Электрическая прочность диэлектрика

Виды поляризации, механизмы поляризации диэлектрика. Влияние температуры на диэлектрическую проницаемость материалов с электронной и дипольной поляризацией. Влияние частоты электрического поля на тангенс угла потерь полярных и неполярных диэлектриков.

Рубрика Производство и технологии
Вид шпаргалка
Язык русский
Дата добавления 29.09.2013
Размер файла 154,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Влияние давления на электрическую прочность газов

Электрической прочностью диэлектрика называют ту напряженность поля, при которой диэлектрик теряет изоляционные свойства. В газах обычно развивается электрический пробой.

Например, в воздухе всегда содержится небольшое количество ионов, образующихся за счет действия космических лучей, естественной радиоактивности земли и других факторов. Под воздействием электрического поля ионы ускоряются и на длине свободного пробега набирают кинетическую энергию (Wк) - Wк = qlE .

Сталкиваясь с молекулой, ион передает ей энергию. Если эта энергия превышает энергию ионизации (Wи), то происходит ударная ионизация с образованием свободного электрона и положительно заряженного иона. Условие возникновения ударной ионизации - Wк>Wи. Следовательно, минимальная напряженность поля, при которой начинается ударная ионизация - Еи = Wи/ql .

Помимо ударной ионизации, возможна фотонная ионизация газов при существенно меньших значениях напряженности поля. В этом случае взаимодействие иона с молекулой не приводит к ее ионизации, поскольку кинетическая энергия иона меньше энергии ионизации. Поглотив кинетическую энергию иона, молекула переходит в возбужденное состояние. При переходе молекулы в равновесное состояние она испускает квант электромагнитного поля - фотон. Если несколько фотонов одновременно попадет на какую-либо молекулу, суммарная энергия поглощенная молекулой, окажется больше энергии ионизации и образуется дополнительная пара ионов. Повышение объема газа приведет к увеличению вероятности попадания нескольких фотонов в одну и ту же молекулу, поскольку возрастает общее количество ионов и, соответственно, увеличивается генерация фотонов.

В газах длина свободного пробега ионов существенно больше длины свободного пробега в твердых телах и жидкостях, поэтому электропрочность газов минимальна. В тех случаях, когда в диэлектрике появляется газовая или паровая фаза, электропрочность жидкого или твердого диэлектрика снижается.

С увеличением давления электрическая прочность газов снижается.

2. Поляризация диэлектрика. Виды поляризации, механизмы поляризации

Поляризацией называется такое состояние диэлектрика, когда суммарный электрический момент отличен от нуля. Появление поляризации является следствием воздействия различных факторов: электрического поля, температуры, механических напряжений и др.

Упругая поляризация не связана с тепловым движением молекул. Заряженные частицы под действием поля смещаются на очень малые расстояния в пределах поля упругих сил, связывающих эти частицы с другими. Поэтому поляризацией упругого ядерного смещения в промышленных материалах можно пренебречь.

а) упругого электронного смещения. Cвязана со смещением электронных оболочек атомов относительно ядер и имеет место во всех без исключения диэлектриках, за исключением абсолютного вакуума.

б) ионного упругого смещения. Вызвана упругим смешением ионов из равновесных положений под действием внешнего электрического поля. Хар-на для ионных кристаллов (мрамор, соль, слюда, кварц и др.). В таких материалах присутствует ещё и пол-я упругого электронного смещения.

в) дипольно-упругая. Заключается в повороте на малый угол диполей и имеет место в полярных твердых диэлектриках, где диполи прочно связаны связями с другими молекулами.

г) упругого ядерного смещения. Этот вид поляризации наблюдается в газах со сложными молекулами. Вклад этой поляризации в диэлектрическую проницаемость пренебрежимо мал.

Релаксационная поляризация:

а) Дипольно-релаксационная. Наблюдается во многих твердых и жидких диэлектриках с полярными группами: компаунды, бакелит, аминопласты и др. При такой поляризации происходит смещение полярных молекул или смещение радикалов, входящих в состав крупных молекул. Cопровождается необратимыми потерями энергии при нахождении диэлектриков в переменном электрическом поле.

б) Ионно-релаксационная. Связана с перебросом из одного равновесного положения в другое слабосвязанных ионов или полярных групп.

в) Электронно-релаксационная. При приложении электрического поля дефекты кристаллической решетки могут перебрасываться из одного положения в другое.

г) Резонансная. При совпадении собственной частоты колебания структурной единицы вещества с частотой внешнего поля наблюдается резонансная поляризация. В этом случае в узком интервале частот резко возрастает диэлектрическая проницаемость.

3. Влияние температуры на диэлектрическую проницаемость материалов с электронной, ионной, дипольной поляризацией

Поляризация упругого электронного смещения. Этот вид поляризации связан со смещением электронных оболочек атомов относительно ядер и имеет место во всех без исключения диэлектриках, за исключением абсолютного вакуума. При возрастании температуры объем диэлектрика возрастает, и диэлектрическая проницаемость, в соответствии с выражением уменьшается. Особенно заметно уменьшение при плавлении и испарении диэлектриков, когда их объем существенно возрастает.

Поляризация упругого ионного смещения. Этот вид поляризации вызван упругим смешением ионов из равновесных положений под действием внешнего электрического поля. Он характерен для ионных кристаллов (мрамор, поваренная соль, слюда, кварц и др.).

Повышение температуры увеличивает межатомные расстояния, вследствие чего связь между отдельными ионами ослабляется, и облегчается взаимное смещение ионов под действием внешнего электрического поля. Поэтому при повышении температуры диэлектрическая проницаемость ионных кристаллов возрастает.

Дипольно-релаксационная поляризация. Поляризация этого вида наблюдается во многих твердых и жидких диэлектриках с полярными группами: компаунды, бакелит, аминопласты и др. При дипольно-релаксационной поляризации происходит смещение полярных молекул или смещение радикалов, входящих в состав крупных молекул. Диэлектрическая проницаемость полярных веществ сильно зависит от их температуры.

Диэлектрическая проницаемость полярных материалов при низких температурах мала (=2-2,5). С возрастанием температуры подвижность диполей увеличивается, и облегчается их ориентация под действием внешнего поля. Следовательно, диэлектрическая проницаемость растет. Однако при дальнейшем росте температуры кинетическая энергия теплового движения диполей возрастает настолько, что броуновское движение диполей разрушает ориентацию, задаваемую внешним полем. Поэтому диэлектрическая проницаемость снижается.

4. Влияние температуры на диэлектрическую проницаемость сегнетоэлектриков. Точка Кюри

В сегнетоэлектриках в определенном диапазоне температур наблюдается спонтанная или самопроизвольная поляризация. Название эта группа диэлектриков получила по предложению И.В. Курчатова от сегнетовой соли, в кристаллах которой впервые была обнаружена спонтанная поляризация. Существенное влияние на диэлектрическую проницаемость оказывает температура. При повышении температуры кинетическая энергия ангармонических колебаний ионов возрастает, и электростатическая связь между ионами ослабевает. Внешнему полю легче перебросить ионы из одного положения в другое, соответственно, поляризация и диэлектрическая проницаемость возрастают. Максимум диэлектрической проницаемости наблюдается при температуре Кюри.

Легирование сегнетоэлектриков приводит к изменению энергии связи между ионами и дает возможность изменять температуру Кюри и величину диэлектрической проницаемости.

В 1944 г. Вул открыл новый сегнетоэлектрик - титанат бария BaTiO3. Элементарная ячейка кристаллической решетки этого материала: в вершинах куба находятся ионы бария, по центрам граней куба находятся ионы кислорода, а в центре куба находится ион титана. Повышение температуры приводит к активизации колебаний иона титана, и при равенстве энергии теплового движения этого иона с энергией электростатического взаимодействия с ионами кислорода элементарные ячейки кристалла деполяризуется. В итоге кристалл переходит из сегнетоэлектрического в параэлектрическое состояние. Температура перехода - температура Кюри.

5. Влияние температуры на тангенс угла потерь в полярных и неполярных диэлектриках

Тангенс угла потерь можно использовать в качестве меры потерь энергии поля в диэлектрике. С увеличением температуры концентрация носителей заряда в диэлектрике повышается, поскольку увеличивается вероятность выхода иона из потенциальной ямы.

Поэтому вероятность столкновения носителя заряда со структурной единицей вещества растет. Следовательно, при увеличении температуры потери на сквозную электропроводность возрастают. В неполярных диэлектриках реализуется упругая электронная или упругая ионная поляризация. При развитии упругих процессов потерь энергии нет, поэтому в неполярных диэлектриках основной вид потерь - потери за счет сквозной электропроводности.

В полярных диэлектриках, помимо потерь на сквозную электропроводность, появляются потери на поляризацию, то есть внешнее электрическое поле совершает работу по повороту диполей. Эту работу можно оценить как произведение момента сил (М) на угол поворота (). При увеличении температуры подвижность диполей растет и момент сил, необходимый для поворота на один и тот же угол, снижается. Рост подвижности диполей при повышении температуры ведет к увеличению угла поворота под действием постоянного момента сил. Таким образом, работа, совершаемая электрическим полем на поворот диполей, при росте температуры вначале увеличивается, а затем уменьшается.

6. Влияние частоты электрического поля на тангенс угла потерь полярных и неполярных диэлектриков

диэлектрик поляризация электрическое поле

Тангенс угла потерь можно использовать в качестве меры потерь энергии поля в диэлектрике.

Под действием электрического поля в диэлектрике развиваются два основных процесса: поляризация и сквозная электропроводность. Развитие этих процессов может привести к рассеянию энергии электрического поля в диэлектрике. Так, под действием электрического поля свободные носители заряда набирают кинетическую энергию и, сталкиваясь с молекулами вещества, передают им эту энергию. Таким образом, энергия электрического поля трансформируется в тепловую энергию материала. Кроме того, в случае, когда молекулы полярны, внешнее электрическое поле совершает работу по повороту диполей по полю и энергия поля вновь рассеивается в материале.

В идеальном диэлектрике сдвиг фаз между напряжением и реактивной составляющей тока равен 90 градусам. В реальном диэлектрике появляется активная составляющая тока. Зная величину напряжения, круговую частоту и емкость, можно определить реактивную составляющую тока: Iр=UC . Тогда активная составляющая тока - Iа=Iр tg. Рассеиваемая мощность - Р=UIа= UCtg.

7. Влияние температуры на электропроводность диэлектриков и проводников

Электропроводность диэлектриков при постоянном напряжении обусловлена перемещением легко подвижных зарядов. В материалах с ионной связью основными носителями зарядов являются ионы. Концентрация носителей заряда (подвижных ионов) зависит от энергии химической связи и от энергии теплового возбуждения. Иначе говоря, концентрация подвижных ионов зависит от физико-химической природы диэлектрика и от температуры.

В том случае, когда энергия системы минимальна, каждый ион находится в дне потенциальной ямы, то есть в наиболее устойчивом положении. При повышении энергии системы (нагреве материала) ион приподнимается относительно дна потенциальной ямы и получает возможность колебаться относительно положения равновесия. При этом энергия системы повышается на величину kT и вероятность выхода иона из потенциальной ямы возрастает. Поэтому электропроводность диэлектриков при повышении температуры растет в соответствии с выражением: =0exp(-Ea/kT), где: удельная электропроводность диэлектрика, 0- константа, Ea - энергия активации выхода иона из потенциальной ямы, kT- тепловая энергия системы.

В металлических материалах основным носителем заряда являются свободные электроны. Поскольку кристаллическая решетка металлов упакована плотно, то распространение электронов удобнее всего представить в виде движения электронной волны. В правильной кристаллической решетке электронная волна движется без потерь, и удельное электрическое сопротивление материала с идеальной кристаллической решеткой равно нулю. Появление в кристаллической решетке ионов другого металла, отличающихся по размеру от основного приводит к смещению некоторых ионов из равновесных положений, в результате у металла удельное электрическое сопротивление становится отличным от нуля, а энергия рассеянной волны обращается в тепло. Удельное электрическое сопротивление растет при любых искажениях кристаллической решетки, например, обусловленных тепловыми колебаниями при повышении температуры, появлением дефектов кристаллического строения и т.п.

8. Виды активных диэлектриков, их применение

Сегнетоэлектрики. В сегнетоэлектриках в определенном диапазоне температур наблюдается спонтанная или самопроизвольная поляризация. Титанат бария. При помещении сегнетоэлектрика в электрическое поле суммарные моменты диполей ориентируются по полю и поляризация сегнетоэлектрика возрастает. Рост поляризации приводит к росту отношения Р/Е, а следовательно, к росту диэлектрической проницаемости. У сегнетоэлектриков максимальные значения диэлектрической проницаемости достигают сотен тысяч единиц, соответственно, габариты конденсаторов из таких материалов могут быть весьма малыми. Существенное влияние на диэлектрическую проницаемость оказывает температура. При повышении температуры кинетическая энергия ангармонических колебаний ионов возрастает, и электростатическая связь между ионами ослабевает. Максимум диэлектрической проницаемости наблюдается при температуре Кюри.

Пьезоэлектрики. Пьезоэлектриками называют диэлектрики, в которых под действием механических напряжений появляется поляризация, а под действием электрического поля пьезоэлектрики упруго деформируются. Таким образом, пьезоэлектрики являются электромеханическими преобразователями, преобразующими механическую энергию в электрическую и обратно. Пьезоэлектрическими свойствами обладают многие кристаллы, лишенные центра симметрии: кварц, турмалин, сегнетова соль и др. Пьезоэлектрики нашли широкое применение для изготовления резонаторов, преобразователей колебаний и др.

Электреты. Электретами называют диэлектрики, у которых постоянный электрический момент или избыточный заряд сохраняются длительное время. Электреты могут служить источниками электрического поля в окружающем пространстве, аналогично постоянным магнитам, являющимися источниками магнитного поля. Эта аналогия в свойствах постоянных магнитов и электретов отражена в их названии (по-английски постоянный магнит - magnet). В зависимости от способов получения различают термоэлектреты, фотоэлектреты, электроэлектреты, трибоэлектреты, радиоэлектреты.

9. Пьезоэлектрики и их применение

Пьезоэлектриками называют диэлектрики, в которых под действием механических напряжений появляется поляризация, а под действием электрического поля пьезоэлектрики упруго деформируются. Таким образом, пьезоэлектрики являются электромеханическими преобразователями, преобразующими механическую энергию в электрическую и обратно. Пьезоэлектрическими свойствами обладают многие кристаллы, лишенные центра симметрии: кварц, турмалин, сегнетова соль и др. Пьезоэлектрики нашли широкое применение для изготовления резонаторов, преобразователей колебаний и др.

10. Сегнетоэлектрики и их применение

Сегнетоэлектрики. В сегнетоэлектриках в определенном диапазоне температур наблюдается спонтанная или самопроизвольная поляризация. Титанат бария. При помещении сегнетоэлектрика в электрическое поле суммарные моменты диполей ориентируются по полю и поляризация сегнетоэлектрика возрастает. Рост поляризации приводит к росту отношения Р/Е, а следовательно, к росту диэлектрической проницаемости. У сегнетоэлектриков максимальные значения диэлектрической проницаемости достигают сотен тысяч единиц, соответственно, габариты конденсаторов из таких материалов могут быть весьма малыми. Существенное влияние на диэлектрическую проницаемость оказывает температура. При повышении температуры кинетическая энергия ангармонических колебаний ионов возрастает, и электростатическая связь между ионами ослабевает. Максимум диэлектрической проницаемости наблюдается при температуре Кюри.

11. Электрический пробой диэлектриков

Диэлектрическими принято называть материалы, имеющие низкую плотность подвижных носителей заряда (ионов и электронов), поэтому удельное электрическое сопротивление таких материалов в 1012 - 1025 раз выше, чем у проводниковых материалов.

Электрической прочностью диэлектрика называют ту напряженность поля, при которой диэлектрик теряет изоляционные свойства.

Электрический пробой обычно развивается в газах. В воздухе всегда содержится небольшое количество ионов. Под воздействием электрического поля ионы ускоряются и на длине свободного пробега набирают кинетическую энергию WК = qlE.

Сталкиваясь с молекулой, ион передает ей энергию. Если эта энергия превышает энергию ионизации (WИ), то происходит ударная ионизация с образованием свободного электрона и положительно заряженного иона. Условие возникновения ударной ионизации - WК>WИ. Следовательно, минимальная напряженность поля, при которой начинается ударная ионизация: ЕИ = WИ/ql.

Помимо ударной ионизации, возможна фотонная ионизация газов при существенно меньших значениях напряженности поля. В этом случае взаимодействие иона с молекулой не приводит к ее ионизации, поскольку кинетическая энергия иона меньше энергии ионизации. Поглотив кинетическую энергию иона, молекула переходит в возбужденное состояние. При переходе молекулы в равновесное состояние она испускает квант электромагнитного поля - фотон. В случае, если несколько фотонов одновременно попадет на какую-либо молекулу, суммарная энергия поглощенная молекулой, окажется больше энергии ионизации, что станет причиной образования дополнительной пары ионов.

В газах длина свободного пробега ионов существенно больше длины свободного пробега в твердых телах и жидкостях, поэтому электропрочность газов минимальна. В тех случаях, когда в диэлектрике появляется газовая или паровая фаза, электропрочность жидкого или твердого диэлектрика снижается.

12. Электротепловой пробой диэлектриков

Диэлектрическими принято называть материалы, имеющие низкую плотность подвижных носителей заряда (ионов и электронов), поэтому удельное электрическое сопротивление таких материалов в 1012 - 1025 раз выше, чем у проводниковых материалов.

Электрической прочностью диэлектрика называют ту напряженность поля, при которой диэлектрик теряет изоляционные свойства.

При нахождении диэлектрика в электрическом поле, часть энергии электрического поля рассеивается в диэлектрике из-за диэлектрических потерь, и диэлектрик нагревается. Повышение температуры диэлектрика по сравнению с окружающей средой ведет к отводу тепла. Нагрев материала диэлектрика может привести к его растрескиванию, оплавлению, обугливанию, что снижает электропрочность диэлектрика и ведет к его разрушению. Очевидно, что стойкость к электротепловому пробою зависит как от свойств самого материала (у полярных диэлектриков диэлектрические потери выше и стойкость к электротепловому пробою ниже), так и от конструкции изолятора. Чем выше поверхность изолятора, тем больше тепла рассеивается в окружающую среду и меньше вероятность электротеплового пробоя.

13. Электрохимический пробой диэлектриков

Диэлектрическими принято называть материалы, имеющие низкую плотность подвижных носителей заряда (ионов и электронов), поэтому удельное электрическое сопротивление таких материалов в 1012 - 1025 раз выше, чем у проводниковых материалов.

Электрической прочностью диэлектрика называют ту напряженность поля, при которой диэлектрик теряет изоляционные свойства.

Электрохимический пробой диэлектриков обусловлен тем, что при длительном нахождении в электрическом поле происходит изменение химического состава диэлектрика. Чем выше напряженность электрического поля, тем сильнее возбуждаются молекулы диэлектрика и время, необходимое для выхода материала диэлектрика из строя снижается. В то же время химически инертные диэлектрики имеют больше время работы.

14. Межатомное взаимодействие. Влияние энергии межатомного взаимодействия на свойства материалов

Между двумя атомами действует сила притяжения. Она убывает обратно пропорционально квадрату расстояния между атомами. Помимо силы притяжения, между атомами действует и сила взаимного отталкивания, которая обратно пропорциональна расстоянию в степени n, где n больше 2. Складывая силы притяжения и отталкивания, получаем результирующую силу взаимодействия двух атомов рис а). При расстоянии между атомами, равном rО силы притяжения и отталкивания взаимно компенсируют друг друга, результирующая сила взаимодействия равна нулю, и это расстояние является наиболее устойчивым.

Из рисунка видно, что при минимальной энергии потенциального взаимодействия расстояние между соседними ионами равно rО. Увеличение энергии системы двух атомов (например, за счет роста тепловой энергии) ведет к появлению возможности взаимного смещения атомов относительно друг друга, причем с ростом энергии системы амплитуда колебаний возрастает. Другой интересной особенностью влияния температуры на свойства материалов является термическое расширение. Изменение линейных размеров тела при нагреве описывается коэффициентом теплового расширения: *Т = (1/L)(dL/dT). Как видно из рис б), коэффициент теплового расширения снижается при увеличении глубины потенциальной ямы.

В том случае, когда взаимодействует множество атомов, смещение любого из них приводит к росту энергии системы, Поэтому потенциальную кривую можно представить в виде периодической функции.

Увеличение глубины потенциальной ямы ведет к росту напряжения течения при пластической деформации, увеличению модуля упругости, повышению температур плавления и испарения, к снижению коэффициента теплового расширения. Таким образом, зная одни свойства материала, можно прогнозировать другие свойства.

15. Кристаллическое строение твердых тел. Типы кристаллических решеток

В кристалле ионы находятся в потенциальных ямах и расположены упорядоченно. Упорядоченное расположение атомов принято называть кристаллической решеткой. Для описания кристаллических решеток удобно воспользоваться понятием элементарная ячейка кристалла минимальный объем кристалла, полностью отражающая его геометрические свойства.

Координационное число - число ближайших соседей атома.

У элементов четвертой группы ковалентная насыщенная и направленная связь, и у каждого атома четыре соседа. К=4. Элементарную решетку можно представить в виде тетраэдра с одним атомом в центре и четырьмя атомами по вершинам тетраэдра. Кристаллическую решетку с такой элементарной ячейкой имеют элементарный кремний, германий, углерод в модификации алмаза. Этот тип кристаллической решетки принято называть решеткой алмаза.

При образовании ионной связи кристаллические решетки получаются более компактными. К=6. NaCl.

При образовании металлической связи кристаллические решетки становятся еще более компактными. К=8 или К=12. ГЦК, ОЦК, ГПУ.

ОЦК решетку имеют такие металлы, как вольфрам, молибден, ниобий, низкотемпературные модификации железа, титана, щелочные металлы и ряд других металлов. Серебро, медь, алюминий, никель, высокотемпературная модификация железа и ряд других металлов имеют ГЦК решетку. ГП решетка у магния, цинка, кадмия, высокотемпературной модификации титана.

16. Типы химических связей между атомами. Влияние типа химической связи на свойства материалов

Основными типами химической связи являются: ковалентная, ионная, металлическая и поляризационная связь (связь Ван-дер-Ваальса).

Ковалентная связь образуется между атомами одного или нескольких химических элементов с близкими ионизационными потенциалами. В чистом виде ковалентная связь реализуется при взаимодействии элементов с наполовину заполненными электронными оболочками. H2 ,C, Si, Ge, Sn. Соседние атомы обмениваются электронами.

Появление между положительно заряженными ионами пары отрицательно заряженных электронов приводит к тому, что оба иона притягиваются к обобществленным электронам и, тем самым, притягиваются друг к другу. Каждый атом взаимодействует с ограниченным числом соседей, причем число соседей равно числу валентных электронов атома. Следовательно, ковалентная связь насыщенна. Атом взаимодействует только с теми соседями, с которыми он обменялся электронами, то есть ковалентная связь имеет направление.

Ионная связь образуется при взаимодействии атомов с малым количеством валентных электронов и атомов с большим количеством электронов на валентных оболочках. При этом наружные электроны атомов с низкими потенциалами ионизации переходят на валентные оболочки атомов с высокими ионизационными потенциалами. Ионная связь ненасыщенна, поскольку каждый из отрицательно заряженных ионов притягивает к себе положительно заряженные, а каждый из положительно заряженных ионов притягивает к себе все отрицательно заряженные. Ионная связь направлена, поскольку ион притягивает к себе разноименно заряженные ионы и отталкивает одноименно заряженные.

Уменьшение размера иона и увеличение его заряда ведет к росту энергии связи, а следовательно, к росту температуру плавления материала, уменьшению коэффициента теплового расширения и к увеличению модуля упругости.

Металлическая связь образуется между атомами одного или нескольких химических элементов, у которых валентные электронные оболочки застроены меньше чем на половину. Поскольку энергия иона минимальна при полностью заполненной внешней оболочке, атомы отдают внешние валентные электроны и превращаются в положительно заряженные ионы, между которыми находятся свободные электроны (электронный газ). Металлическая связь не имеет направления и ненасыщенна.

Поляризационная связь образуется при сближении молекул или атомов инертных газов.

17. Кристаллическое строение твердых тел. Координационное число. Коэффициент заполнения

В кристалле ионы находятся в потенциальных ямах и расположены упорядоченно. Упорядоченное расположение атомов принято называть кристаллической решеткой. Для описания кристаллических решеток удобно воспользоваться понятием элементарная ячейка кристалла минимальный объем кристалла, полностью отражающая его геометрические свойства.

Координационное число - число ближайших соседей атома.

Плотность кристаллической решетки (объем занятый атомами) удобно характеризовать также коэффициентом заполнения Z, т.е. отношением объема занимаемого атомами ко всему объему кристалла, обычно выраженным в процентах. Чем выше координационное число K - тем больше плотность упаковки атомов и соответственно коэффициент заполнения кристаллической ячейки Z.

Простая кубическая К=6 Z,%= 52; ОЦК К=8 Z,%= 68; ГЦК К=12 Z,%= 74; ГПУ К=12 Z,%= 74

18. Точечные дефекты кристаллической решетки, их влияние на свойства материалов

К точечным дефектам относятся атомы инородных элементов (легирующих элементом или примесей), межузельные атомы (атомы основного элемента, по каким-либо причинам покинувшие узлы кристаллической решетки и застрявшие в междоузлиях), вакансии или не занятые атомами узлы кристаллической решетки.

Представление о вакансиях было впервые введено Я. И. Френкелем для объяснения процессов диффузии в металлах - материалах с плотноупакованной кристаллической решеткой.

При наличии в кристаллической решетки вакансии атом может перескочить из узла решетки в вакантное место. Тем самым вакансия смещается, и процесс диффузии можно описывать как последовательное перемещение атомов или как движение вакансий.

Согласно модели Френкеля, при образовании вакансий атом из узла кристаллической решетки перепрыгивает в междоузлие, и появляется пара дефектов - вакансия и межузельный атом (пара Френкеля).

В материалах с ионной связью между атомами основным носителем заряда являются ионы. При появлении вакансий перемещение ионов облегчается, а следовательно, падает удельное электросопротивление. При появлении в материале примесей кристаллическая решетка искажается, энергия материала локально повышается, что способствует облегчению выхода иона из потенциальной ямы. Таким образом, появление любых точечных дефектов ведет к снижению электросопротивления материалов с ионной связью.

В материалах с ковалентной связью присутствие вакансий приводит к обрыву ковалентной связи и появлению на валентной оболочке атома неспаренного электрона. Наличие неспаренных электронов энергетически невыгодно, и атом теряет его. Таким образом, в материале появляются два носителя заряда: отрицательно заряженный свободный (делокализованный) электрон и положительно заряженная дырка. Следовательно, увеличение концентрации вакансий ведет к падению удельного электрического сопротивления материалов с ковалентной связью.

Присутствие неизовалентных примесей ведет к появлению в материале дырок или свободных электронов, то есть к повышению концентрации носителей заряда.

19. Линейные дефекты кристаллических решеток. Влияние линейных дефектов на свойства материалов

Дислокации - линейные дефекты кристаллической решетки.

Краевая дислокация. В кристалле имеется оборванная плоскость - экстраплоскость. Вблизи обрыва экстраплоскости остальные плоскости кристаллической решетки изгибаются. Таким образом, вблизи края экстраплоскости кристаллическая решетка искажена. Величина искажений кристаллической решетки быстро снижаются при удалении от края экстраплоскости, но сохраняется при движении вдоль линии обрыва.

Винтовая дислокация:

Особенности вектора Бюргерса:

вектор Бюргерса инвариантен, то есть неизменен. Следовательно, дислокация не может оборваться в кристалле;

энергия упругих искажений решетки пропорциональна квадрату модуля вектора Бюргерса;

при движении решеточной дислокации с вектором Бюргерса, равным периоду трансляции решетки, кристаллическая решетка не изменяется.

При приложении внешних напряжений дислокации смещаются и выходят на поверхность кристалла, и таким образом осуществляется пластическая деформация.

Влияние дислокаций на свойства:

При полном отсутствии дислокаций прочность кристаллов была бы равна теоретической. Важно отметить, что при повышении плотности дислокаций в обычных материалах их прочность возрастает. Повышение прочности металлов в ходе холодной пластической деформации называют наклепом, или нагартовкой.

Наличие в материале дислокаций резко повышает скорость диффузии.

Искажение кристаллической решетки за счет присутствия дислокаций повышает удельное электрическое сопротивление металлических материалов и снижает удельное электрическое сопротивление неметаллических материалов.

Размещено на Allbest.ru

...

Подобные документы

  • Характеристика основных достоинств газов и их свойств по отношению к свойствам воздуха. Диэлектрическая проницаемость газов и ее изменение с увеличением давления. Влияние влажности воздуха на его диэлектрическую проницаемость. Суть процесса рекомбинации.

    реферат [350,3 K], добавлен 30.04.2013

  • Основные пассивные функции диэлектриков в составе микроэлектронных и оптоэлектронных устройств. Примеры объемных и поверхностных удельных сопротивлений диэлектриков. Электрическая прочность и ее виды. Полимеры и техническая керамика и ее применение.

    реферат [898,1 K], добавлен 15.12.2015

  • Влияние времени на деформацию. Упругое последействие, влияние температуры на свойства материалов. Механические свойства материалов. Особенности испытаний на сжатие. Зависимость предела прочности пластмасс от температуры, неоднородность материалов.

    реферат [2,5 M], добавлен 01.12.2008

  • Способ подготовки поверхности алюминиевых сплавов при получении оптически селективных покрытий. Закономерности формирования и оптические свойства оксидных покрытий на алюминиевых сплавах, полученных при поляризации переменным асимметричным током.

    автореферат [634,9 K], добавлен 08.12.2011

  • Влияние холодной пластической деформации и рекристаллизации на микроструктуру и механические свойства низкоуглеродистой стали. Пластическая деформация и ее влияние на свойства металлических материалов. Влияние температуры нагрева на микроструктуру.

    контрольная работа [370,2 K], добавлен 12.06.2012

  • Определение различных факторов, которые оказывают то или иное влияние на прочность фанеры с помощью методов поиска литературных источников, "мозгового штурма" и анкетирования с участием трех экспертов. Порядок обработки информации методом конкордации.

    курсовая работа [197,1 K], добавлен 19.05.2013

  • Создание виртуальной лабораторной работы. Классификация и характеристика магнитомягких материалов, исследование их свойств. Анализ стандартного метода измерения начальной магнитной проницаемости и тангенса угла магнитных потерь магнитомягких материалов.

    дипломная работа [728,6 K], добавлен 19.11.2013

  • Группы изделий, требующие для их успешной эксплуатации "своих" специфических комплексов вязкостно-прочностных свойств. Способы отпуска закаленной стали. Влияние отпуска на прочность и пластичность стали. Основные сравнительные свойства для стали 45.

    статья [63,0 K], добавлен 24.06.2012

  • Производство, строение и синтез полиимидных пленок. Диэлектрические и электрические свойства, влияние повышенной температуры и радиационного облучения. Энергетические характеристики разрушения изоляционных материалов под воздействием частичных разрядов.

    дипломная работа [3,6 M], добавлен 18.10.2011

  • Влияние высокотемпературной термомеханической обработки на тонкую кристаллическую структуру аустенитных сталей и сплавов. Закономерности роста зерен металлов и сплавов при высоких температурах. Влияние температуры на характеристики металлов.

    курсовая работа [534,9 K], добавлен 28.12.2003

  • Конструкция многослойной печатной платы. Изготовление заготовок из стеклоткани и медной фольги. Перфорирование стеклоткани. Склеивание заготовок перфорированного диэлектрика с медной фольгой. Травление меди с пробельных мест. Контроль и маркировка.

    реферат [769,3 K], добавлен 14.12.2008

  • Контроль температуры различных сред. Описание принципа бесконтактного метода измерения температуры. Термометры расширения и электрического сопротивления. Манометрические и термоэлектрические термометры. Люминесцентный метод измерения температуры.

    курсовая работа [93,1 K], добавлен 14.01.2015

  • Изменение электрического сопротивления в металлах, сверхпроводниках в области низких температур. Правила существования сверхпроводимости с валентностью. Зависимость критического поля сверхпроводника от температуры. Использование явления сверхпроводимости.

    реферат [588,3 K], добавлен 14.05.2011

  • Влияние параметров технологического режима охлаждения изолированной жилы на процесс с применением метода математического моделирования и числовых методов. Определение температуры поля в сечениях проводника и изоляции для выбора рационального режима.

    лабораторная работа [283,1 K], добавлен 04.06.2009

  • Основные понятия сопротивления материалов. Определение напряжении и деформации. Механические характеристики материалов и расчеты на прочность. Классификация машин и структурная классификация плоских механизмов. Прочность при переменных напряжениях.

    курс лекций [1,3 M], добавлен 07.10.2010

  • Расчет температурного поля во время сварочных процессов. Определение температуры в начале, середине и конце сварного шва. Период выравнивания температуры. Быстродвижущиеся источники теплоты. Результаты вычислений температуры предельного состояния.

    курсовая работа [99,4 K], добавлен 05.09.2014

  • Расчет производительности электрической сковороды. Тепловой баланс аппарата. Расчет температуры стенок в конце разогрева при установившемся режиме работы. Кинетические коэффициенты теплоотдачи. Расчет потерь тепла в окружающую среду. Подготовка к работе.

    курсовая работа [2,0 M], добавлен 17.10.2012

  • Промышленный технологический быстропроточный лазер ТЛ-5М. Расчет приведенной напряженности электрического поля в рабочей камере лазера. Определение кинетических параметров плазмы. Расчет уточненного значения приведенной напряженности электрического поля.

    курсовая работа [310,9 K], добавлен 14.12.2012

  • Зависимость свойств материалов от вида напряженного состояния. Критерии пластичности и разрушения. Испытание на изгиб. Изучение механических состояний в зависимости от степени деформирования. Задачи теорий пластичности и прочности. Касательное напряжение.

    презентация [2,7 M], добавлен 10.12.2013

  • Влияние графитовых наполнителей на радиофизические характеристики композиционных материалов на основе полиэтилена. Разработка на базе системы полиэтилен-графит композиционного материала с наилучшими радиопоглощающими и механическими показателями.

    диссертация [795,6 K], добавлен 28.05.2019

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.