и крупнее 6 мм -- не более 3%) увлажняют водным раствором жидкого стекла. Полусухой массой заполняют уступы в кирпичной кладке, затем ее наносят на подину слоями толщиной 50 мм и трамбуют пневматическими молотками. На 100-т дуговых сталеплавильных печах Челябинского металлургического завода подину набивают вообще сухим порошком марки МПП-85 в один прием (масса порошка ~12 т). Плотность набивной подины и откосов проверяют металлическим стержнем диаметром 5 мм, который при нажатии рукой должен входить на глубину не более 10мм. По окончании набивки подины и откосов по всей сферической ванне укладывают листовое железо, предохраняющее набивной слой от разрушения при первой завалке шихты и способствующее лучшей свариваемости набивного слоя на первой плавке. Стойкость подины, изготовленной таким способом, оказалась вполне удовлетворительной, а продолжительность набивки сократилась до 8 ч против 2-- 3 суток при набивке смоломагнезитовой массой.

Рис. 1 Футеровка дуговой печи

электропечь футеровка дуговой

Стены.

Температурные условия работы внутренней поверхности стен особенно тяжелы, так как в отдельные периоды плавки температура некоторых участков стен может превысить огнеупорность материала, а при открывании рабочего пространства и загрузке шихты стены быстро охлаждаются. Скорость изменения температуры внутренней поверхности стен может достигать, как уже отмечалось, 10 ООО °С/ч, что создает значительные термические напряжения в футеровке. В связи с этим внутренний слой футеровки должен быть выполнен так, чтобы ему были свойственны высокая огнеупорность и термостойкость, низкий коэффициент теплового расширения и высокий коэффициент температуропроводности, а для получения большого теплового сопротивления футеровка стен печи должна быть хорошо теплоизолированной с внешней стороны. В особо тяжелых температурных условиях работает нижний пояс футеровки стен шириной 300--400 мм, находящийся под прямым излучением дуг переменного тока и воспринимающий нагрузку от верхних слоев кладки стен. Поэтому нижнюю часть стен следует выполнять из особо огнеупорных материалов, или, в крайнем случае, делать ее достаточно большой толщины.

Футеровку стен также, как правило, выполняют из двух слоев -- защитного и рабочего. Защитный ряд 100-т печи от кожуха выкладывают хромомагнезитовым кирпичом толщиной 115 мм в перевязку от последнего ряда откосов до песочного затвора свода. На откос шириной 570 мм насыпают магнезитовую прослойку 20--30 мм из набивной массы или мелкого заправочного магнезитового порошка на жидком стекле. Кладку рабочего слоя из кирпича марок ПШСП, МХСП или ПШСО, МХСО начинают с выпускного отверстия и ведут к завалочному окну, а верхние два ряда кладут в обратном направлении. Выпускное отверстие выкладывают размером 350--450 мм; столбики у завалочного окна выкладывают вперевязку до упора в арку. Каждый ряд кладки стен просыпают мелкозернистым магнезитовым порошком.

Свод.

Свод является наименее долговечной частью футеровки дуговых печей. Как и футеровка стен, свод испытывает значительные температурные колебания. По ходу плавки свод может прямо воспринимать излучение выдуваемых из-под электродов дуг, а также поглощать отражаемое шлаком и футеровкой печи излучение. В результате температура свода, особенно его центральной части, может превысить огнеупорность материала, и свод может подплавляться. Особенно часто подплавление свода происходит при работе с очень жидкими шлаками, обладающими большой отражательной способностью. При открывании рабочего пространства и отвороте сводового кольца его излучение воспринимается холодными элементами конструкции печи, и свод быстро остывает. Это вызывает появление больших термических напряжений, приводящих к скалыванию свода. Свод постоянно испытывает сжимающую нагрузку от распора, что снижает температуру начала его деформации. Выбивающиеся из печи раскаленные газы содержат много пыли, которая оседает на своде и при высокой температуре может вызвать его химическое разрушение. Исходя из особенностей службы огнеупоров в сводах дуговых печей, к ним можно предъявить ряд особых требований. Эти огнеупоры должны характеризоваться высокой огнеупорностью, термостойкостью, химической стойкостью по отношению к плавильной пыли, большим тепловым и электрическим сопротивлением. Последнее вытекает из того, что при недостаточном электрическом сопротивлении материала свода электрическая цепь между фазами может частично замкнуться по своду. Это может привести к возникновению электрических дуг между сводом и водоохлаждаемыми элементами уплотнений электродов в своде, прогоранию водяной рубашки и попаданию в печь воды.

3. Футеровка индукционных печей

Выбор вида футеровки индукционной тигельной печи Футеровка индукционных тигельных печей (см. рис. 2) состоит из 6 основных элементов: тигля, подины, воротника, сливного носка, крышки печи и обмазки индуктора. Основным элементом футеровки является тигель, поэтому правильный выбор огнеупорного материала для тигля в основном обеспечивает надежность работы печи и ее технико-экономические показатели, заложенные в конструктивном решении печи.

Рис. 2 Футеровка тигельной индукционной печи:
1 - огнеупорный тигель; 2 - индуктор; 3 - стальной корпус печи; 4 - магнитопровод; 5 - подина; 6 - сигнализатор износа тигля; 7 - огнеупорное покрытие (обмазка); 8 - воротник; 9 - сливной носок; 10- крышка

Тигель индукционной печи может быть выполнен четырьмя различными методами: выемным (в печах малой емкости), набивным, в виде кладки из огнеупорных изделий и комбинированным, сочетающим кирпичную кладку рабочего слоя и набивку буферного слоя между индуктором и кладкой. При образовании трещин в швах кирпичной кладки буферный слой задерживает металл от прохода его к индуктору.

Каждый из перечисленных методов футеровки может быть выполнен из следующих видов огнеупорных материалов: кварцитового (кислого) SiO2; магнезитового (основного) -- МgO; шпинельного -- МgО + Al2O3 или MgO + Cr203; корундового -- Al2O3; муллитового - ЗAl2O3 · 2SiO2; муллитокорундового -- Al2O3 ? 72 %; шамотного; цирконового -- Zr2 · SiO2; циркониевого -- ZrO2; шамотнографитового; графитового и т. п. Все эти виды футеровки могут иметь несколько вариантов по зерновому составу и содержанию (массовые доли) различных компонентов и добавок (табл. 1), улучшающих спекание, уменьшающих объемные изменения при обжиге и увеличивающие стойкость футеровки к различным видам выплавляемых металлов и шлаков.

Таблица 1 Данные для выбора вида футеровки индукционных тигельных печей и миксеров для чугуна и стали

№ п.п

Типы печей и элементы футеровки

Марки выплавляемых металлов

Состав оптимальной футеровки

Стойкость футеровки, мес

Заменители менее дефицитные, уменьшающие стойкость футеровки

1

Тигель печи промышленной частоты для чугуна ёмкостью 6-60 т

Чугун марок: СЧ15-32; СЧ50-90; СЧ21-40; СЧ28-48; ВЧ 45-5

Первоуральский кварцит ПКМИ-97,5 с борной кислотой 1,5% (ГОСТ 9656-75) или с борным ангидридом 1%

1-4

Овручский молотый кварцит ПКМ-97 с добавкой 10-12% кварца молотого пылевидного марки А (маршалита) ГОСТ 9077-82

2

Тигель печи промышленной частоты для чугуна и высокоуглеродистой стали ёмкостью 1-10 т

ВЧ 50-2; ВЧ 45-2

Дистенсиллиманит - 60%, электрокорунд №200 - 40%

1-2

Овручский молотый кварцит ПКМ-97 с добавкой 12-15% кварца молотого пылевидного марки А

3

Тигель печи для чугуна и стали ёмкостью 0,1-6 т

Чугун всех марок, сталь углеродистая, низколегированная

Масса МЛ-2

3-8

Местные кварцевые пески с добавкой 10-20% кварца пылевидного марки А

4

Выравнивающая обмазка, наносимая на индуктор тигельных печей для плавки чугуна и углеродистых сталей

Кварцит от 0 до 1 мм - 70%, высокоглинозёмистый цемент ВЦ-75

6-12

Смесь муллитокорундовая с цементом для огнеупорных бетонов марки СМКЦ

5

Нижнее и верхнее бетонное кольцо для печей ёмкостью более 6 т

Заполнитель ЗМКР (ГОСТ 23037-78) класс 4 - 70%, высокоглинозёмистый цемент ВЦ-70; ВЦ-75 или алюминат кальция технический - 30%

24-36

Огнеупорная смесь алюмосиликатная бетонная на высокоглинозёмистом цементе марок СМКРВЦ-45; СШВЦ-40 или СШЦ-5

6

Сливной носок, воротник и крышка печи

Масса муллитокорундовая МК-80 или масса корундовая гидравлическая МКН-94 ТУ 14-8-359-80

6-12

Масса марки МЛ-2 или МЛ-3

7

Тигель печи для углеродистой стали ёмкостью до 6 т

Сталь инструментальная, углеродистая, хромоникелевая и др. низколегированные марки

Кислая - кварцит ПКМИ-97,5 - 89%, борная кислота 1,5% или борный ангидрид - 1%; кварц пылевидный марки А ГОСТ 9077-82 - 10%; нейтральная масса МК-80 или МК-90

0,5-1

Овручский кварцит, борный ангидрид 1%, кварц пылевидный марки А - 15%, масса МЛ-2 или МЛ-3

8

Тигель печи для высоколегированной стали

Высоко легированные и марганцевые стали

Магнезитовый порошок марок ПМЭ-88, ПМИ-88, ПМИ-90 фракции 4-2 мм - 10%, фракции 2-1 мм - 14%, менее 1 мм - 14%; магнезитохромитовый порошок фракции 4-2 мм - 10%, фракции 2-1 мм - 15%, менее 1 мм - 35%; плавиковый шпат - 2%

0,3-0,5

Порошок магнезитовый (периклазовый) марки ПМ

9

Тигель ёмкостью до 3 т для открытых и вакуумных печей

Высоколегированные и прецизионные сплавы

Порошок из плавленного магнезита для индукционных печей марки ПППВИ и ПППОИ-93 - II; III; IV; V; VI в соотношении 1:2:2:2:3 - 83%; электрокорунд №6 - 12-15%; плавиковый шпат или борный ангидрид - до 1,5%

0,5-1

-

10

Тигель печи для стали и никеля ёмкостью 16 т и более

Сталь всех марок и никель

Кирпич периклазовый клиновой марок Му 91-11 (12), Му 91-7 и прямой Му 91-1 ГОСТ 4689-74, буферный слой из магнезита металлургического МПМП-86

2-4

Изделия корундовые плотные клиновые для индукционных печей ТУ 14-8-187-75 (Al2O3 ? 90%, P2O5 ? 1%)

11

Металлостойкая обмазка - для индукторов печей для стали и др. сплавов чёрных и цветных металлов

1-й слой: кварцит молотый марки ПКМИ-97,5 от 0 до 1 мм или ПКМ - 75%; цемент ВЦ-75 - 25%;
2-й слой: асбестовая ткань АТ-2 или АТ-7 ГОСТ 6102-78;
3-й слой: порошок периклазовый спечённый молотый марки МПМП-86 - 88%, полифосфат натрия технический ГОСТ 20291-90 - 12%

12-24

1-й слой: смесь порошков марки СВШЦ-3;
2-й слой: асбестовая ткань АТ-2 или АТ-7;
3-й слой: порошок периклазовый марки ПППОИ-90-1 - 88%, полифосфат натрия 12%

Сталь, выплавляемая в основных тиглях, обладает более высокими прочностными и пластическими свойствами, чем сталь, выплавляемая в кислом тигле. Причиной этому является образование кремнекислородных включений в результате взаимодействия металла с кислой футеровкой. Включения, богатые кремнеземом, хорошо смачиваются жидким металлом, трудно удаляются из него, так как имеют пониженное поверхностное натяжение, а включения оксида магния, корунда и соединения типа шпинелей (R0 · Al2O3) плохо смачиваются металлом и быстрее удаляются из него. По понижению межфазового натяжения материалы включений располагаются в следующем порядке: б-Al2O3 (корунд); MgO · Cr2O3; MgO · Al2O3; FeO · Al2O3; алюмосиликаты и SiO2. Отсюда следует, что для получения металла с меньшим содержанием неметаллических включений наиболее эффективными являются футеровки шпинельного типа (RO · Al2O3 и RO · Cr203), а также химически чистые основные огнеупорные материалы с минимальным содержанием кремнезема.

При выборе вида футеровки необходимо учитывать склонность некоторых металлов к обменной реакции окисления с оксидами, входящими в состав футеровочных масс. Это свойство зависит от теплоты образования оксидов, которая для наиболее распространенных огнеупоров является следующей (кДж/моль) : MgO -- 608, SiO2 -- 435, Al2O3 - 562, Cr203 - 381, ZrO2 - 540,1, Fe203 - 276,1, ТiO2 - 456.

Из приведенных данных следует, например, что алюминий можно плавить в тиглях из оксидов магния и алюминия. Кислая футеровка будет восстанавливаться алюминием и его сплавами, поэтому кварцит не может быть применен в индукционных печах для плавки алюминиевых сплавов.При плавке черных металлов износ футеровки чаще всего происходит равномерно в виде размывания в соответствии с 2-контурным движением металла в крупных печах промышленной частоты. В этом случае износ зависит от агрессивности различных марок металла. Ориентировочно по степени агрессивности черные металлы можно расположить в нижеследующем порядке.

Материал

Индекс агрессивности

Чугун

0,6

Углеродистая сталь 1,4-1,5 % С

0,9

Углеродистая сталь, 0,8 % С

1,0

Хромистая сталь

1,2

Быстрорежущая сталь

1,7-2,5

Высоколегированные стали

2-3

Жаропрочные сплавы

3-4

Кислую футеровку обычно применяют в печах любой емкости (до 60 т) для плавки чугуна, углеродистых, кремнистых и других сталей с перегревом металла до температуры 1450-1550 °C. Однако кислая футеровка не может быть использована при выплавке многих марок качественных сталей и сплавов, в которых строго лимитируется содержание углерода, кремния, фосфора, серы, неметаллических включений. Выгорание этих примесей значительно быстрее происходит в основной футеровке. Оксид кальция (известь), добавляемый для рафинирования стали от кремния, серы и фосфора, взаимодействует с кислой футеровкой и, не успевая соединиться с серой и фосфором металла, уходит в шлак. Кремний же частично переходит из материала кислой футеровки в сталь. Жаропрочные и тугоплавкие сплавы опасно плавить в печах с кислой футеровкой еще и потому, что температура плавления и перегрева этих металлов близка к температуре плавления кварцитов.

Стойкость кислой футеровки зависит от вида выплавляемого металла и колеблется в широких пределах от 10 до 300 плавок. При плавке чугуна стойкость футеровки из первоуральского кварцита ПКМИ-97,5 достигает 4 мес. Высокая стойкость может быть достигнута только при тщательном уходе за тиглем и ремонтах изношенной футеровки. На Горьковском автозаводе стойкость тигельных печей емкостью 10-12 т стабильно составляет 3-4 мес или 300 плавок. Плавку ведут без наведения шлаков, чугун полностью не сливают. При применении кислой футеровки в шлак нельзя добавлять плавиковый шпат CaF2 и буру Na2B407, так как в этом случае стойкость футеровки резко падает (до 2-3 плавок). При плавке высокомарганцевых сталей стойкость кислой футеровки также очень низка. Однако в практике футеровки тигельных индукционных печей кислая футеровка применяется чаще, чем другие виды футеровок. Причины этому следующие: а) дешевизна кварцита; б) недефицитность футеровки; в) полиморфные превращения кварца обеспечивают безусадочность рабочего слоя и плотность неспеченного буферного слоя; г) нет необходимости в наведении шлаков; д) мала вероятность образования сквозных усадочных трещин, что обеспечивает надежность работы печи; е) стабильный достаточно высокий срок службы тигля.

Учитывая указанные преимущества, высококачественную кварцитную футеровку (из шведских молотых кварцитов) с борным ангидридом в зарубежной практике применяют также для попеременной выплавки чугунов и легированных сталей в крупных тигельных индукционных печах. На одном из литейных заводов фирмы "АГ" (ФРГ) в 25-т тигельной индукционной печи промышленной частоты за 8-недельный период без смены футеровки было выплавлено 3100 т чугуна и стали. Большая часть выплавленного металла составляла коррозионностойкая хромоникелевая сталь .

Известно также, что кремний кислой футеровки активнее восстанавливается углеродом при повышении температуры, в результате чего увеличивается его содержание в металле. Кроме того, при выплавке чугуна с шаровидным графитом в печи необходимо проводить предварительную десульфурацию чугуна карбидом кальция, что уменьшает стойкость кислой футеровки тигля на 25-30 %. Стойкость нейтральной футеровки, состоящей из 40 % электроплавленого корунда и 60 % дистенсиллиманитового концентрата, не зависит от обработки чугуна карбидом кальция; такая футеровка показала лучшую стойкость по отношению к кислым и основным шлакам.

При выплавке синтетического чугуна общий угар и безвозвратные потери металла в случае использования нейтральной футеровки на 20-25 % меньше, чем при применении кислой футеровки, причем шлакообразование снижается на 30-35 %. Резко снижается угар Сr и Мg, выплавленный чугун содержит меньше газов и неметаллических включений.

Таким образом, с точки зрения металлургической технологии синтетического чугуна с шаровидным графитом, нейтральная футеровка предпочтительнее кислой. Нейтральная футеровка более устойчива к основным шлакам, чем кислая. При температуре металла выше 1400 °C износ нейтральной футеровки увеличивается и достигает максимальных значений при основности шлака 1,6-2,0 и содержании в нем FeO более 7 %. Шлак индукционной плавки содержит от 4 до 10 % оксидов железа. Длительная эксплуатация печей с футеровкой на основе корунда и дистен-силлиманитового концентрата показала, что срок ее службы не превышает одного месяца.

Испытания муллитокорундовой и муллитовой футеровок из набивных безусадочных масс на фосфатной связке (МК-90, ТУ 14-8- 457-84 и МЛМ-1, МЛ-2 по ТУ 14-8-119-74) показали высокую стойкость тигля. Для повышения плотности и содержания корунда в связке в массу добавляли 20 % электрокорунда (шлифпорошок 14А -- ГОСТ 3647-80) и 3-4 % (сверху 100 %) ортофосфорной кислоты плотностью 1,57 г/см3. Стойкость футеровки превысила стойкость кварцитной футеровки, а также спекаемой футеровки на основе корунда и дис тенсиллиманитового концентрата в 3-4 раза. В печи МГП-102 при плав ке высоколегированной стали 25Л; при перегреве металла до 1710 °C футеровка прослужила более 2 мес. В печи ИЧТ-1 при плавке синтетического чугуна с шаровидным графитом стойкость футеровки составила 4 мес. Наибольшее разъедание футеровки наблюдалось в шлаковом поясе при выплавке синтетического чугуна с содержанием в шихте до 80 % металлизованных железорудных окатышей (массовая доля Fe 79,2 %). При этом на поверхности металла образовалось более 15 % шлака (от массы плавки), содержащего до 20 % оксидов железа. Температура нагрева расплава составляла 1570 °C. Химический состав чугуна, %: 2,78 С; 0,1 Si; 0,009 Мg; 0,005 S; 0,01 Р. В печи было проведено более 100 плавок при 85 теплосменах до полного охлаждения тигля.

Основную футеровку изготавливают из магнезитовых, доломитовых и известковых огнеупоров, которые имеют химически основной характер. Эти материалы отличаются высокой огнеупорностью, как правило, выше 2000 °C. Химически чистые разновидности оксида магния имеют температуру плавления 2800, а оксид кальция 2500 °C.

В настоящее время для изготовления основной футеровки открытых тигельных печей применяют спеченный и плавленый магнезит, а для футеровки вакуумных печей -- плавленый магнезит с содержанием MgO > 90 %. Для компенсации усадочных процессов при образовании шпинели в футеровочную массу добавляют от 10 до 30 % электрокорунда. С этой же целью вместо электрокорунда в массу добавляют 3-4 % молотого кварцевого песка, кварцита или молотого ферросилиция в количестве до 10 %. В качестве плавней, обеспечивающих спекание футеровки, обычно добавляют плавиковый шпат CaF2 [12], который при обжиге до 1400 °C способствует росту магнезитовой массы, а при 1500-1600 °C уменьшает усадку при спекании по сравнению с другими спекающими добавками (борной кислотой, бурой, стеклом, содой, криолитом).

Срок службы основной футеровки колеблется в зависимости от марок выплавляемой стали и от последовательности, с которой они выплавляются. Например, если вести подряд несколько плавок низкоуглеродистой стали, а затем несколько плавок высокомарганцевой, то футеровка пострадает значительно меньше, чем в том случае, если чередовать указанные металлы через плавку. Износ большинства составов периклазовой футеровки происходит в результате одновременного действия эрозии и коррозии, главным образом, на уровне зеркала металла. Сильно разрушается футеровка при неудовлетворительном качестве связки (мало тонких фракций, плохое спекание, дефекты набивки, разрыхление связки при спекании). Например, футеровка из магнезита и циркония имеет рост при обжиге и разрыхляется, ее шлакоустойчивость ниже, чем у магнезитовой с добавкой электрокорунда или кварцевого песка, что ограничивает ее применение.

Для размола компонентов массы используют, как правило, отработанный сводовый кирпич дуговых электропечей, очищенный от ошлакованных частей, пропитанных железистыми оксидами (ТУ 14-8-172-75). Применяют также магнезитовый порошок марок ПМЭ-88, ПМИ-88 по ТУ 14-8-209-76 с рассевом по фракциям 4-2 мм, 2-1 мм и мельче 1 мм или ППГ10И-90 по ТУ 14-8-149-75.

Для приготовления набивной массы составные части тщательно смешивают в лопастном смесителе или в бегунах. Срок хранения готовой массы в условиях, не допускающих увлажнения и загрязнения пылью, не ограничивается. Стойкость футеровки на печи ИСТ-1,0 составляет 40-50 плавок. В индукционных печах (для плавки стали) меньшей емкости ( ? 0,5 т) футеровка аналогичного состава имеет стойкость 70-90 плавок.

На малых печах (ИСТ-0,06 т) набивку тиглей производят увлажненной массой, состоящей из 49 % периклазового и 51 % периклазохромитового порошков со следующим зерновым составом смеси: 4-2 мм -- 20 %; 2-1 мм - 30 %; мельче 1 мм - 50 %. Увлажненную массу перед укладкой рекомендуют выдержать под мокрой мешковиной не менее 16 ч, но не более 36 ч. Степень увлажнения массы такова, что при сжимании ее в руке комок не рассыпается, но легко разваливается при давлении пальцем.

Основная футеровка разных составов и даже из плавленого магнезита с электрокорундом имеет сравнительно низкую стойкость и не всегда обеспечивает надежную работу индукционных тигельных печей. Основная причина этого состоит в том, что все разновидности магнезитовых набивных масс, наряду с положительными свойствами (высокая огнеупорность, шлако- и металлоустойчивость), имеют ряд существенных недостатков. Главной причиной низкой стойкости основной футеровки (особенно в печах повышенной емкости > 500 кг) является неудовлетворительное ее объёмопостоянство и термостойкость. В процессе службы длительное воздействие на футеровку высоких температур, их резкие колебания, а также диффузия расплавов металла и шлака в толщину стенки тигля через постепенно развивающиеся трещины в спекшейся части футеровки приводят к более глубокому спеканию тигля, большим усадкам и к образованию глубоких трещин. Причем величина трещин тем больше, чем больше объем огнеупорного тигля. Для увеличения стойкости периклазовой футеровки в нее вводят хромит или применяют смесь периклазовых и периклазохромитовых компонентов (см. табл. 1, п.8).

Данные о продолжительности службы основной набивной футеровки в производственных условиях крайне разноречивы и имеют большие колебания (от 10-15 до 70-80 плавок). Слабым звеном в тигле является шлаковый пояс, где футеровка обильно насыщается из шлака оксидами SiO2; CaO; MgO; R2О. Массовая доля MgO в рабочей зоне шлакового пояса снижается до 21 %, Fе203 увеличивается до 8 %, а содержание силикатов возрастает примерно в 4 раза, огнеупорная форстеритовая связка перерождается в неогнеупорную монтичеллиуовую. При темпе ратуре расплава 1600-1640 °C при постоянном снабжении футеровки шлаками наблюдается разрушение агрегатных скоплений, а также отдельных зерен периклаза и зерен образовавшейся шпинели при обжиге футеровки. В результате чего образуется менее устойчивая структура с корродированными зернами периклаза и шпинели, разобщенными силикатными прослойками, и с отдельными участками, состоящими из менее огнеупорных силикатов. Такая структура менее износоустойчива в службе и обусловливает высокий износ шлакового пояса тигля вследствие оплавления.

Износ футеровки стен основного тигля ниже уровня шлака значительно меньше. Поступление силикатных расплавов в эти участки фу теровки ограничено, вследствие чего резко различаются состав и структура после службы рабочей зоны нижней части стен тигля от структуры шлакового пояса.

Список литературы

1. Огнеупоры для промышленных агрегатов. Кащеев И.Д.

2. Технология огнеупоров. Стрелов К.К, Кащеев И.Д.

Размещено на Allbest.ru

...

Подобные документы

  • Принцип работы и назначение электроплавильных печей, их разновидности и применение для выплавки конструкционных сталей ответственного назначения. Спецификация и отличительные особенности печей сопротивления, дуговых и индукционных, плазменных печей.

    реферат [426,9 K], добавлен 04.06.2009

  • Роль огнеупоров в современных металлургических технологиях. Технология производства шамотных огнеупоров. Сравнение достоинств и недостатков с другими технологиями и свойствами в службе шамотных огнеупоров. Формирование основных режимов эксплуатации.

    курсовая работа [32,2 K], добавлен 06.10.2011

  • Умови експлуатації шамотних вогнетривів для футеровки мартенівських печей і вимоги до їх якості, особливості технології виробництва та характеристика сировинних матеріалів. Технологічна схема виробництва, напрямки покращення якості шамотних вогнетривів.

    курсовая работа [1,4 M], добавлен 04.02.2010

  • Классификация ДСП (Дуговых сталеплавильных печей). Основные технические и эксплуатационные характеристики ДСП. Технологический процесс электродуговой плавки в печи. Методы измерения температуры. Принцип измерения температуры шомпольным термозондом.

    курсовая работа [4,2 M], добавлен 13.11.2009

  • Расчет размеров футеровки, толщины кладки, температуры на стыке слоев, теплопроводности для рабочего и теплоизоляционного слоев. Построение графиков зависимости температуры стыков. Конструкция доменных печей. Нахождение средней температуры футеровки.

    курсовая работа [3,3 M], добавлен 07.10.2015

  • Функции и классификация индукционных промышленных печей по принципу тепловыделения. Установка электро-лучевого нагрева. Применение электрического нагрева и его особенности. Расчет эквивалентного сопротивления и коэффициента полезного действия индуктора.

    курсовая работа [774,1 K], добавлен 01.09.2014

  • Общее описание устройства дуговой электропечи переменного тока. Шихтовые материалы для печей переменного тока. Дуговые печи постоянного тока и их преимущество. Регуляторы электрического режима при плавке в ДСП. Основные тенденции развития дуговых печей.

    курсовая работа [325,4 K], добавлен 17.04.2011

  • Формирование жидкоподвижного шлака в ванну. Длительность восстановительного периода. Расчет материального баланса. Конструкция и толщина отдельных слоев и всей футеровки подины. Зависимость высоты плавильного пространства от диаметра на уровне откосов.

    курсовая работа [146,5 K], добавлен 29.09.2014

  • Виды печей для автогенной плавки. Принцип работы печей для плавки на штейн. Тепловой и температурный режимы работы печей для плавки на штейн. Принцип работы печей для плавки на черновую медь. Деление металлургических печей по технологическому назначению.

    курсовая работа [93,9 K], добавлен 04.12.2008

  • Общая характеристика установок плазменного нагрева. Принцип работы плазматрона косвенного и прямого действия. Характеристики плазмообразующих газов. Характеристика плазменно-дуговых печей с кристаллизатором конструкции института электросварки им. Патона.

    курсовая работа [250,7 K], добавлен 04.12.2008

  • Основные характеристики и конструкция трубчатых вращающихся печей. Тепловой и температурный режимы работы вращающихся печей. Основы расчета ТВП. Сущность печей для окислительного обжига сульфидов. Печи глиноземного производства (спекание и кальцинация).

    курсовая работа [693,6 K], добавлен 04.12.2008

  • Огнеупорные материалы и их свойства, классификация и условия эффективного использования. Современные физико-химические методы анализа. Химические реактивы, основное и вспомогательное оборудование. Стандартные методы анализа динасовых огнеупоров.

    дипломная работа [882,1 K], добавлен 21.01.2016

  • Использование топливно-кислородных горелок, преимущество использования при плавке стали в дуговых печах. Выбор способа нагрева ванны. Выбор конструкции и мощности печи. Проектировка строения падины, откосов, стен и свода. Мощность печного трансформатора.

    курсовая работа [2,3 M], добавлен 12.10.2016

  • Продукт доменной плавки. Выплавка чугуна из железных руд. Доменная печь. Качественный уровень работы. Профиль рабочего пространства печи. Футеровка колошника. Теплообмен и показатели работы доменных печей. Технико-экономическая оценка доменных печей.

    курсовая работа [30,1 K], добавлен 04.12.2008

  • Подбор сырья и технологических параметров производства шамотных насадочных изделий марки ШН-38 для футеровки регенераторов мартеновских печей. Расчет материального баланса и выбор основного оборудования. Описание автоматизации технологического процесса.

    дипломная работа [1,0 M], добавлен 11.03.2012

  • Особенности работы газовых мартеновских и двухванных и регенеративной системы подовых печей. Характеристика дымоотводящих и воздухоподающих трактов. Основные способы и режимы отопления. Совершенствование регенеративной системы мартеновских печей.

    реферат [1,8 M], добавлен 24.10.2012

  • Расчет размеров футеровки, толщины кладки стен и купола водонагревателя объемом 3300 м. Определение температуры на стыке слоев и теплопроводности для каждого слоя. Построение графика зависимости температуры стыков, схемы футеровки воздухонагревателя.

    контрольная работа [885,2 K], добавлен 07.10.2015

  • Конструкция методических печей, их классификация. Преимущества камерных печей, особенности работы горелок. Общие принципы выбора рациональных методов сжигания топлива в печах. Работа устройств для сжигания газа (горелок) и жидкого топлива (форсунок).

    курсовая работа [60,1 K], добавлен 05.10.2012

  • Общая характеристика нагревательных печей. Печи для нагрева слитков (нагревательные колодцы). Тепловой и температурный режимы. Режимы термической обработки. Определение размеров печей. Печи для термической обработки сортового проката. Конструкция печей.

    курсовая работа [44,3 K], добавлен 29.10.2008

  • Описание технологического цикла "прямого" и "двухстадийного" получения стали. Классификация и принцип действия электрических дуговых сталеплавильных печей. Анализ способа загрузки и конструктивных особенностей ДГП. Расчет механизма подъема свода печи.

    курсовая работа [1,9 M], добавлен 10.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.