Свойства конструкционных материалов
Классификация свойств конструкционных материалов. Химические свойства, их показатели. Производство стали в кислородных конвертерах. Свойства и применение термореактивных пластмасс. Маркировка, свойства и применение деформируемых алюминиевых сплавов.
Рубрика | Производство и технологии |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 19.09.2013 |
Размер файла | 30,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
[Введите текст]
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
Уральский государственный экономический университет
Кафедра теоретических основ инженерных дисциплин
Контрольная работа:
Свойства конструкционных материалов
1. Классификация свойств конструкционных материалов. Химические свойства, их показатели
В современных условиях развития общества одним из основных факторов технологического процесса в машиностроении является совершенствование технологии производства. Коренное преобразование производства возможно в результате создания более совершенствованных средств туда, разработки принципиально новых технологий. Развитие и совершенствование любого производства в настоящее время связано с его автоматизацией, создание робототехнических комплексов, широким использованием вычислительной техники, применением станков с числовым программным управлением. Все это составляет базу, на которой создаются автоматизированные системы управления, становятся возможными оптимизация технологических процессов и режимов обработки, создание гибких автоматизированных комплексов. Важным направлением научно - технического прогресса является также создание и широкое использование новых конструкционных материалов. В производстве все шире используется сверхчистые, сверхтвердые, жаропрочные, композиционные, порошковые полимерные и другие материалы, позволяющие резко повысить технический уровень и надежность оборудования. Обработка этих материалов связана с решением серьезных технологических вопросов. Создавая конструкции машин и приборов, обеспечивая на практике их заданные характеристики и надежность работы с учетом экономических показателей. Описание технологических процессов основано на их физической сущности и предваряет сведения о строении и свойствах конструкционных материалов. Основные методы обработки конструкционных материалов: литье, обработка давлением, сварка и обработка резанием. Эти методы в современной технологии конструкционных материалов характеризуется многообразием традиционных и новых технологических процессов, возникающих на их слиянии и взаимопроникновении.
Детали машин чрезвычайно разнообразны, и для их изготовления необходимы материалы с самыми различными свойствами. Требования к материалам серьезно возросли в эпоху научно-технического прогресса. В некоторых случаях для изготовления изделий необходимы материалы, обладающие следующими свойствами: повышенной коррозийной стойкостью, теплопроводностью и электропроводностью, особыми магнитными свойствами, тугоплавкостью, сверхпроводимостью и т.п. Для правильного использования имеющихся материалов, так же как и для обработки заготовок из них, важно иметь представление о их структуре, так как это дает возможность учитывать влияния режимов эксплуатации или обработки на характеристики изделия.
Все металлы имеют кристаллическое строение. Атомы в твердом металле расположены упорядоченно и образуют кристаллические решетки. Расстояния между атомами называют параметрами решеток и измеряют в нанометрах. С повышением температуры или давления параметры решеток могут изменяться. Некоторые металлы в твердом состоянии в различных температурных интервалах приобретают различную кристаллическую решетку, что всегда приводит к их изменению физико-химических свойств.
Перестройка кристаллических решеток при критических температурах называется полиморфными превращениями.
Чаще в машиностроении применяются сплавы, а не чистые металлы. Кристаллическое строение сплава более сложное, чем чистого металла, и зависит от взаимодействия его компонентов при кристаллизации. Компоненты в твердом сплаве могут образовывать твердый раствор, химическое соединение и механическую смесь.
К основным свойствам металлов относятся механические, физические, химические, технологические и эксплуатационные.
Механические свойства. Основные из них - прочность пластичность, твердость и ударная вязкость.
Напряжение - это нагрузка (сила), отнесенная к площади поперечного сечения, МПа.
Деформация - это изменение формы и размеров тела под влиянием воздействия внешних сил или в результате физико-механических процессов, возникающих в самом теле. Различают упругую и пластическую деформацию.
Прочность - это способность твердого тела сопротивляться деформации или разрушению под действием статических или динамических нагрузок. Прочность при динамических нагрузках оценивают по ударной вязкости, Дж/м:
KC=A/F
Пластичность - это способность материала получать остаточное изменение формы и размера без разрушения.
Твердость - это способность материала сопротивляться внедрению в него другого, не получающего остаточных деформаций, тела.
Твердость по Бриннелю (HB, МПа):
НВ = Р/F
Физические свойства. К физическим свойствам металлов относятся температура плавления, плотность, температурный коэффициент, электросопротивление и теплопроводность. Физические свойства сплавов обусловлены их составом и структурой.
Химические свойства. К химическим свойствам относятся способность к химическому взаимодействию с агрессивными средами.
Технологические свойства. Способность материала подвергаться различным методам горячей и холодной обработки определяют по его технологическим свойствам. К технологическим свойствам металлов и сплавов относятся литейные свойства, деформируемость, свариваемость и обрабатываемость режущим инструментом. Эти свойства позволяют производить формоизменяющую обработку и получать заготовки и детали машин.
Литейные свойства определяются жидкотекучестью, усадкой и склонностью к ликвации.
Деформируемость - это способность принимать необходимую форму под влиянием внешней нагрузки без разрушения и при наименьшем сопротивлении нагрузки.
Свариваемость - это способность металлов и сплавов образовывать неразъемные соединения требуемого качества.
Эксплуатационные, или служебные свойства. В зависимости от условий работы машины или конструкции определяют коррозийную стойкость; хладостойкость; жаропрочность, жаростойкость; антифрикционность материала.
Коррозийная стойкость - сопротивление сплава действию агрессивных кислот и щелочных сред.
Хладостойкость - способность сплава сохранять пластические свойства при температурах ниже 0°С.
Жаропрочность - способность сплава сохранять механические свойства при высоких температурах.
Жаростойкость - способность сплава сопротивляться окислению в газовой среде при высоких температурах.
Антифрикционность - это способность сплава прирабатываться к другому сплаву.
Эти свойства определяются в зависимости от условий работы машины или конструкции специальными испытаниями.
2. Сталь. Производство стали в кислородных конвертерах
Кислородно-конвертерный процесс, один из видов передела жидкого чугуна в сталь без затраты топлива путём продувки чугуна в конвертере технически чистым кислородом сверху. О целесообразности использования кислорода при производстве стали в конвертерах указывал ещё в 1876 русский металлург Д.К. Чернов. Впервые применил чистый кислород для продувки жидкого чугуна снизу советский инженер Н. И. Мозговой в 1936. В 1939-41 на Московском заводе станкоконструкций проводились опыты по продувке чугуна сверху кислородом в 1,5-т ковше и выплавлялась сталь для фасонного литья. Впервые К.-к. п. был опробован в промышленном масштабе в Австрии в 1952. Первый кислородно-конвертерный цех в СССР был введён в эксплуатацию в Днепропетровске на металлургическом заводе им. Петровского в 1956. Кислородно-конвертерный процесс осуществляется в конвертере с основной смолодоломитовой (доломит, смешанный со смолой) футеровкой и с глухим дном; кислород под давлением более 1 Мн/м2 (10 кгс/см2) подаётся водо-охлаждаемой Кислородно-конвертерный процесс через горловину конвертера. С целью образования основного шлака, связывающего фосфор, в конвертер в начале продувки добавляют известь. Под воздействием дутья примеси чугуна (кремний, марганец, углерод и др.) окисляются, выделяя значительное количество тепла, в результате чего одновременно снижается содержание примесей в металле и повышается температура, поддерживая его в жидком состоянии. Когда содержание углерода достигает требуемого значения (количество углерода определяется по времени от начала продувки и по количеству израсходованного кислорода), продувку прекращают и фурму извлекают из конвертера. Продувка обычно длится 15-22 мин. Полученный металл содержит в растворе избыток кислорода, поэтому заключительная стадия плавки - раскисление металла. Течение кислородно-конвертерный процесс (т. е. последовательность реакций окисления примесей чугуна) обусловливается температурным режимом процесса и регулируется изменением количества дутья или введением в конвертер «охладителей» (скропа, железной руды, известняка). Температура металла при выпуске около 1600 °С. На приведена схема получения стали в кислородном конвертере.
Применение при конвертировании кислородного дутья вместо воздушного позволило получать сталь с низким содержанием азота (0,002-0,006%). Высокая температура Кислородно-конвертерного процесса способствует интенсивному окислению углерода, поэтому содержание кислорода, растворенного в металле, снижается до 0,005-0,01%. Расход кислорода на 1 т чугуна при К.-к. п. составляет 53 м3. При одном и том же качестве стали К.-к. п. по сравнению с мартеновским даёт экономию по капиталовложениям на 20-25%, снижение себестоимости стали на 2-4% и увеличение производительности труда на 25-30%. В СССР за 1965-71 выплавка стали в кислородных конвертерах увеличена с 4 до 23,2 млн. т в год, или в 5,8 раза. Рост производства конвертерной стали сопровождается ростом ёмкости конвертеров. С технологической точки зрения, увеличение емкости конвертера не создает каких-либо дополнительных трудностей ведения плавки. Поэтому даже в крупных конвертерах выплавляют не только рядовую низкоуглеродистую сталь, но и среднеуглеродистую, высокоуглеродистую, низколегированную и легированную стали.
3. Свойства и применение термореактивных пластмасс
Класс термореактивных пластмасс состоит из четырех групп обрабатываемости: 3-я группа - с газовоздушным наполнителем (пено-поропласты), 4-я группа - с порошкообразным наполнителем (фенопласты), 5-я группа - с волокнистым наполнителем (волокниты, стекло-, боро-, органо-, углеволокниты и т. д.), 6-я группа - со слоистым и листовым наполнителями (гетинаксы, текстолиты и т. д.). Для соединения термореактивных пластмасс применяют полиуретановые, полиэпоксидные, поливинилацетальнофенольные и карбинольный клеи, а также фенольные, полиэфирные и др. клеевые композиции. Технология склеивания термореактивных пластмасс обычная. Склеиваемая поверхность слоистых материалов на основе фенолформальдегидных и др. смол должна быть шероховатой. Детали (изделия) из термореактивных пластмасс изготовляют из так называемых технологических полуфабрикатов, представляющих собой более или менее. Для ускорения отверждения термореактивных пластмасс в их состав перед формованием вводят катализаторы (перекиси, кислоты или соли).
Преимуществом наполненных термореактивных пластмасс является большая стабильность механических свойств и относительно малая зависимость от температуры, скорости деформирования и длительности действия нагрузки. Они более надежны, чем термопласты. При испытаниях на растяжение материалы разрушаются без пластического течения и образования шейки. Верхняя граница рабочих температур реактопластов определяется термической устойчивостью полимера или наполнителя (меньшей из двух). Несмотря на понижение прочности и жесткости при нагреве, термореактивные пластмассы имеют лучшую несущую способность в рабочем интервале температур, и допустимые напряжения (15-40 МПа) для них выше, чем для термопластов. Важными преимуществами термореактивных пластмасс являются высокие удельная жесткость Е/(рд) и удельная прочность (7в/(рд). По этим показателям механических свойств реактопласты со стеклянным волокном или тканями превосходят многие стали, сплавы титана и сплавы алюминия. Термореактивные порошковые пластмассы наиболее однородны по свойствам. Такие пластмассы хорошо прессуются и применяются для наиболее сложных по форме изделий. Недостаток порошковых пластмасс - пониженная ударная вязкость.
Таблетирование характерно только для термореактивных пластмасс. Оно существенно влияет на точность, так как колебание веса таблеток вызывает при прямом прессовании в открытых и полузакрытых прессформах значительное рассеивание размеров, особенно тех, которые пересекают плоскость разъема. Подавляющее большинство полуфабрикатов термореактивных пластмасс выпускается в виде твердосыпучих прессматериалов - пресспорошки, гранулированные смеси, волокнистые и крошкообразные материалы и т. п. В качестве полуфабрикатов используются также различные виды вязко-текучих композиций, заливочные и формовочные массы и др. Переработка полуфабрикатов в детали осуществляется главным образом методами горячего прессования - прямым (компрессионным) и литьевым (трансферным), а также (более редко) методами экструзии (выдавливание),, свободного (простого) литья, напыления и др. В промышленной практике те или иные виды термореактивных пластмасс обычно обозначают, исходя из наименования участвующей в их составе полимерной составляющей: фенопласты (на основе фенолоальдегидных смол), аминопласты (на основе мочевино-, меламино-, анилиноформальдегидных смол), силикопласты (на основе кремнийорганических смол), эпоксипласты (на основе эпоксидных смол), полиэфиро-пласты (на основе полиэфирных смол) и т. д.
Отвердители, входящие в рецептуру многих термореактивных пластмасс, являются необходимой их составной частью, без которой невозможно изготовление детали (пластика), обладающей заданным комплексом свойств. Химический состав и свойства отвердителей могут определенным образом влиять на технологические параметры процесса переработки, а также на некоторые характеристики готовой детали. Например, использование гексаметилентетрамина (уротропина) - отвердителя фенолоальдегидных смол новолачного типа - определяет наличие в готовых деталях газообразного аммиака и т. п.
В зависимости от области предполагаемого применения, к огнеупорности, механическим и электрическим свойствам стеклопластиковых полимеров предъявляются различные требования. Эпоксидные смолы (ЭС) и ненасыщенные полиэфирные смолы (НПС), используемые на рельсовых транспортных средствах в Германии, должны соответствовать стандартам DIN 5510 часть 2. Небольшие детали проходят проверку на огнеупорность в соответствии с DIN 53438, части 1 и 3, в то время как панели и покрытия испытываются посредством щелевой газовой горелки по DIN 54837. В зависимости от функции компонентов, они должны соответствовать противопожарному классу S3 или S4, а в большинстве случаев и классу уровня выделения дыма SR2.
Применяя одновременно полифосфат аммония и гидроксид алюминия, удалось создать материал из НПС, соответствующий спецификациям S4 SR ST2 DIN 5510, часть 2, с не более чем 65% весовыми частями ингибитора горения в виде 3-мм слоя с включением 30% стеклоткани. Добавление 35 весовых частей ингибитора горения приводит материал в соответствие стандарту S3 SR2 ST2.
Низкая плотность дыма - одна из основных характеристик, способствующих применению стеклопластиков в средствах общественного транспорта, поскольку, выделяя дым, материалы могут существенно осложнить эвакуацию. При применении гидроксида алюминия и полифосфата аммония оптическая плотность дыма очень низка в момент возгорания. Материалы с этими добавками не выделяют при горении коррозионно-активных галогеноводородов; в случае пожара единственно обнаруживаемыми продуктами являются следы нитрозных газов (NOx). Их уровень существенно ниже пределов, установленных Airbus Industry.
ЭС в виде композиционных материалов нашли применение для изготовления структурных компонентов. Бромированные эпоксидные смолы используются в авиастроении для изготовления боковых стенок и половых панелей в интерьерах воздушных судов. Введение твердых добавок в эти полимеры ограничено в связи с требованиями к механическим свойствам. В то же время требования S4, SR2 и ST2 DIN 5510 могут быть удовлетворены посредством добавления сравнительно небольших количеств пирофосфата аммония.
Применение в электронной промышленности. Огнеупорность материалов, используемых при конструировании электроприборов, определяется стандартами безопасности продуктов. В США выдача лицензий пожаробезопасности производится Underwriters Laboratories (UL). Требования UL в настоящее время приняты во всем мире. В зависимости от требований огнеупорности, материалы могут быть подвергнуты горизонтальным (класс UL 94 HB) или более строгим вертикальным (UL 94 V2, V1 или V-0) испытаниям, имитирующим воспламенение от низкоэнергетических источников возгорания, аналогичных тем, которые могут возникать в электроприборах.
Требования высшего класса пожаробезопасности V-0 могут быть удовлетворены путем применения красного фосфора вместе с пирофосфатом аммония в слое материала толщиной 1.6 мм. Применение красного фосфора особенно оправдано в тех случаях, когда важны изоляционные свойства материала.
Эпоксидные смолы применяются при изготовлении формуемых композиционных материалов, а также покрытий, к термическим, механическим и электрическим свойствам которых предъявляются высокие требования. Они могут использоваться как в производстве электронных устройств, так и в процессах вымачивания и пропитки. ЭС применяются для производства огнеупорных печатных плат и диэлектриков. Красный фосфор показал свою эффективность в качестве галоген-несодержащей ингибирующей горение добавки ко всем типам эпоксидных смол, как армированных, так и неармированных. Он практически не влияет на диэлектрические свойства исследованных эпоксидных смол.
Полиуретаны также используются как структурные и диэлектрические материалы при конструировании электронных приборов. Полиуретаны легковоспламеняемы и поэтому должны быть легированы огнеупорными добавками при изготовлении корпусов электрооборудования. Полимер можно сделать огнеупорным, добавив при его получении гидроксид алюминия к полиолу. Более жесткие стандарты могут быть удовлетворены при добавлении гидроксида алюминия в сочетании с красным фосфором.
4. Маркировка, свойства и применение деформируемых алюминиевых сплавов
сталь сплав пластмасса
Для изготовления любых изделий, предназначенных к восприятию внешних сил, применяют не чистый алюминий, а его сплавы, которых в настоящее время разработано достаточно много марок.
Введение различных легирующих элементов в алюминий существенно изменяет его свойства, а иногда придает ему новые специфические свойства. При различном легировании повышаются прочность, твердость, приобретается жаропрочность и другие свойства. При этом происходят и нежелательные изменения: неизбежно снижается электропроводность, во многих случаях ухудшается коррозионная стойкость, почти всегда повышается относительная плотность. Исключение составляет легирование марганцем, который не только не снижает коррозионную стойкость, но даже несколько повышает ее, и магнием который тоже повышает коррозионную стойкость (если его не более 3%) и снижает относительную плотность, так как он легче, чем алюминий.
Основными легирующими элементами в различных деформируемых сплавах являются медь, магний, марганец и цинк, кроме того, в сравнительно небольших количествах вводятся также кремний, железо, никель и некоторые другие элементы.
Для получения деформируемых сплавов в алюминий вводят в основном растворимые в нем легирующие элементы в количестве, не превышающем предел их растворимости при высокой температуре. В них не должно быть эвтектики, которая легкоплавка и резко снижает пластичность.
Деформируемые сплавы при нагреве под обработку давлением должны иметь гомогенную структуру твердого раствора, обеспечивающую наибольшую пластичность и наименьшую прочность. Это и обусловливает их хорошую обрабатываемость давлением.
Деформируемые сплавы используются в автомобильном производстве для внутренней отделки, бамперов, панелей кузовов и деталей интерьера; в строительстве, как отделочный материал; в летательных аппаратах и др. Алюминий в большом объёме используется в строительстве в виде облицовочных панелей, дверей, оконных рам, электрических кабелей. Алюминиевые сплавы не подвержены сильной коррозии в течение длительного времени при контакте с бетоном, строительным раствором, штукатуркой, особенно если конструкции не подвергаются частому намоканию.
Деформируемые алюминиевые сплавы делят на упрочняемые и неупрочняемые. Это наименование отражает способность или неспособность сплава заметно повышать прочность при термической обработке.
Маркировка деформируемых алюминиевых сплавов.
Обозначение марок: Д16, АД1Ш, АК6, АВ, АМц, В95П, АМг2 (буквенно-цифровая маркировка).
Обозначение: цифры после букв В, Д и К - условный номер сплава; цифра после Мг - средняя массовая доля магния в сплаве, %.
Буквы: Д - в начале марки обозначает сплавы типа дюральминов; АК - алюминиевый ковочный сплав; АВ - авиационный алюминиевый сплав (авиаль); В - высокопрочный; АМц - сплав алюминий-марганец; АМг - сплав алюминий - магний. Буква П в конце марки обозначает, что сплав предназначен для изготовления проволоки для холодной высадки. Состояние полуфабрикатов обозначается буквенно-цифровой маркировкой, следующей за условным номеров марки: М - мягкий (оттоженный), Т - закаленный и естественно состаренный на максимальную прочность, Н - нагартованный, Ш - сплав для изделий пищевого назначения.
Пример расшифровки:
Сплав марки Д18 - дуралюмин с условным номером 18. Сплав марки АК8 - алюминий ковочный с условным номером - 8. Сплав марки АМг4 - алюминиево-магниевый со средней массовой долей магния - 4%.
Используется ГОСТ 21488-97 “Прутки пресованные из алюминия и алюминиевых сплавов. Технические условия”
По физико-химическим и технологическим свойствам все деформируемые алюминиевые сплавы можно разделить на следующие группы: 1) Малолегированные и термически не упрочненные сплавы; 2) Сплавы, разработанные на базе систем: Al-Mg-Si, : Al-Mg-Si-Cu-Mn (АВ, АК6, АК8); 3) Сплавы типа дуралюмин (Д1, Д6, Д16 и др);
4) Сплавы, разработанные на базе системы: Al-Mg-Ni-Cu-Fe (АК2, АК4, АК4-1); 5) Сплавы типа В95, обладающие наибольшей прочностью при комнатной температуре. Малолегированные и термически не упрочненные сплавы. Наиболее типичными сплавами, отнесенными к этой группе, являются сплавы группы магналий и АМц. Эти сплавы отличаются наиболее высокой коррозионной стойкостью и пластичностью. Упрочнение этих сплавов достигается нагартовкой. Они нашли наиболее широкое применение в виде листового материала, используемого для изготовления сложных по конфигурации изделий, получаемых путем горячей штамповки, глубокой вытяжке и прокатки. Из этих же сплавов путем прессования изготовляются трубы. Листовые материалы типа магналия обычно подвергаются точечной электросварке, тогда как для марганцовистых материалов можно применять любой вид сварки. Эти сплавы характеризуются сравнительно невысокой прочностью, не намного превосходящей прочность алюминия. Марганец, в отличие от остальных элементов не только не ухудшает коррозионной стойкости алюминиевого сплава, но даже несколько повышает ее. Магний является полезным легирующим элементом. Не считая повышения коррозионного сопротивления, магний уменьшает удельный вес алюминиевого сплава (так как он легче алюминия), повышает прочность, не снижая пластичности. Поэтому алюминиевые сплавы получили распространение как более прочные и легкие, чем чистый алюминий.
Сплавы, разработанные на базе систем: Al-Mg-Si, : Al-Mg-Si-Cu-Mn Группа сплавов АВ, АК6, АК8 по химическому составу значительно отличается как от сплавов типа дуралюмин, так и сплавов типа АК2 иАК4. Сплавы АВ относятся к малолегированным сплавам, но применяются в термообработанном состоянии. Основным упрочнителем их является фаза Mg2Si, а также фаза CuAl2. Добавка марганца и хрома способствует измельчению структуры и некоторому повышению температуры рекристаллизации. По прочности сплавы АВ несколько уступают сплавам типа дуралюмин и сплавам АК6, АК8, а по пластичности превосходят последние.
Сплавы типа авиаль нашли наиболее широкое применение для изготовления различных весьма сложных по форме полуфабрикатов, получаемых путем горячей штамповки, ковки, глубокой вытяжки и прокатки. Сплавы типа дуралюмин. Наиболее типичным представителем сплавов типа дуралюмин является сплав Д1. К этой же группе относятся сплавы Д6, Д16 и др. Следует отметить, что сплавы Д6 и Д16 обладают более высокой прочностью, чем сплав Д1. Большинство сплавов типа дуралюмин применяется в закаленном и естественно состаренном состоянии. Все эти сплавы имеют наибольшее распространение для изготовления труб, прутков, профилей и листов. По своей природе сплавы Д3П и Д18П также относятся к числу сплавов типа дуралюмин, но они менее легированы и отличаются весьма высокой пластичностью. Поэтому сплавы Д3П и Д18П нашли широкое применение в основном, для изготовления заклепок. Сплавы, разработанные на базе системы: Al-Mg-Ni-Cu-Fe. К этой группе относятся прежде всего сплавы АК3, АК4, АК4-1, которые по фазовому составу, следовательно и по свойствам, резко отличаются от сплавов типа дуралюмина. Эти сплавы нашли наиболее широкое применение для ковки штамповки поршней, картеров и др. деталей, работающих при повышенных температурах. Из сплавов АК4, АК4-1 изготавливают детали колес компрессоров, воздухозаборников, крыльчатки мощных вентиляторов, лопасти и другие детали, работающие при повышенных температурах.
Сплавы типа В95, обладающие наибольшей прочностью при комнатной температуре. Из всех деформируемых сплавов наибольшую плотность имеют сплавы В95, хотя этим сплавам присущи следующие недостатки: пониженная пластичность; повышенная чувствительность к коррозии под напряжением; большая чувствительность к повторным нагрузкам и действию острых надрезов, чем у сплава типа дуралюмин; склонность к резкому снижению прочностных характеристик с повышением температуры выше 1400С.
Сплав В95 применяется в виде прессованных профилей, прутков, различных штамповок. Все эти полуфабрикаты поставляются как в отожженном, так и в закаленном и искусственно состаренном состояниях. Сплавы типа В95 путем термической обработки получают упрочнение в большей мере, чем другие алюминиевые сплавы. Время выдержки, как при температуре закалки, так и при искусственном старении может резко изменяться в зависимости от толщины и структуры сплава. Эти сплавы после закалки получают значительное упрочнение, но еще сохраняют достаточно высокую пластичность, благодаря чему поддаются хорошей деформации. Поэтому способом штамповки или выколотки из полуфабрикатов свежезакаленного состояния можно получать детали за одну операцию. Необходимо учитывать, что деформирование, выполненное в процессе естественного старения, у многих сплавов вызывает снижение предела прочности на 2 кг/мм2 по сравнению с пределом прочности, получаемым при старении сплавов после деформирования. Поэтому рекомендуется производить деформирование сплавов Д1 только в свежезакаленном состоянии в течение 2 ч. после закалки, а сплавов Д6 и Д16 в течение 30 мин.
Технологические свойства металлов и их сплавов - это часть их общих физико-химических свойств. Знание этих свойств позволяет более обоснованно проектировать и изготовлять изделия с улучшенными для данного сплава качественными показателями. К технологическим свойствам деформированных алюминиевых сплавов относятся:
Пластичность или деформируемость - способность металла (сплава) изменять форму при гибке, ковке, штамповке, прокатке и прессовании без нарушения целостности. Некоторые технологические пробы, используемые для исследования металлов на деформируемость, стандартизированы. Оценка качества металла при исследовании его деформируемости производится визуально по состоянию поверхности после испытания.
Жидкотекучесть - это способность металла заполнять литейную форму. Она зависит от вязкости, поверхностного натяжения и температуры заливки расплава. Чем выше жидкотекучесть расплава, тем легче заполнять сложную литейную форму.
Свариваемость - способность металлов и сплавов образовывать неразъемные соединения при их плавлении. Хорошая свариваемость характеризуется плотным швом в зоне сварки, без трещин и раковин.
Паяемость - способность металлов и сплавов образовывать неразъемные соединения с помощью промежуточного сплава - припоя (адгезива), температура плавления которого значительно ниже температуры соединяемых металлов. При пайке не происходит структурных изменений соединяемых металлов, так как они не нагреваются до высоких температур и не плавятся, как при сварке. Припои и соответствующие им флюсы выбирают в зависимости от металлов и сплавов, подлежащих пайке.
Упрочняемость - способность металлов и сплавов улучшать свои свойства (прочность, износостойкость, твердость и др.) за счет термической, химико-термической, термомеханической, механической и других видов обработки.
Незакаливаемость - способность металлов и сплавов не изменять свои прочностные и пластические свойства после нагревания и резкого охлаждения, что имеет большое значение при сварочных процессах. При испытании на незакаливаемость металл нагревают до 750 °С, затем резко охлаждают в воде, после чего проверяют его на изгиб.
Обрабатываемость резанием - свойство металла или сплава обрабатываться резцом или абразивом. При хорошей обрабатываемости получается малая шероховатость поверхности (чистота), обеспечивается точность размеров готовой детали. Хорошо обрабатываемые металлы обладают невысоким сопротивлением резанию, не затрудняют процесс стружкообразования, не снижают стойкость инструмента.
Сплавы на основе систем Al-Mn (АМц) и AL-Mg (АМг6), не упрочняемые термической обработкой. Их используют в отожженном (М), нагартованном (Н) или полунагартованном (П) состояниях. Эти сплавы хорошо свариваются. Их применяют для изготовления коррозионностойких изделий, получаемых методами глубокой вытяжки и сварки (например, сварных бензобаков, трубопроводов для масла и бензина, корпусов и мачт судов);
Сплавы системы Al-Mg-Si (АВ, АД31, АД33), упрочняемые закалкой (520-530 0С) и искусственным старением (150-170 0С, 10-12 ч). Эти сплавы вне зависимости от состояния материала, не склонны к коррозионному растрескиванию под напряжением. Они удовлетворительно обрабатываются резанием в закаленном и состаренном состоянии, а также свариваются с помощью точечной, шовной и аргонодуговой сварки. Большей коррозионной стойкостью обладают сплавы АД31 и АД33, работающие в интервале -70 до +50 0С; сплав авиаль АВ из указанной группы сплавов характеризуется большей прочностью. Из сплавов АВ, Ад31 и АД33 изготавливают лопасти и детали кабин вертолетов, барабаны колес гидросамолетов.
Хорошим сочетание прочности и пластичности отличаются сплавы системы AL-Cu-Mg - дюралюмины Д1, Д16, Д18, Д19, ВД17 и др. Они упрочняются термической обработкой, хорошо свариваются точечной сваркой, удовлетворительно обрабатываются резанием ( в термоупрочненном состоянии); однако склонны к межкристаллитной коррозии после нагрева (особенно Д1, Д16 и В65). Значительное повышение коррозионной стойкости сплавов достигается плакированием (покрытием их технических алюминием (А7, А8). Сплавы Д19 и ВД17 работают при нагреве до 200-250 0С (например, из сплава ВД17 изготавливают лопатки компрессора двигателя). В авиации дюралюмины применяют для изготовления лопастей воздушных винтов (Д1), силовых элементов конструкций самолетов (Д16, Д19), заклепок (В65, Д18) и др.
Высокопрочные сплавы системы Al-Zn-Mg-Cu (В93, В95, В96Ц) характеризуются большими значениями временного сопротивления (до 700МПа). При этом достаточная пластичность, трещиностойкость и сопротивление коррозии достигаются режимами коагуляционного ступенчатого старения (Т2, Т3), а также применением сплавов повышенной (В95пч) и особой (В95оч) чистоты. В данном случае сплавы обладают лучшей коррозионной стойкостью, чем дюралюмины. Рабочая температура высокопрочных сплавов не превышает 120 0С, ибо они не являются теплопрочными. Сплавы используются для изготовления высоконагруженных изделий, как правило, работающих в условиях сжатия (стрингеры, шпангоуты, лонжероны и др.)
Высокомодульный сплав 1420 обладает за счет легирования алюминия литием и магнием (система Al-Mg-Li) пониженной (на 11%) плотностью и одновременно повышенным (на 4%) модулем упругости по сравнению со свойствами сплава Д16.
Сплав 1420 характеризуется коррозионной стойкостью (аналогичной сплаву АМг6М) после закалки с искусственным старением (Т1), а также после сварки. Сплав может быть использован для замены в изделиях сплава Д16, обеспечивая при этом снижение их массы на 10-15%.
Высокой пластичностью при горячей обработке давлением обладают ковочные сплавы АК6 и АК8 (система Al-Mg-Si-Cu). Они удовлетворительно свариваются, хорошо обрабатываются резанием, но склонны к коррозии под напряжением. Для обеспечения коррозионной стойкости детали из сплавов АК6 и АК8 анодируют (электрохимически оксидируют) или наносят лакокрасочные покрытия. Из ковочных сплавов изготавливают ковкой и штамповкой детали самолетов, работающие под нагрузкой (рамы, пояса лонжеронов, крепежные детали). Эти сплавы способны работать при криогенных температурах.
Жаропрочные алюминиевые сплавы системы Al-Cu-Mn (Д20, Д21) и Al-Cu-Mg-Fe-Ni (АК4-1) применяют для изготовления деталей (поршни, головки цилиндров, диски и лопатки компрессоров), работающих при повышенных температурах (до 300 0С). Жаропрочность достигается за счет легирования сплавов никелем, железом и титаном, затормаживающими диффузионные процессы и образующими сложнолегированные мелкодисперсные упрочняющие фазы, устойчивые к коагулящии при нагреве. Сплавы обладают высокой пластичностью и технологичностью в горячем состоянии, хорошо (Д20) или удовлетворительно (Д21, АК4-1) свариваются, однако отличаются пониженной коррозионной стойкостью; их защищают от коррозии анодированием и лакокрасочными покрытиями. При 2500С большей жаропрочностью обладают сплавы Д21, Д20 по сравнению со сплавом АК4-1.
Алюминиевые сплавы имеют широкое использование в различных отраслях народного хозяйства. Это объясняется тем, что важнейшим их преимуществом является высокая технологичность. В связи с этим при использовании алюминиевых сплавов можно применять различное высокопроизводительное оборудование, в том числе плавильное, литейное, механообрабатывающее и другое, что обеспечивает качественное изготовление выпускаемой продукции. Несмотря на высокую стоимость первичного алюминия и его сплавов, а также новейшего высокопроизводительного оборудования, как показывают расчеты, затраты на изготовление продукции из алюминиевых сплавов полностью окупаются и дают значительный экономический эффект, особенно при организации крупносерийных производств.
Уже сейчас трудно найти отрасль промышленности, где бы не использовался алюминий или его сплавы - от микроэлектроники до тяжёлой металлургии. Это обуславливается хорошими механическими качествами, лёгкостью, малой температурой плавления, что облегчает обработку, высоким внешними качествами, особенно после специальной обработки. Учитывая перечисленные и многие другие физические и химические свойства алюминия, его неисчерпаемое количество в земной коре, можно сказать, что алюминий - один из самых перспективных материалов будущего.
Список используемой литературы
1. Арзамасов Б.Н. и др. Материаловедение. М.: Изд-во МГТУ им Н.Э. Баумана, 2003.
2. Технология конструкционных материалов. Под редакцией А.М. Дальского. М.: «Машиностроение», 1985.
3. Горынин И.В. и др. Алюминиевые сплавы. Применение алюминиевых сплавов: Справочное руководство. М.: Металлургия, 1978.
4. Солнцев Ю.П. Металловедение и технология металлов. М.: Металлургия, 1988.
5. Тарасов А.В., Уткин Н.И. Общая металлургия. М.: Металлургия, 1997.
Размещено на Allbest.ru
...Подобные документы
Классификация, маркировка, состав, структура, свойства и применение алюминия, меди и их сплавов. Диаграммы состояния конструкционных материалов. Физико-механические свойства и применение пластических масс, сравнение металлических и полимерных материалов.
учебное пособие [4,8 M], добавлен 13.11.2013Классификация металлов: технические, редкие. Физико-химические свойства: магнитные, редкоземельные, благородные и др. Свойства конструкционных материалов. Строение и свойства сталей, сплавов. Классификация конструкционных сталей. Углеродистые стали.
реферат [24,1 K], добавлен 19.11.2007Определение понятия и классификация свойств конструкционных материалов, из которых изготовляются детали конструкций, воспринимающих силовую нагрузку. Стеклокристаллические материалы, производство стали, классификация, графитизация и маркировка чугунов.
контрольная работа [651,4 K], добавлен 14.01.2011Применение деформируемых алюминиевых сплавов в народном хозяйстве. Классификация деформируемых алюминиевых сплавов. Свойства деформируемых алюминиевых сплавов. Технология производства деформируемых алюминиевых сплавов.
курсовая работа [62,1 K], добавлен 05.02.2007Механические свойства, обработка и примеси алюминия. Классификация и цифровая маркировка деформируемых алюминиевых сплавов. Характеристика литейных алюминиевых сплавов системы Al–Si, Al–Cu, Al–Mg. Технологические свойства новых сверхлегких сплавов.
презентация [40,6 K], добавлен 29.09.2013Процессы, протекающие в стали 45 во время нагрева и охлаждения. Применение стали 55ПП, свойства после термообработки. Выбор марки стали для роликовых подшипников. Обоснование выбора легкого сплава для сложных отливок. Способы упрочнения листового стекла.
контрольная работа [71,5 K], добавлен 01.04.2012Зависимость деформационных свойств пластмасс от температуры. Зависимость прочности полимеров от скорости нагружения. Усталостные свойства пластмасс. Проектирование экономически эффективных изделий из пластмасс. Метод механической обработки заготовок.
реферат [20,9 K], добавлен 29.01.2011Физико-механические свойства термореактивных пластмасс. Свойства и применение пластмассы с порошковыми и волокнистыми наполнителями, стекловолокнита и асботекстолита. Назначение и химический состав стали 4XB2C, ее механические и технологические свойства.
контрольная работа [696,9 K], добавлен 05.11.2011Определение механических свойств конструкционных материалов путем испытания их на растяжение. Методы исследования качества, структуры и свойств металлов и сплавов, определение их твердости. Термическая обработка деформируемых алюминиевых сплавов.
учебное пособие [7,6 M], добавлен 29.01.2011Производство стали в кислородных конвертерах. Легированные стали и сплавы. Структура легированной стали. Классификация и маркировака стали. Влияние легирующих элементов на свойства стали. Термическая и термомеханическая обработка легированной стали.
реферат [22,8 K], добавлен 24.12.2007Эксплуатационные свойства металлов. Классификация металлических материалов. Черные и цветные металлы, их сплавы. Стали для режущих и измерительных инструментов. Стали и сплавы со специальными свойствами. Сплавы алюминия и меди. Сплавы с "эффектом памяти".
курсовая работа [1,6 M], добавлен 19.03.2013Обзор состава простых конструкционных сталей. Получение чугуна и легированных сталей. Характерные особенности медно-никелевых сплавов. Применение алюминиевых бронз, нейзильбера, мельхиора в народном хозяйстве. Механические свойства сплавов меди с цинком.
презентация [3,3 M], добавлен 06.04.2014Механические свойства строительных материалов: твердость материалов, методы ее определения, суть шкалы Мооса. Деформативные свойства материалов. Характеристика чугуна как конструкционного материала. Анализ способов химико-термической обработки стали.
контрольная работа [972,6 K], добавлен 29.03.2012Строение и свойства стали, исходные материалы. Производство стали в конвертерах, в мартеновских печах, в дуговых электропечах. Выплавка стали в индукционных печах. Внепечное рафинирование стали. Разливка стали. Специальные виды электрометаллургии стали.
реферат [121,3 K], добавлен 22.05.2008Классификация композиционных материалов, их геометрические признаки и свойства. Использование металлов и их сплавов, полимеров, керамических материалов в качестве матриц. Особенности порошковой металлургии, свойства и применение магнитодиэлектриков.
презентация [29,9 K], добавлен 14.10.2013Алюминий как основа конструкционных материалов. Технология производства алюминия, методы его очищения. Свойства и достоинства сверхчистого алюминия. Применение сплавов в промышленности, польза их старения. Алюминотермия и разработка фаз-упрочнителей.
реферат [29,4 K], добавлен 23.01.2010Влияние времени на деформацию. Упругое последействие, влияние температуры на свойства материалов. Механические свойства материалов. Особенности испытаний на сжатие. Зависимость предела прочности пластмасс от температуры, неоднородность материалов.
реферат [2,5 M], добавлен 01.12.2008Диаграмма состояния сплава. Смолы, их группы и применение. Прямой и обратный пьезоэффект. Свойства, особенности, составы, применение пьзоэлектриков. Классификация и использование контактных материалов. Расшифровка марок сплавов МНМц 40-1,5 и МНМц 3-12.
контрольная работа [1,3 M], добавлен 21.11.2010Порошковая металлургия. Основными элементами технологии порошковой металлургии. Методы изготовления порошковых материалов. Методы контроля свойств порошков. Химические, физические, технологические свойства. Основные закономерности прессования.
курсовая работа [442,7 K], добавлен 17.10.2008Краткий обзор и характеристики твердых материалов. Группы металлических и неметаллических твердых материалов. Сущность, формирования строения и механические свойства твердых сплавов. Производство и применение непокрытых и покрытых твердых сплавов.
реферат [42,3 K], добавлен 19.07.2010