Введение в материаловедение

Материаловедение как наука о взаимосвязи электронного строения, структуры материалов с их составом, физическими, химическими, технологическими и эксплуатационными свойствами. Механизм превращения аустенита в перлит. Нагрев, термическая обработка металла.

Рубрика Производство и технологии
Вид шпаргалка
Язык русский
Дата добавления 29.09.2013
Размер файла 844,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Материаловедение - это наука о взаимосвязи электронного строения, структуры материалов с их составом, физическими, химическими, технологическими и эксплуатационными свойствами.

Создание научных основ металловедения по праву принадлежит. Чернову Д.К., который установил критические температуры фазовых превращений в сталях и их связь с количеством углерода в сталях. Этим были заложены основы для важнейшей в металловедении диаграммы состояния железоуглеродистых сплавов. Открытием аллотропических превращений в стали, Чернов заложил фундамент термической обработки стали. Критические точки в стали, позволили рационально выбирать температуру ее закалки, отпуска и пластической деформации в производственных условиях.

В своих работах по кристаллизации стали, и строению слитка Чернов изложил основные положения теории литья, не утратившие своего научного и практического значения в настоящее время. В последнее время для структурного анализа, кроме рентгеновских лучей, используют электроны и нейтроны. Соответствующие методы исследования называются электронографией и нейтронографией.

2. Великий русский металлург Аносов П.П. впервые применил микроскоп для исследования структуры металлов. Ему принадлежит приоритет в создании легированных сталей. Из его работ стало ясно, что так называемый булатный узор на поверхности стали, непосредственно зависит от ее внутренней структуры. В 1873-1876 г.г Гиббс изложил основные законы фазового равновесия и, в частности, правило фаз, основываясь на законах термодинамики. Для решения практических задач знание фазового равновесия в той или иной системе необходимо, но не достаточно для определения состава и относительного количества фаз.Определение атомного строения фаз стало возможным после открытия Лауэ (1912 г), показавшего, что атомы в кристалле регулярно заполняют пространство, образуя пространственную дифракционную решетку, и что рентгеновские лучи имеют волновую природу. Дифракция рентгеновских лучей на такой решетке дает возможность исследовать строение кристаллов.

3. Металлы - один из классов конструкционных материалов, характеризующийся определенным набором свойств:

«металлический блеск» (хорошая отражательная способность);

пластичность;

высокая теплопроводность;

высокая электропроводность.

Металл представляет собой вещество, состоящее из положительных ядер, вокруг которых по орбитам вращаются электроны.Все металлы, затвердевающие в нормальных условиях, представляют собой кристаллические вещества, то есть укладка атомов в них характеризуется определенным порядком - периодичностью, как по различным направлениям, так и по различным плоскостям. Этот порядок определяется понятием кристаллическая решетка.

Основные типы кристаллических решеток: а - объемно-центрированная кубическая; б- гранецентрированная кубическая; в - гексагональная плотноупакованная

Классиф. металлов: 1)черные металлы (от серого до темно серого, более тугоплавкие, склонны к полиморфизму): а) железные металлы (железо, кобольт, никель) облодают ферромагнетизмом; б) тугоплавкие темпер плавл больше 1539, хром вольфрам молибден; в) актиноиды; г) лантанойды; д) щелочные и щелочно- земельные, литий натрий калий.

2) Цветные металлы: легкие(бериллий аллюминий), благородные, легкоплавкие(ртуть цинк олово).

4. В кристаллической решетке реальных металлов имеются различные дефекты которые нарушают связи между атомами и оказывают влияние на свойства металлов. Различают следующие структурные несовершенства: точечные, линейные, поверхностные.

Точеные дефекты точечных дефектов: вакансий, дислоцированных атомов и примесей.

Вакансия - отсутствие атомов в узлах кристаллической решетки, «дырки», которые образовались в результате различных причин. Скопление многих вакансий может привести к образованию пор и пустот.

Дислоцированный атом - это атом, вышедший из узла решетки и занявший место в междоузлие.

Примесные атомы- это атом другого элемента внедрившийся в кр реш, всегда присутствуют в металле, так как практически невозможно выплавить химически чистый металл.

Линейные дефекты:

Основными линейными дефектами являются дислокации.

Дислокация - это дефекты кристаллического строения, представляющие собой линии, вдоль и вблизи которых нарушено характерное для кристалла правильное расположение атомных плоскостей.

Краевая дислокация представляет собой линию, вдоль которой обрывается внутри кристалла край “лишней“ полуплоскости.

а) б) Краевая дислокация (а) и механизм ее образования (б)

Неполная плоскость называется экстраплоскостью.Большинство дислокаций образуются путем сдвигового механизма

Винтовая дислокация получена при помощи частичного сдвига по плоскости.

прочность материала (рис. 2.5)

5. В кристаллических телах атомы правильно располагаются в пространстве, причем по разным направлениям расстояния между атомами неодинаковы, что предопределяет существенные различия в силах взаимодействия между ними и, в конечном результате, разные свойства. Зависимость свойств от направления называется анизотропией Чтобы понять явление анизотропии необходимо выделить кристаллографические плоскости и кристаллографические направления в кристалле. Плоскость, проходящая через узлы кристаллической решетки, называется кристаллографической плоскостью.Прямая, проходящая через узлы кристаллической решетки, называется кристаллографическим направлением.

Способность некоторых металлов существовать в различных кристаллических формах в зависимости от внешних условий (давление, температура) называется аллотропией или полиморфизмом. Примером аллотропического видоизменения, обусловленного изменением давления, является углерод: при низких давлениях образуется графит, а при высоких - алмаз. Используя явление полиморфизма, можно упрочнять и разупрочнять сплавы при помощи термической обработки.

6. Любое вещество может находиться в трех агрегатных состояниях: твердом, жидком, газообразном

Изменение свободной энергии в зависимости от температуры

Кристаллизация - это процесс образования участков кристаллической решетки в жидкой фазе и рост кристаллов из образовавшихся центров. Кристаллизация протекает в условиях, когда система переходит к термодинамически более устойчивому состоянию с минимумом свободной энергии. При соответствующем понижении температуры в жидком металле начинают образовываться кристаллики - центры кристаллизации или зародыши. Для начала их роста необходимо уменьшение свободной энергии металла, в противном случае зародыш растворяется. Минимальный размер способного к росту зародыша называется критическим размером, а зародыш - устойчивым. Переход из жидкого состояния в кристаллическое требует затраты энергии на образование поверхности раздела жидкость - кристалл. Процесс кристаллизации будет осуществляться, когда выигрыш от перехода в твердое состояние больше потери энергии на образование поверхности раздела.

7. Зародыши с размерами равными и большими критического растут с уменьшением энергии и поэтому способны к существованию.

Зависимость энергии системы от размера зародыша твердой фазы

Рост продолжается в направлениях, где есть свободный доступ питающей среды. После окончания кристаллизации имеем поликристаллическое тело.

Размер зерен при кристаллизации зависит от числа частичек нерастворимых примесей, которые играют роль готовых центров кристаллизации- оксиды, нитриды, сульфиды. Чем больше частичек, тем мельче зерна закристаллизовавшегося вещества.

Мелкозернистую структуру можно получить в результате модифицирования, добавлением в жидкие металлы посторонних веществ-модификаторов. По механизму воздействия модификаторов различают:

А) вещества, не растворяющихся в жидком металле-выступают в качестве дополнительных центров кристализации;

Б)поверхностно-активные вещества, которые растворяются в металле, и, осаждаюсь на поверхности растущих кристаллов, препятствуют их росту

8. Строение металлического сплава зависит от того, в какие взаимодействия вступают компоненты, составляющие сплав. Почти все металлы в жидком состоянии растворяются друг в друге в любых соотношениях.

В зависимости от характера взаимодействия компонентов различают сплавы:

механические смеси; 2химические соединения; 3твердые растворы.

Сплавы механические смеси образуются, когда компоненты не способны к взаимному растворению в твердом состоянии и не вступают в химическую реакцию с образованием соединения.

Схема микроструктуры механической смеси

Сплавы химические соединения образуются между элементами, значительно различающимися по строению и свойствам, если сила взаимодействия между разнородными атомами больше, чем между однородными.

Постоянство температуры кристаллизации, как у чистых компонентов

Кристаллическая решетка химического соединения

Сплавы твердые растворы - это твердые фазы, в которых соотношения между компонентов могут изменяться. Являются кристаллическими веществами. Характерной особенностью твердых растворов является:наличие в их кристаллической решетке разнородных атомов, при сохранении типа решетки растворителя.Твердый раствор состоит из однородных зерен.

Схема микроструктуры твердого раствора

По характеру распределения атомов растворенного вещества в кристаллической решетке растворителя различают твердые растворы:

замещения;

внедрения;

вычитания.

В растворах замещения в кристаллической решетке растворителя часть его атомов замещена атомами растворенного элемента Замещение осуществляется в случайных местах, поэтому такие растворы называют неупорядоченными твердыми растворами.

Рис.4.4. Кристаллическая решетка твердых растворов замещения (а), внедрения (б)

9. Фаза - однородная часть системы, отделенная от других частей системы поверхностного раздела, при переходе через которую структура и свойства резко меняются. Если вариантность C = 1 (моновариантная система), то возможно изменение одного из факторов в некоторых пределах, без изменения числа фаз.Если вариантность C = 0 (нонвариантная cистема), то внешние факторы изменять нельзя без изменения числа фаз в оистемею Существует математическая связь между числом компонентов (К), числом фаз (Ф) и вариантностью системы ( С ). Это правило фаз или закон Гиббса

Если принять, что все превращения происходят при постоянном давлении, то число переменных уменьшится ..где: С - число степеней свободы, К - число компонентов, Ф - число фаз, 1 - учитывает возможность изменения температуры.

Диаграмма состояния представляет собой графическое изображение состояния любого сплава изучаемой системы в зависимости от концентрации и температуры

Рис. 4.5. Диаграмма состояния

Диаграммы состояния показывают устойчивые состояния, т.е. состояния, которые при данных условиях обладают минимумом свободной энергии, и поэтому ее также называют диаграммой равновесия, так как она показывает, какие при данных условиях существуют равновесные фазы.

Температуры, соответствующие фазовым превращениям, называют критическими точками. Некоторые критические точки имеют названия, например, точки отвечающие началу кристаллизации называют точками ликвидус, а концу кристаллизации - точками солидус.По диаграмме состояния можно определить температуры фазовых превращений, изменение фазового состава, приблизительно, свойства сплава, виды обработки, которые можно применять для сплава.

Диаграмма состояния сплавов с неограниченной растворимостью компонентов в твердом состоянии (а); кривые охлаждения типичных сплавов (б)

Сначала получают термические кривые. Полученные точки переносят на диаграмму, соединив точки начала кристаллизации сплавов и точки конца кристаллизации, получают диаграмму состояния.

Проведем анализ полученной диаграммы.

1. Количество компонентов: К = 2 (компоненты А и В).

2. Число фаз: f = 2 (жидкая фаза L, кристаллы твердого раствора )

3. Основные линии диаграммы:

acb - линия ликвидус, выше этой линии сплавы находятся в жидком состоянии;

adb - линия солидус, ниже этой линии сплавы находятся в твердом состоянии.

Количественный структурно-фазовый анализ сплава.

Пользуясь диаграммой состояния можно для любого сплава при любой температуре определить не только число фаз, но и их состав и количественное соотношение. Для этого используется правило отрезков. а). Определение состава фаз в точке m:

Определение количественного соотношения жидкой и твердой фазы при заданной температуре (в точке m):

Количественная масса фаз обратно пропорциональна отрезкам проведенной коноды.Рассмотрим проведенную через точку m коноду и ее отрезки.

Количество всего сплава (Qсп) определяется отрезком pq.

Отрезок, прилегающий к линии ликвидус pm, определяет количество твердой фазы.

Отрезок, прилегающий к линии солидус (или к оси компонента) mq, определяет количество жидкой фазы.

11. Диаграмма состояния и кривые охлаждения типичных сплавов системы

Диаграмма состояния сплавов с отсутствием растворимости компонентов в твердом состоянии (а) и кривые охлаждения сплавов (б)

Проведем анализ диаграммы состояния.

1. Количество компонентов: К = 2 (компоненты А и В);

2. Число фаз: f = 3 (кристаллы компонента А, кристаллы компонента В, жидкая фаза).

3. Основные линии диаграммы:

- линия ликвидус acb, состоит из двух ветвей, сходящихся в одной точке;

- линия солидус ecf, параллельна оси концентраций стремится к осям компонентов, но не достигает их;

4. Типовые сплавы системы.

а) Чистые компоненты, кристаллизуются при постоянной температуре, на рис 5.3 б показана кривая охлаждения компонента А.б). Эвтектический сплав - сплав, соответствующий концентрации компонентов в точке с (сплав I). Кривая охлаждения этого сплава, аналогична кривым охлаждения чистых металлов

При образовании сплавов механических смесей эвтектика состоит из кристаллов компонентов А и В: Эвт. (кр. А + кр. В)

12. Количество компонентов: К = 2 (компоненты А и В);

2. Число фаз: f = 3 (жидкая фаза и кристаллы твердых растворов (раствор компонента В в компоненте А) и ( раствор компонента А в компоненте В));

3. Основные линии диаграммы:

- линия ликвидус acb, состоит из двух ветвей, сходящихся в одной точке;

- линия солидус аdcfb, состоит из трех участков;

- dm - линия предельной концентрации компонента В в компоненте А;

- fn - линия предельной концентрации компонента А в компоненте В.

Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии (а) и кривые охлаждения типичных сплавов (б)

Сплав с концентрацией компонентов, соответствующей точке с, является эвтектическим сплавом. Сплав состоит из мелкодисперсных кристаллов твердых растворов и , эвт. (кр. тв. р-ра + кр. тв. р-ра )Кристаллы компонентов в чистом виде ни в одном из сплавов не присутствуют.

13.Диаграмма состояния сложная, состоит из нескольких простых диаграмм. Число компонентов и количество диаграмм зависит от того, сколько химических соединений образуют основные компоненты системы.Число фаз и вид простых диаграмм определяются характером взаимодействия между компонентами.

Эвт1 (кр. А + кр. AmBn);Эвт2 (кр. B + кр. AmBn).

Так как вид диаграммы, также как и свойства сплава, зависит от того, какие соединения или какие фазы образовали компоненты сплава, то между ними должна существовать определенная связь. Эта зависимость установлена Курнаковым.

14-15. Железоуглеродистые сплавы - стали и чугуны - важнейшие металлические сплавы современной техники. Диаграмма состояния железо - углерод дает основное представление о строении железоуглеродистых сплавов - сталей и чугунов.Диаграмма железо - углерод должна распространяться от железа до углерода. Железо образует с углеродом химическое соединение: цементит - .

Компонентами железоуглеродистых сплавов являются железо, углерод и цементит.

1. Железо - переходный металл серебристо-светлого цвета. Имеет высокую температуру плавления - 1539o С 5o С.Железо со многими элементами образует растворы: с металлами - растворы замещения, с углеродом, азотом и водородом - растворы внедрения.

2. Углерод относится к неметаллам. Обладает полиморфным превращением, в зависимости от условий образования существует в форме графита с гексагональной кристаллической решеткой 3. Цементит (Fe3C) - химическое соединение железа с углеродом (карбид железа), содержит 6,67 % углерода.

Цементит - соединение неустойчивое и при определенных условиях распадается с образованием свободного углерода в виде графита.

В системе железо - углерод существуют следующие фазы: жидкая фаза, феррит, аустенит, цементит.

3. Аустенит (А) (С) - твердый раствор внедрения углерода в -железо.

Аустенит имеет переменную предельную растворимость углерода: минимальную - 0,8 % при температуре 727o С (точка S), максимальную - 2,14 % при температуре 1147o С (точка Е).

16. Стали содержат повышенное количество серы и фосфора

Маркируются Ст.2кп., БСт.3кп, ВСт.3пс, ВСт.4сп.

Ст - индекс данной группы стали. Цифры от 0 до 6 - это условный номер марки стали. С увеличением номера марки возрастает прочность и снижается пластичность стали. По гарантиям при поставке существует три группы сталей: А, Б и В. Для сталей группы А при поставке гарантируются механические свойства, в обозначении индекс группы А не указывается. Для сталей группы Б гарантируется химический состав. Для сталей группы В при поставке гарантируются и механические свойства, и химический состав.

Индексы кп, пс, сп указывают степень раскисленности стали: кп - кипящая, пс - полуспокойная, сп - спокойная.

Конструкционные качественные углеродистые стали Маркируются двухзначным числом, указывающим среднее содержание углерода в сотых долях процента. Указывается степень раскисленности, если она отличается от спокойной. Сталь 08 кп, сталь 10 пс, сталь 45.Содержание углерода, соответственно, 0,08 %, 0,10 %, 0.45 % . по содер углерода:низкоугл до 0.25, среднеугл 0.3-0.6, высокоугл выше 0.7. по качеству: обыкновенного, качеств и высококач. По назначению: конструкционные, инструментальные, специальные.

17. Автоматными называют стали, обладающие повышенной обрабатываемостью резанием. Эффективным металлургическим приемом повышения обрабатываемости резанием является введение в сталь серы, селена, теллура, кальция, которые изменяют состав неметаллических включений, а также свинца, который образует собственные включения. Автоматные стали А12, А20 с повышенным содержанием серы и фосфора используются для изготовления малонагруженных деталей на станках автоматах (болты, винты, гайки, мелкие детали швейных, текстильных, счетных и других машин). Эти стали обладают улучшенной обрабатываемостью резанием, поверхность деталей получается чистой и ровной. Стали А30 и А40Г предназначены для деталей, испытывающих более высокие нагрузки. У автоматных сталей, содержащих свинец, (АС11, АС40), повышается стойкость инструмента в 1…3 раза и скорость резания на 25…50 %.

18. Чугун отличается от стали: по составу - более высокое содержание углерода и примесей; по технологическим свойствам - более высокие литейные свойства, малая способность к пластической деформации, почти не используется в сварных конструкциях.

белый чугун - углерод в связанном состоянии в виде цементита, в изломе имеет белый цвет и металлический блеск;

серый чугун - весь углерод или большая часть находится в свободном состоянии в виде графита, а в связанном состоянии находится не более 0,8 % углерода. Из-за большого количества графита его излом имеет серый цвет; форма графита пластинчатая.

При высоких температурах цементит разлагается с выделением графита, поэтому диаграмма состояния железо - цементит является метастабильной, а диаграмма железо - графит - стабильной. Процесс образования графита в сплавах железа с углеродом называется графитизацией.

19-20. Графит - это полиморфная модификация углерода. Так как графит содержит 100% углерода, а цементит - 6,67 %, то жидкая фаза и аустенит по составу более близки к цементиту, чем к графиту.Возможны два пути образования графита в чугуне.1При благоприятных условиях (наличие в жидкой фазе готовых центров кристаллизации графита и очень медленное охлаждение) происходит непосредственное образование графита из жидкой фазы.2При разложении ранее образовавшегося цементита. При температурах выше 738oС цементит разлагается на смесь аустенита и графита по схеме

.

При температурах ниже 738oС разложение цементита осуществляется по схеме:

.

При малых скоростях охлаждение степень разложения цементита больше.

Структура чугунов зависит от степени графитизации, т.е. от того, сколько углерода находится в связанном состоянии.

Если процесс завершить полностью, то при высокой температуре структура будет состоять из аустенита и графита, а после охлаждения - из перлита и графита.

21. Структура не оказывает влияние на пластичность, она остается чрезвычайно низкой. Но оказывает влияние на твердость. Механическая прочность в основном определяется количеством, формой и размерами включений графита. Мелкие, завихренной формы чешуйки графита меньше снижают прочность. Такая форма достигается путем модифицирования. В качестве модификаторов применяют алюминий, силикокальций, ферросилиций.

Серый чугун широко применяется в машиностроении, так как легко обрабатывается и обладает хорошими свойствами. В зависимости от прочности серый чугун подразделяют на 10 марок Серые чугуны при малом сопротивлении растяжению имеют достаточно высокое сопротивление сжатию.

Серые чугуны содержат углерода - 3,2…3,5 %; кремния - 1,9…2,5 %; марганца -0,5…0,8 %; фосфора - 0,1…0,3 %; серы - < 0,12 %.Структура металлической основы зависит от количества углерода и кремния. С увеличением содержания углерода и кремния увеличивается степень графитизации и склонность к образованию ферритвой структуры металлической основы. Это ведет к разупрочнению чугуна без повышения пластичности. Лучшими прочностными свойствами и износостойкостью обладают перлитные серые чугуны.

Учитывая малое сопротивление отливок из серого чугуна растягивающим и ударным нагрузкам, следует использовать этот материал для деталей, которые подвергаются сжимающим или изгибающим нагрузкам. В станкостроении это - базовые, корпусные детали, кронштейны, зубчатые колеса, направляющие; в автостроении - блоки цилиндров, поршневые кольца, распределительные валы, диски сцепления. Обозначаются индексом СЧ (серый чугун) и числом, которое показывает значение предела прочности, СЧ 15.

Высокопрочный чугун с шаровидным графитом.

Высокопрочные чугуны могут иметь ферритную (ВЧ 35), феррито-перлитную (ВЧ45) и перлитную (ВЧ 80) металлическую основу. Получают эти чугуны из серых, в результате модифицирования магнием или церием (добавляется 0,03…0,07% от массы отливки). По сравнению с серыми чугунами, механические свойства повышаются, это вызвано отсутствием неравномерности в распределении напряжений из-за шаровидной формы графита.Чугуны с перлитной металлической основой имеют высокие показатели прочности при меньшем значении пластичности. Соотношение пластичности и прочности ферритных чугунов - обратное.Высокопрочные чугуны обладают высоким пределом текучести,Также характерна достаточно высокая ударная вязкость и усталостная прочность,Высокопрочные чугуны содержат: углерода - 3,2…3,8 %, кремния - 1,9…2,6 %, марганца - 0,6…0,8 %, фосфора - до 0,12 %, серы - до 0,3 %.Из высокопрочного чугуна изготовляют тонкостенные отливки (поршневые кольца), шаботы ковочных молотов, станины и рамы прессов и прокатных станов, изложницы, резцедержатели, планшайбы.

Отливки коленчатых валов массой до 2..3 т, взамен кованых валов из стали, обладают более высокой циклической вязкостью, малочувствительны к внешним концентраторам напряжения, обладают лучшими антифрикционными свойствами и значительно дешевле.Обозначаются индексом ВЧ (высокопрочный чугун) и числом, которое показывает значение предела прочности ВЧ 100.

22. Формирование окончательной структуры и свойств отливок происходит в процессе отжига

Структура после выдержки состоит из аустенита и графита (углерод отжига). При медленном охлаждении в интервале 760…720oС, происходит разложение цементита, входящего в состав перлита, и структура после отжига состоит из феррита и углерода отжига (получается ферритный ковкий чугун).Отжиг является длительной 70…80 часов и дорогостоящей операцией. В последнее время, в результате усовершенствований, длительность сократилась до 40 часов. Различают 7 марок ковкого чугуна: три с ферритной (КЧ 30 - 6) и четыре с перлитной (КЧ 65 - 3).Из ферритных чугунов изготавливают картеры редукторов, ступицы, крюки, скобы, хомутики, муфты, фланцы. Из перлитных чугунов, характеризующихся высокой прочностью, достаточной пластичностью, изготавливают вилки карданных валов, звенья и ролики цепей конвейера, тормозные колодки.

Ковкий - форма графита хлопьевидная. Кч30-6 30 миним предел прочности, 6 относительное удлинение

23. Текстура деформации создает кристаллическую анизотропию, при которой наибольшая разница свойств проявляется для направлений, расположенных под углом 45o друг к другу. С увеличением степени деформации характеристики пластичности (относительное удлинение, относительное сужение) и вязкости (ударная вязкость) уменьшаются, а прочностные характеристики (предел упругости, предел текучести, предел прочности) и твердость увеличиваются

Совокупность явлений, связанных с изменением механических, физических и других свойств металлов в процессе пластической деформации называют деформационным упрочнением или наклепом.

25. При низких температурах подвижность атомов мала, поэтому состояние наклепа может сохраняться неограниченно долго.

При повышении температуры металла в процессе нагрева после пластической деформации диффузия атомов увеличивается и начинают действовать процессы разупрочнения, приводящие металл в более равновесное состояние - возврат и рекристаллизация.

Возврат. Небольшой нагрев вызывает ускорение движения атомов, снижение плотности дислокаций, устранение внутренних напряжений и восстановление кристаллической решетки

Возврат уменьшает искажение кристаллической решетки, но не влияет на размеры и форму зерен и не препятствует образованию текстуры деформации.

Влияние нагрева деформированного металла на механические свойств

При нагреве до достаточно высоких температур подвижность атомов возрастает и происходит рекристаллизация.

Рекристаллизация - процесс зарождения и роста новых недеформированных зерен при нагреве наклепанного металла до определенной температуры. Нагрев металла до температур рекристаллизации сопровождается резким изменением микроструктуры и свойств при нагреве до температуры t1 начинает понижаться прочность и, особенно значительно, пластичность металла.

Основными факторами, определяющими величину зерен металла при рекристаллизации, являются температура, продолжительность выдержки при нагреве и степень предварительной деформации

Влияние предварительной степени деформации металла на величину зерна после рекристаллизации

24. Металлы и сплавы в твердом состоянии имеют кристаллическое строение, и характер их деформации зависит от типа кристаллической структуры и от наличия несовершенств в этой структуре.Рассмотрим пластическую деформацию в монокристалле.

Пластическая деформация может протекать под действием касательных напряжений и может осуществляться двумя способами.

1. Трансляционное скольжение по плоскостям Плоскостями скольжения является кристаллографические плоскости с наиболее плотной упаковкой атомов.2.Двойникование поворот одной части кристалла в положение симметричное другой его части. Плоскостью симметрии является плоскость двойникования

а - скольжением; б - двойникованием

Пластическая деформация происходит в результате скольжения или двойникования. Ранее предполагали, что при скольжении одна часть кристалла сдвигается относительно другой части на целое число периодов как единое целое. Необходимое для этого напряжение получается на несколько порядков выше действительного сдвигового напряжения.

В основу современной теории пластической деформации взяты следующие положения: скольжение распространяется по плоскости сдвига последовательно, а не одновременно; скольжение начинается от мест нарушений кристаллической решетки, которые возникают в кристалле при его нагружении.

26. Необходимо знать сущность рекристаллизационных процессов: возврата, первичной рекристаллизации, собирательной (вторичной) рекриталлизации, протекающих при нагреве деформированного металла. Уясните, как при этом изменяются механические, физико-химические свойства и размер зерна. Установите влияние состава сплава и степени пластической деформации на протекание рекристаллизационных процессов. Научитесь выбирать режимы рекристаллизационного отжига. Уясните его практическое значение, различие между холодной и горячей пластическими деформациями.

27. Механические свойства металлов и сплавов определяются испытаниями стандартных образцов на растяжение, изгиб, сжатие, кручение, срез, твердость, удар и усталость. Сварные соединения испытывают на растяжение сварного соединения и металла шва, определяют твердость металла шва и соединения, ударную вязкость металла шва и прочность на изгиб сварного соединения.

Рис. 1. Диаграмма растяжения низкоуглеродистой стали.

При испытании на растяжение получают диаграмму растяжения -- графическую зависимость между усилием и удлинением при растяжении образца (рис. 1) и определяют характеристики металла:

а) предел пропорциональности

упц = Pпц / F0

где упц- предел пропорциональности, кг/мм2;

Pпц -- максимальное усилие (кг), при котором еще сохраняется прямая пропорциональность между удлинением образца и усилием;

F0 -- площадь поперечного сечения образца до испытания, мм2;

б) предел текучести

уф = Pф / F0

где уф -- предел текучести, кг/мм2;

Pф - усилие (кг), при котором удлинение образца происходит за счет пластического растяжения при постоянной величине нагрузки;

F0 -- площадь поперечного сечения образца до испытания, мм2;

в) предел прочности

уb= Pb/ F0

где уb -- предел прочности при растяжении, кг /мм2;

Рb -- максимальное усилие при испытании на разрыв, кг:

F0 -- площадь поперечного сечения образца до испытания, мм2;

г) относительное удлинение

д = (l - l0) / l0

где д -- относительное удлинение образца;

l -- длина образца после разрыва, мм;

l0 -- первоначальная расчетная длина образца, мм;

д) относительное сужение поперечного сечения.

ш = (F0 - F ) / F0

где ш --относительное сужение;

F0 -- площадь поперечного сечения образца до испытания, мм2;

F -- наименьшая площадь поперечного сечения образца после разрыва, мм2.

28. Термическая обработка представляет собой совокупность операций нагрева, выдержки и охлаждения.

Графики различных видов термообработки: отжига (1, 1а), закалки (2, 2а), отпуска (3), нормализации (4) виды термической обработки:

1. Отжиг 1 рода - возможен для любых металлов и сплавов.

Нагрев, при отжиге первого рода, повышая подвижность атомов, частично или полностью устраняет химическую неоднородность, уменьшает внутреннее напряжения.Характерным является медленное охлаждение

2. Отжиг II рода - отжиг металлов и сплавов, испытывающих фазовые превращения в твердом состоянии при нагреве и охлаждении.

Проводится для сплавов, в которых имеются полиморфные или эвтектоидные превращения, а также переменная растворимость компонентов в твердом состоянии.

Характеризуется нагревом до температур выше критических и очень медленным охлаждением, как правило, вместе с печью (рис. 12.1 (1, 1а)).

3. Закалка - проводится для сплавов, испытывающих фазовые превращения в твердом состоянии при нагреве и охлаждении, с целью повышение твердости и прочности путем образования неравновесных структур (сорбит, троостит, мартенсит).Характеризуется нагревом до температур выше критических и высокими скоростями охлаждения (рис. 12.1 (2, 2а)).4. Отпуск - проводится с целью снятия внутренних напряжений, снижения твердости и увеличения пластичности и вязкости закаленных сталей.Характеризуется нагревом до температуры ниже критической А (рис. 12.1 (3)).

29. Превращение основано на диффузии углерода, сопровождается полиморфным превращением, а так же растворением цементита в аустените.

Диаграмма изотермического образования аустенита: 1 - начало образования аустенита; 2 - конец преобразования перлита в аустенит; 3 - полное растворение цементита.

С увеличением перегрева и скорости нагрева продолжительность превращения сокращается.Механизм превращения представлен

Механизм превращения перлита в аустенит.

Превращение начинаются с зарождения центров аустенитных зерен на поверхности раздела феррит - цементит, кристаллическая решетка перестраивается в решетку .

Время превращения зависит от температуры, так как с увеличением степени перегрева уменьшается размер критического зародыша аустенита, увеличиваются скорость возникновения зародышей и скорость их роста

Образующиеся зерна аустенита имеют вначале такую же концентрацию углерода, как и феррит. После того, как весь цементит растворится, аустенит неоднороден по химическому составу: там, где находились пластинки цементита концентрация углерода более высокая. Для завершения процесса перераспределения углерода в аустените требуется дополнительный нагрев или выдержка.

Рост зерна аустенита. Образующиеся зерна аустенита получаются мелкими (начальное зерно). При повышении температуры или выдержке происходит рост зерна аустенита. Движущей силой роста является разность свободных энергий мелкозернистой (большая энергия) и крупнозернистой (малая энергия) структуры аустенита.

Стали различают по склонности к росту зерна аустенита. Если зерно аустенита начинает быстро расти даже при незначительном нагреве выше температуры, то сталь наследственно крупнозернистая. Если зерно растет только при большом перегреве, то сталь наследственно мелкозернистая. Заэвтектоидные стали менее склонны к росту зерна.При последующем охлаждении зерна аустенита не измельчаются. Это следует учитывать при назначении режимов термической обработки, так как от размера зерна зависят механические свойства. Крупное зерно снижает сопротивление отрыву, ударную вязкость, повышает порог хладоломкости.

Неправильный режим нагрева может привести либо к перегреву, либо к пережогу стали. Перегрев. Нагрев доэвтектоидной стали значительно выше температуры приводит к интенсивному росту зерна аустенита. При охлаждении феррит выделяется в виде пластинчатых или игольчатых кристаллов. Такая структура называется видманштеттовая структура и характеризуется пониженными механическими свойствами. Перегрев можно исправить повторным нагревом до оптимальных температур с последующим медленным охлаждением. Пережог имеет место, когда температура нагрева приближается к температуре плавления. При этом наблюдается окисление границ зерен, что резко снижает прочность стали. Излом такой стали камневидный. Пережог - неисправимый брак.

30. Механизм превращения аустенита в перлит

При образовании перлита из аустенита ведущей фазой является цементит. Зарождение центров кристаллизации цементита облегчено на границе аустенитных зерен. Образовавшаяся пластинка цементита растет, удлиняется и обедняет соседние области углеродом. Рядом с ней образуются пластинки феррита. Эти пластинки растут как по толщине, так и по длине. Рост образовавшихся колоний перлита продолжается до столкновения с кристаллами перлита, растущими из других центров. Свойства и строение продуктов превращения аустенита зависят от температуры, при которой происходит процесс его распада.

Толщина соседних пластинок феррита и цементита определяет дисперсность структуры и обозначается . Она зависит от температуры превращения. В зависимости от дисперсности продукты распада имеют различное название.

мм - перлит.

Образуется при переохлаждении до температуры Т = 650…700 oС, или при скорости охлаждения Vохл = 30…60 oС/ч. Твердость составляет 180…250 НВ.

мм - сорбит

Образуется при переохлаждении до температуры Т = 600…650 oС, или при скорости охлаждения Vохл = 60 oС/с. Твердость составляет 250…350 НВ. Структура характеризуется высоким пределом упругости, достаточной вязкостью и прочностью.

мм - троостит Образуется при переохлаждении до температуры Т = 550…600 oС, или при скорости охлаждения Vохл = 150 oС/с. Твердость составляет 350…450 НВ. Структура характеризуется высоким пределом упругости, малой вязкостью и лпастичностью. Твердость ферритно-цементитной смеси прямопропорциональна площади поверхности раздела между ферритом и цементитом.. Если температура нагрева незначительно превышала теипературу А и полученый аустенит неоднороден по составу, то при малой степени переохлаждения образуется зернистый леплит.

31. Мартенсит - пересыщенный твердый раствор внедрения углерода в.

При образовании мартенсита кубическая решетка сильно искажается, превращаясь в тетрагональную Искажение решетки характеризуется степенью тетрагональности: с/а > 1. Степень тетрагональности прямопролорциональна содержанию углерода в стали

(а); влияние содержания углерода на параметры а и с решетки мартенсита (б)

Механизм мартенситного превращения имеет ряд особенностей.

1. Бездиффузионный характер.

2. Ориентированность кристаллов мартенсита.

Кристаллы имеют форму пластин, сужающихся к концу, под микроскопом такая структура выглядит как игольчатая.

Ориентированный (когерентный) рост кристаллов мартенсита обеспечивает минимальную поверхностную энергию. При когерентном росте, из-за различия объемов аустенита и мартенсита, возникают большие напряжения. При достижении определенной величины кристаллов мартенсита, эти напряжения становятся равными пределу текучести аустенита. В результате этого нарушается когерентность и происходит отрыв решетки мартенсита от решетки аустенита. Рост кристаллов прекращается. Мартенситное превращение происходит только при непрерывном охлаждении. Для каждой стали начинается и заканчивается при определенной температуре, независимо от скорости охлаждения.

32. При температуре ниже 550 oС самодиффузия атомов железа практически не происходит, а атомы углерода обладают достаточной подвижностью. Механизм превращения состоит в том, что внутри аустенита происходит перераспределение атомов углерода и участки аустенита, обогащенные углеродом превращаются в цементит.Превращение обедненного углеродом аустенита в феррит происходит по сдвиговому механизму, путем возникновения и роста зародышей феррита. Образующиеся при этом кристаллы имеют игольчатую форму.Такая структура, состоящая из цементита и феррита, называется бейнитом. Особенностью является повышенное содержание углерода в феррите (0.1…0.2 %).

33. Отпуск является окончательной термической обработкой

Целью отпуска является повышение вязкости и пластичности, снижение твердости и уменьшение внутренних напряжений закаленных сталей.

С повышением температуры нагрева прочность обычно снижается, а пластичность и вязкость растут. Температуру отпуска выбирают, исходя из требуемой прочности конкретной детали. Различают три вида отпуска:1. Низкий отпуск с температурой нагрева Тн = 150…300oС.Проводят для инструментальных сталей; 2. Средний отпуск с температурой нагрева Тн = 300…450oС. Используется для изделий типа пружин, рессор.

3. Высокий отпуск с температурой нагрева Тн = 450…650oС..

Используется для деталей машин, испытывающих ударные нагрузки.

34. Обычно с повышением температуры отпуска ударная вязкость увеличивается, а скорость охлаждения не влияет на свойства. Но для некоторых сталей наблюдается снижение ударной вязкости. Этот дефект называется отпускной хрупкостью

Зависимость ударной вязкости от температуры отпуска

Отпускная хрупкость I рода наблюдается при отпуске в области температур около 300oС. Она не зависит от скорости охлаждения.

Отпускная хрупкость II рода наблюдается у легированных сталей при медленном охлаждении после отпуска в области 450…650oС.

Отпускная хрупкость II рода “обратима“, то есть при повторных нагревах и медленном охлаждении тех же сталей в опасном интервале температур дефект может повториться.

35. Отжиг, снижая твердость и повышая пластичность и вязкость за счет получения равновесной мелкозернистой структуры, позволяет:

улучшить обрабатываемость заготовок давлением и резанием;

исправить структуру сварных швов, перегретой при обработке давлением и литье стали;

подготовить структуру к последующей термической обработке.

Характерно медленное охлаждение со скоростью 30…100oС/ч.

Отжиг первого рода.

Диффузионный отжиг. Применяется для устранения ликвации, выравнивания химического состава сплава.

2. Рекристаллизационный отжиг проводится для снятия напряжений после холодной пластической деформации.

3. Отжиг для снятия напряжений после горячей обработки (литья, сварки, обработки резанием, когда требуется высокая точность размеров).

Детали прецизионных станков (ходовые винты, высоконагруженные зубчатые колеса, червяки)

Отжиг второго рода предназначен для изменения фазового состава.

Температура нагрева и время выдержки обеспечивают нужные структурные превращения. Скорость охлаждения должна быть такой, чтобы успели произойти обратные диффузионные фазовые превращения.

Иногда неполный отжиг применяют для доэвтектоидных сталей, если не требуется исправление структуры (сталь мелкозернистая), а необходимо только понизить твердость для улучшения обрабатываемости резанием.

В результате получают более однородную структуру, так как превращение происходит при одинаковой степени переохлаждения. Значительно сокращается длительность процесса. Применяют для легированных сталей.

материаловедение аустенит перлит металл

36,37. Термическая обработка металла, заключающаяся в его нагреве и последующем быстром охлаждении. В результате закалки происходит фиксация высокотемпературного состояния металла и подавляются нежелательные процессы, происходящие при его медленном охлаждении. Закалённая сталь отличается хрупкостью, поэтому после закалки её обычно подвергают отпуску. При одной и той же твёрдости сталь, подвергнутая закалке с последующим отпуском, более пластична, чем незакалённая. Это определяет чрезвычайно широкое использование закалки стали в технике.

Конструкционные стали подвергают закалке и отпуску для повышения прочности и твердости, получения высокой пластичности, вязкости и высокой износостойкости, а инструментальные - для повышения твердости и износостойкости.

Верхний предел температур нагрева для заэвтектоидных сталей ограничивается, так как приводит к росту зерна, что снижает прочность и сопротивление хрупкому разрушению.

Внутренние напряжения, уравновешиваемые в пределах макроскопических частей тела, называются напряжениями I рода. Они ответственны за искажение формы (коробление) и образование трещин при термообработке. Причинами возникновения напряжений являются:

Вода имеет существенный недостаток: высокая скорость охлаждения в интервале мартенситного превращения приводит к образованию закалочных дефектов. С повышением температуры воды ухудшается ее закалочная способность.

Увеличения охлаждающей способности достигают при использовании струйного или душевого охлаждения, например, при поверхностной закалке.

Для легированных сталей с высокой устойчивостью аустенита используют минеральное масло (нефтяное). Недостатками минеральных масел являются повышенная воспламеняемость, низкая охлаждающая способность в интервале температур перлитного превращения, высокая стоимость.

38.Закалка

После отжига для снятия напряжений в целях достижения необходимой твердости инструмент подвергается закалке. Процесс закалки включает в себя нагрев, выдержку и резкое охлаждение стали. Нагрев до температуры закалки, характерной для каждой марки стали, в поверхностной и центральной зонах инструмента проходит с разной скоростью. Разница температур в каждый момент нагрева тем выше, чем выше скорость нагрева и чем больше размеры сечения самого инструмента, что обусловлено, как известно, закономерностями теплопередачи. Такая разница температур по сечению вызывает появление значительных термических напряжений в стали и коробление инструмента, что одновременно с понижением прочности приводит к риску образования трещин.

Избежать растрескивания можно путем поэтапного нагрева заготовки. После выдержки инструмента при закалочной температуре необходимо провести резкое охлаждение, представляющее собой важный технологический процесс, при котором формируется твердость стали. Процессы структурного превращения в стали должны проходить, с одной стороны, со скоростью, необходимой для закалки конкретной марки стали, а с другой стороны, как можно медленнее, чтобы снизить возможные риски коробления и растрескивания, возникающие при наложении друг на друга напряжений, возникающих в процессе термообработки и изменения структуры. Так же как и при нагреве, при охлаждении максимальным рискам подвергаются инструменты со сложной геометрической формой.

39. При выборе охлаждающей среды необходимо учитывать закаливаемость и прокаливаемость стали. Закаливаемость - способность стали приобретать высокую твердость при закалке. Закаливаемость определяется содержанием углерода. Стали с содержанием углерода менее 0,20 % не закаливаются. Прокаливаемость - способность получать закаленный слой с мартенситной и троосто-мартенситной структурой, обладающей высокой твердостью, на определенную глубину. За глубину закаленной зоны принимают расстояние от поверхности до середины слоя, где в структуре одинаковые объемы мартенсита и троостита. Чем меньше критическая скорость закалки, тем выше прокаливаемость. Укрупнение зерен повышает прокаливаемость. Если скорость охлаждения в сердцевине изделия превышает критическую то сталь имеет сквозную прокаливаемость. Нерастворимые частицы и неоднородность аустенита уменьшают прокаливаемость.

40. Конструкционная прочность часто зависит от состояния материала в поверхностных слоях детали. Одним из способов поверхностного упрочнения стальных деталей является поверхностная закалка.

В результате поверхностной закалки увеличивается твердость поверхностных слоев изделия с одновременным повышением сопротивления истиранию и предела выносливости.

Общим для всех видов поверхностной закалки является нагрев поверхностного слоя детали до температуры закалки с последующим быстрым охлаждением. Эти способы различаются методами нагрева деталей. Толщина закаленного слоя при поверхностной закалке определяется глубиной нагрева.

Наибольшее распространение имеют электротермическая закалка с нагревом изделий токами высокой частоты (ТВЧ) и газопламенная закалка с нагревом газово-кислородным или кислородно-керосиновым пламенем.

41. Химико-термическая обработка (ХТО) - процесс изменения химического состава, микроструктуры и свойств поверхностного слоя детали.

Изменение химического состава поверхностных слоев достигается в результате их взаимодействия с окружающей средой (твердой, жидкой, газообразной, плазменной), в которой осуществляется нагрев.

В основе любой разновидности химико-термической обработки лежат процессы диссоциации, адсорбции, диффузии. Диссоциация - получение насыщающего элемента в активированном атомарном состоянии в результате химических реакций, а также испарения.

Адсорбция - захват поверхностью детали атомов насыщающего элемента.

Диффузия - перемещение адсорбированных атомов вглубь изделия. Основными разновидностями химико-термической обработки являются:

цементация (насыщение поверхностного слоя углеродом);

азотирование (насыщение поверхностного слоя азотом);

нитроцементация или цианирование (насыщение поверхностного слоя одновременно углеродом и азотом);

диффузионная металлизация (насыщение поверхностного слоя различными металлами).

42. Процесс осуществляется в печах с герметической камерой, наполненной газовым карбюризатором. Атмосфера углеродосодержащих газов включает азот, водород, водяные пары, которые образуют газ-носитель, а также окись углерода, метан и другие углеводороды, которые являются активными газами.

Глубина цементации определяется температурой нагрева и временем выдержки.

Преимущества способа:1возможность получения заданной концентрации углерода в слое (можно регулировать содержание углерода, изменяя соотношение составляющих атмосферу газов);2сокращение длительности процесса за счет упрощения последующей термической обработки; 3 возможность полной механизации и автоматизации процесса.

Структура цементованного слоя.

На поверхности изделия образуется слой заэвтектоидной стали, состоящий из перлита и цементита. По мере удаления от поверхности, содержание углерода снижается и следующая зона состоит только из перлита. Затем появляются зерна феррита, их количество, по мере удаления от поверхности увеличивается.

43 Окончательно формирует свойства цементованной детали последующая термообработка. Все изделия подвергают закалке с низким отпуском. После закалки цементованное изделие приобретает высокую твердость и износостойкость, повышается предел контактной выносливости и предел выносливости при изгибе, при сохранении вязкой сердцевины.

Графики различных комплексов термической обработки

Режимы термической обработки цементованных изделий

Если сталь наследственно мелкозернистая или изделия неответственного назначения, то проводят однократную закалку с температуры 820…850oС (рис. 15.2 б). При газовой цементации изделия по окончании процесса подстуживают до этих температур, а затем проводят закалку (не требуется повторный нагрев под закалку) (рис. 15.2 а).Для удовлетворения особо высоких требований, предъявляемых к механическим свойствам цементованных деталей, применяют двойную закалку (рис. 15.2 в).Завершающей операцией термической обработки всегда является низкий отпуск, проводимый при температуре 150…180oС. В результате отпуска в поверхностном слое получают структуру мартенсита отпуска, частично снимаются напряжения.

Цементации подвергают зубчатые колеса, поршневые кольца, червяки, оси, ролики.

44. Азотирование - химико-термическая обработка, при которой поверхностные слои насыщаются азотом. При азотировании увеличиваются не только твердость и износостойкость, но также повышается коррозионная стойкость. Фазы, получающиеся в азотированном слое углеродистых сталей, не обеспечивают высокой твердость, и образующийся слой хрупкий. Для азотирования используют стали, содержащие алюминий, молибден, хром, титан. Нитриды этих элементов дисперсны и обладают высокой твердостью и термической устойчивостью.

Типовые азотируемые стали: 38ХМЮА, 35ХМЮА, 30ХТ2Н3Ю. Значительное сокращение времени азотирования достигается при ионном азотировании, когда между катодом (деталью) и анодом (контейнерной установкой) возбуждается тлеющий разряд. Антикоррозионное азотирование проводят и для легированных, и для углеродистых сталей. Температура проведения азотирования - 650…700oС, продолжительность процесса - 10 часов. На поверхности образуется слой -- фазы толщиной 0,01…0,03 мм, который обладает высокой стойкостью против коррозии. ( -фаза - твердый раствор на основе нитрида железа Fe3N, имеющий гексагональную решетку).Азотирование проводят на готовых изделиях, прошедших окончательную механическую и термическую обработку (закалка с высоким отпуском).

...

Подобные документы

  • Формирование структуры и методы исследования свойств металлов; диаграмма состояния "железо-цементит". Железоуглеродистые сплавы; термическая обработка металлов и сплавов. Сплавы, применяемые в промышленности; выбор сплава на основе цветного металла.

    контрольная работа [780,1 K], добавлен 13.01.2010

  • Фазовые превращения в сплавах при нагреве и охлаждении. Процесс и этапы образования аустенита при нагреве. Структура стали после термической обработки. Диаграмма изотермического превращения переохлажденного аустенита. Мартенситное превращение в стали.

    презентация [574,6 K], добавлен 29.09.2013

  • Материаловедение как наука, изучающая строение и свойства металлов и устанавливающая связь между ними. Абсолютная величина трансляции. Понятие наклепа, компонентов, эвтевтики. Компоненты - химически индивидуальные вещества, образовывающие сплав.

    шпаргалка [56,1 K], добавлен 19.03.2011

  • Отличия макро- и микроскопического строения материалов. Сравнение теплопроводности древесины и стали. Классификация дефектов кристаллического строения. Причины появления точечных дефектов. Особенности получения, свойства и направления применения резин.

    контрольная работа [318,1 K], добавлен 03.10.2014

  • Термическая обработка металлов и ее основные виды. Превращения, протекающие в структуре стали при нагреве и охлаждении. Основы химико-термической обработки. Цементация, азотирование, нитроцементация и цианирование, борирование и силицирование стали.

    реферат [160,5 K], добавлен 17.12.2010

  • История стоматологического материаловедения, предмет, задачи, методы исследования. Охрана труда и техника безопасности в стоматологии, оборудование рабочего места зубного техника. Свойств зуботехнических материалов. Требования гигиены при протезировании.

    шпаргалка [164,9 K], добавлен 09.02.2011

  • Физико-химические закономерности формирования; строение и свойства материалов. Типы кристаллических решёток металлов. Испытания на ударный изгиб. Термическая и химико-термическая обработка, контроль качества металлов и сплавов. Конструкционные материалы.

    курсовая работа [3,7 M], добавлен 03.02.2012

  • Виды термической обработки металлов. Превращения, протекающие в структуре стали при нагреве и охлаждении. Образование аустенита. Рост аустенитного зерна. Снятие напряжения после ковки, сварки, литья. Диаграммы изотермического образования аустенита.

    презентация [50,4 K], добавлен 14.10.2013

  • Современные тенденции в развитии материаловедения мебельной промышленности. Древесные породы, применяемые в плотничных работах. Физические и механические свойства древесины. Круглые лесоматериалы, клееные деревянные конструкции, полимерные материалы.

    курсовая работа [518,0 K], добавлен 10.02.2016

  • Порошковая металлургия позволяет получать металлокерамические материалы с особыми физико-химическими, механическими и технологическими свойствами, которые невозможно получить методами литья, обработки давлением. Применение порошковых материалов.

    реферат [433,6 K], добавлен 04.04.2008

  • Характеристики и области применения стали 50Н. Получение структур: перлит, феррит, перлит с минимальным количеством феррита. Мартенсит и продукты промежуточного превращения в верхнем и нижнем районе температур второй ступени (на разных стадиях распада).

    курсовая работа [3,1 M], добавлен 16.07.2010

  • Обработка металла посредством нагрева (термическая резка). Процесс кислородной резки, применяемые материалы. Оборудование и аппаратура для газокислородной резки. Механизация процесса и контроль качества резки. Организация безопасных условий труда.

    курсовая работа [1,6 M], добавлен 14.06.2011

  • Условия получения мелкозернистой структуры при самопроизвольной развивающейся кристаллизации. Схема возникновения нормальных и касательных напряжений в металле при его нагружении. Рассмотрение процессов структурообразования железоуглеродистых сплавов.

    контрольная работа [486,1 K], добавлен 27.06.2014

  • Термическая обработка углеродистой стали. Влияние скорости охлаждения аустенита на характер образующихся продуктов. Изменение зерна перлита в зависимости от температуры нагрева аустенитного зерна. Дисперсионное твердение, естественное старение.

    реферат [362,9 K], добавлен 26.06.2012

  • Технологическая схема обработки материалов давлением, обоснование выбора типа печи, конструкция ее узлов, расчет горения топлива и нагрева заготовки. Количество тепла, затрачиваемого на нагрев металла, потери в результате теплопроводности через кладку.

    курсовая работа [1,6 M], добавлен 19.01.2016

  • Распад аустенита, закономерности превращения. Пластинчатый и реечный мартенсит. Характерные особенности мартенситного превращения. Влияние состава стали на положение критических точек. Промежуточное превращение в стали. Критическая скоростью закалки.

    лекция [115,7 K], добавлен 14.10.2013

  • Физическая сущность пластической деформации. Общая характеристика факторов, влияющих на пластичность металла. Особенности процесса нагрева металла, определение основных параметров. Специфика использования и отличительные черты нагревательных устройств.

    лекция [21,6 K], добавлен 21.04.2011

  • Характерные особенности полумуфт, спектр их форм, размеров, характеристик и материалов для изготовления. Применение в прокатных станах, станках, двигателях, бытовых приборах. Выбор и обоснование марки стали, термическая обработка полумуфты, качество.

    контрольная работа [330,2 K], добавлен 07.10.2009

  • Схемы микроструктур сплавов. Возможные фазы в сплавах: твердые растворы, чистые металлы, химические соединения. Связь между фазовым составом и механическими, технологическими свойствами сплавов. Диаграммы состояний и влияние примесей на "чистые" металлы.

    реферат [306,8 K], добавлен 01.06.2016

  • Температурный порог рекристаллизации - температура, при которой протекает рекристаллизация и происходит разупрочнение металла. Основными компонентами железоуглеродистых сплавов являются железо и углерод, которые относятся к полиморфным элементам.

    контрольная работа [3,4 M], добавлен 07.01.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.