Современные композиционные материалы и технологии
Композиционные материалы - материалы будущего. Волокнистые, слоистые, дисперсноупрочненные, упрочненные частицами композиционные материалы и нанокомпозиты. Применение композитов в авиационно-космической, ракетной и других специальных отраслях техники.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 12.10.2013 |
Размер файла | 41,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»
ДГТУ
Кафедра «Авиастроение»
РЕФЕРАТ
на тему: «Современные композиционные материалы и технологии»
Выполнил студент группы ТТА-51
Ивахненко М.И
Проверил преподаватель
Рождественская Н.В.
2012 г.
Содержание
Композиционные материалы - материалы будущего
Структура композиционных материалов
Применение композиционных материалов
Композиционные материалы в авиастроении
Заключение
Композиционные материалы - материалы будущего
После того как современная физика металлов подробно разъяснила нам причины их пластичности, прочности и ее увеличения, началась интенсивная систематическая разработка новых материалов.
Это приведет, вероятно, уже в вообразимом будущем к созданию материалов с прочностью, во много раз превышающей ее значения у обычных сегодня сплавов. При этом большое внимание будет уделяться уже известным механизмам закалки стали и старения алюминиевых сплавов, комбинациям этих известных механизмов с процессами формирования и многочисленными возможностями создания комбинированных материалов. Два перспективных пути открывают комбинированные материалы, усиленные либо волокнами, либо диспергированными твердыми частицами.
У первых в неорганическую металлическую или органическую полимерную матрицу введены тончайшие высокопрочные волокна из стекла, углерода, бора, бериллия, стали или нитевидные монокристаллы. В результате такого комбинирования максимальная прочность сочетается с высоким модулем упругости и небольшой плотностью.
Композиционный материал - конструкционный (металлический или неметаллический) материал, в котором имеются усиливающие его элементы в виде нитей, волокон или хлопьев более прочного материала. Примеры композиционных материалов: пластик, армированный борными, углеродными, стеклянными волокнами, жгутами или тканями на их основе; алюминий, армированный нитями стали, бериллия.
Комбинируя объемное содержание компонентов, можно получать композиционные материалы с требуемыми значениями прочности, жаропрочности, модуля упругости, абразивной стойкости, а также создавать композиции с необходимыми магнитными, диэлектрическими, радиопоглощающими и другими специальными свойствами.
Структура композиционных материалов
По структуре композиты делятся на несколько основных классов: волокнистые, слоистые, дисперсноупрочненные, упрочненные частицами и нанокомпозиты. Волокнистые композиты армированы волокнами или нитевидными кристаллами - кирпичи с соломой и папье-маше можно отнести как раз к этому классу композитов. Уже небольшое содержание наполнителя в композитах такого типа приводит к появлению качественно новых механических свойств материала. Широко варьировать свойства материала позволяет также изменение ориентации размера и концентрации волокон. Кроме того, армирование волокнами придает материалу анизотропию свойств (различие свойств в разных направлениях), а за счет добавки волокон проводников можно придать материалу электропроводность вдоль заданной оси.
В слоистых композиционных материалах матрица и наполнитель расположены слоями, как, например, в особо прочном стекле, армированном несколькими слоями полимерных пленок.
Микроструктура остальных классов композиционных материалов характеризуется тем, что матрицу наполняют частицами армирующего вещества, а различаются они размерами частиц. В композитах, упрочненных частицами, их размер больше 1 мкм, а содержание составляет 20-25% (по объему), тогда как дисперсноупрочненные композиты включают в себя от 1 до 15% (по объему) частиц размером от 0,01 до 0,1 мкм. Размеры частиц, входящих в состав нанокомпозитов - нового класса композиционных материалов - еще меньше и составляют 10-100 нм.
Применение композиционных материалов
Композитные материалы находят все более широкое применение в авиационной промышленности. Усталость и обусловленные ею разрушения являются одними из важных факторов, ограничивающих ресурс и период эксплуатации авиационной техники. Современные композиционные материалы решают эту проблему, предоставляя разработчикам целый ряд преимуществ использования.
Преимущества использования:
снижение себестоимости производства летательного аппарата;
увеличение прочностных и механических характеристик;
увеличение срока эксплуатации летательного аппарата;
уменьшение массы летательного аппарата;
увеличение полезной нагрузки и тяговооруженности;
снижение затрат на эксплуатацию летательного аппарата (например: снижение топливных издержек)
Примеры использования:
обтекатели;
хвостовое оперение;
крылья;
двери;
фюзеляжи;
перекрытия
капот двигателя,
хвостовой стабилизатор,
все виды закрылков и т. д.
Композиционные материалы в авиастроении
Для улучшения лётно-тактических характеристик боевых самолетов и вертолетов выполняются дорогостоящие программы, предусматривающие снижение веса конструкции летательных аппаратом за счет применения новых, более перспективных материалов, к числу которых относятся так называемые композиционные материалы.
Ведущее место в мире по разработке композиционных материалов и их использованию в конструкциях летательных аппаратов (особенно военного назначения) принадлежит США, где темпы работ и этой области непрерывно растут. Координацию проводимых исследований (применительно к авиационным конструкциям) осуществляет лаборатория материалов ВВС США и НАСА. Лаборатория материалов занимается оценкой эффективности применения композиционных материалов к конструкции военных самолетов. В настоящее время по контрактам с ВВС и программам, финансируемым крупными авиастроительными фирмами, производится и испытывается большое количество элементов конструкции самолетов и вертолетов из композиционных материалов.
Наибольшее распространение в авиа- и ракетостроении за рубежом получили композиционные материалы на основе высокопрочных волокон. Композиционный материал ведет себя как единое структурное целое и обладает свойствами, которых не имеют составляющие его компоненты. Особенностью композиционных материалов является анизотропность их свойств (то есть зависимость, физических, в том числе механических, свойств материалов от направления), которая определяется ориентацией армирующих волокон. Заданную прочность материала получают, ориентируя волокна наполнителя в направлении действия основных усилии. Иностранные специалисты считают, что это открывает новые возможности при конструировании силовых элементов самолетов и вертолетов.
По мнению специалистов, с точки зрения характеристик удельной прочности и удельной жесткости наиболее перспективны композиционные материалы, в которых в качестве упрочняющей арматуры используются волокна бора, карбида бора и углерода. К таким материалам относятся бороэпоксидные материалы (боропластики, углепластики, бороалюминий).
Бороэпоксидные композиционные материалы. За рубежом наибольшее распространение получили материалы (боропластики) с армирующим наполнителем из волокон бора (бороволокон) и эпоксидными матрицами. По данным иностранной печати, применение боропластиков позволяет уменьшил вес конструкции на 20-40%, увеличить ее жесткость и повысить эксплуатационную надежность изделия. Композиционные материалы на основе бороволокна имеют высокие показатели по прочности, жесткости и сопротивлению усталости. Например, в иностранной печати отмечалось, что отношение удельной прочности боропластиков к удельной прочности алюминиевого сплава при растяжении составляет 1,3-1,9, сжатии -1,5, сдвиге-1,2, смятии-2,2, а усталостная характеристика возрастает в 3,8 раза. Кроме того, боропластики сохраняют свои качества в диапазоне температур от -60 до + 177°С. Сочетание этих свойств и предопределило перспективность широкою использования боропластиков в авиационной и ракетно-космической технике.
Как следует из сообщении зарубежной печати, масштабы применения боропластиков в самолетостроении США уже в настоящее время весьма значительны. Например, на один истребитель F-I5 расходуется около 750 кг боропластиков. Эти материалы используются для усиления элементов силового набора накладками из боропластика, что обеспечивает снижение веса элементов конструкции и повышение их несущей способности, а также для изготовления обшивок.
Благодаря применению боропластиков значительно упрощается технология производства, и, кроме того, возможно сокращение общего количества узлов и деталей в некоторых элементах конструкции самолета. Например, по заявлению специалистов фирмы "Макдоннелл Дуглас", при изготовлении из боропластиков руля направления самолета F-4 "Фантом" число деталей сократилось с 240 до 84.
Композиционные материалы с углеродными волокнами. Иностранные специалисты считают, что в условиях высоких температур, возникающих при сверхзвуковом полете, наиболее эффективны композиционные материалы на основе матриц, армированных волокнами графита (углерода). Использование этих материалов в конструкциях современных и перспективных сверхзвуковых самолетов выгодно с точки зрения экономии веса конструкции, особенно для узлов, вес которых в большей степени определяется требованиями жесткости, чем прочности. Наибольшее распространение за рубежом получили материалы с углеродными волокнами на основе эпоксидных матриц (углепластики) и материалы на основе углеродных графитизированных матриц, армированных волокнами углерода ("углерод-углерод").
Углепластики. Углепластики имеют малый удельный вес - 1,5 г/см3 (алюминиевые сплавы 2,8 г/см3, титановые 4,5 г/см3); высокие жесткость, вибропрочность и показатели усталостной прочности. Всё это делает их одними из самых перспективных материалов для производства авиационной и космической техники. При всех основных видах действующих нагрузок удельная прочность углепластиков оказывается выше прочности алюминиевого сплава. Прочность и жесткость углепластиков примерно в шесть раз выше, чем у основных сортов стали, используемых в конструкциях самолетов.
В настоящее время применение углепластиков в авиастроении значительно возросло. Различные элементы конструкций из этого материала проходят испытания на самолетах F-5E, A-4D и F-111. Фирма "Боинг" по контракту с ВВС США исследует возможности использования этих материалов в конструкции крыла перспективного высотного беспилотного разведывательного самолета. Подобные работы ведутся и в других странах. Например, английская Фирма "Бритиш эркрафт" по контракту, заключенному с министерством обороны Великобритании, создает из углепластиков элементы планеров некоторых самолетов.
Композиционные материалы "углерод-углерод" обладают малым удельным весом (1,4 г/см3), высокими теплозащитными свойствами, способностью сохранять прочностные характеристики при температурах свыше 2500С Благодаря этим и другим качествам они считаются весьма перспективными для изготовления тех деталей и узлов самолетов, которые работают в условиях высоких температур, а также для теплозащитных экранов летательных аппаратов, прежде всего космических кораблей. По сообщениям зарубежной печати, в настоящее время из этого материала для самолетов разработаны детали колесных тормозов, вес их составляет около 30%. веса стальных тормозов. По мнению специалистов американской фирмы "Данлон", ресурс тормозных устройств из этих материалов - 3000 посадок, что в пять-шесть раз превышает срок эксплуатации обычных тормозов.
Бороалюминиевый композиционный материал (бороалюминий). В качестве армирующего наполнителя этого композиционного материала используются волокна бора (иногда с покрытием из карбида кремния), а в качестве матрицы - алюминиевые сплавы. Бороалюминий в 3,5 раза легче алюминия и в 2 раза прочнее его, что позволяет получить значительную весовую экономию. Кроме того, при высоких температурах (до 430°С) бороалюминиевый композиционный материал имеет в 2 раза большие значения удельной прочности и жесткости по сравнению с титаном, что дает возможность его применения для самолетов со скоростями полета М=3, в конструкциях которых в настоящее время используется титан. Зарубежные специалисты считают бороалюминий также одним из перспективных композиционных материалов, применение которого может дать до 50%. экономии веса конструкции летательных аппаратов.
По сообщениям иностранной печати, работы по исследованию характеристик бороалюминия и внедрению его в авиастроение выполняются несколькими американскими фирмами. Например, фирма "Дженерал дайнэмикс" из этого материала изготовляет элементы конструкции хвостовой части самолета F-111, а фирма "Локхид"- экспериментальный кессон центроплана самолета С-130 "Геркулес". Специалисты фирмы "Боинг" изучают возможность применения бороалюминиевого материала в стрингерах сверхтяжелых самолетов.
В настоящее время бороалюминиевый композиционный материал находит все большее применение в конструкциях авиационных двигателей. По данным зарубежной печати, фирма "Пратт-Уитни" использует его при производстве лопаток вентилятора первой и третьей ступеней ТРДД JT8-D, TF-30, F-100, а Фирма "Дженерал электрик" - лопаток вентилятора двигателя J-79, что, по мнению специалистов фирмы, позволит получить около 40%. экономии веса этих элементов.
В США существует 79 программ, в рамках которых ведутся работы по исследованию и практическому использованию композиционных материалов в авиастроении.
Анализируя подученные при выполнении экспериментальных работ результаты, иностранные специалисты считают, что композиты могут быть использованы при конструировании большинства узлов и деталей боевого самолета. На рис. 1 показана схема планера боевого самолета с указанием тех элементов, в конструкциях которых, по взглядам иностранных специалистов, возможно применение композиционных материалов.
На создаваемом фирмой "Рокуэлл интернэшнл" стратегическом бомбардировщике В-1 внутренние и внешние лонжероны, расположенные в хвостовой части фюзеляжа, делаются с применением накладок из бороэпоксидного композиционного материала. Эти лонжероны состоят из сплошных боропластиковых накладок, соединенных с деталями из металлов. Металлические элементы (сталь, титан) обеспечивают прочность, а накладки из боропластика увеличивают жесткость лонжеронов. Отмечается, что лонжероны такой конструкции не только обладают улучшенными механическими свойствами, но и на 28-44%. легче цельнометаллических.
Предусматривая дальнейшее внедрение композиционных материалов в конструкцию бомбардировщика В-1, лаборатория материалов ВВС США заключила контракты с фирмой "Рокуэлл интернэшнл" на разработку киля из графитоэпоксидного и бороэпоксидного материалов, а с фирмой "Грумман" -- на создание стабилизатора самолета из этих материалов.
В соответствии с программой, осуществляемой фирмой "Дженерал дайнамикс" (по контракту с ВВС США), на изготовленной из высокопрочной стали нижней поверхности шарнирной опоры крыла истребителя-бомбардировщикa F-111A, устанавливаются усиливающие накладки из эпоксидного боропластика. Американские специалисты считают, что применение этих накладок более чем вдвое увеличивает усталостную прочность шарнирного соединения узла поворота крыла. На двух самолетах F-111A испытываются экспериментальные стабилизаторы из бороэпоксидного композиционного материала, которые, по данным иностранной печати, на 27%. легче обычных.
В самолете F-l4 Томкэт применение композиционных материалов в силовой конструкции было предусмотрено в самом начале его проектирования. Из композиционного материала на основе бороволокна изготовляются четыре панели обшивки стабилизатора.
По данным иностранной печати, результаты проведенных испытании показали, что усталостные характеристики стабилизатора с обшивкой из боропластика в 2,5 раза выше заданных техническими требованиями, а но стоимости он в настоящее время эквивалентен цельнометаллическому. Общий вес стабилизатора с обшивкой из боропластика 350 кг; экономия в весе по сравнению со стабилизатором с титановой обшивкой 82 кг (или 10%.). Но в сравнении со стабилизатором аналогичной конструкции из алюминиевых сплавов выигрыш в весе получается еще больше - 117 кг (27%.).
В конструкции самолета F-15 "Игл" (фирма "Макдоннелл Дуглас"), исходя из соображений обеспечения требуемой центровки с целью экономии веса хвостовой части самолета, обшивка горизонтальных управляемых стабилизаторов и вертикального хвостового оперения выполнена из боропластика. По сообщениям зарубежной печати, завершены усталостные испытании планера самолета F-15 с панелями обшивки из композиционных материалов. Продолжительность испытаний 10 тыс. ч, что в четыре раза превышает его нормальный ресурс. Затем были проведены статические испытания горизонтального управляемого стабилизатора при нагрузке в два раза больше расчетной разрушающей; стабилизатор выдержал и эти испытания По сравнению с конструкцией горизонтального стабилизатора, выполненной из титана, экономия веса при использовании боропластиковых обшивок составила 22%.
Как отмечается в зарубежной печати, самолет F-15 является первым военным самолетом ВВС США, на котором установлена тормозная система фирмы "Гудьир", детали которой изготовлены с использованием композиционного материала на основе углеродных волокон. Это обеспечило, по мнению американских специалистов, экономию веса (около 32 кг на каждый тормоз) и более плавное и в то же время более эффективное торможение, а также увеличило надежность действия тормозной системы.
Фирма "Макдоннелл Дуглас" уже третий год ведет исследования по специальной программе, предусматривающей применение композиционных материалов для различных элементов крыла самолета F-15, что, по расчетам специалистов фирмы, позволит уменьшить вес крыла на 130-180 кг В ходе прочностных испытаний крыло самолета из композиционных материалов разрушилось при нагрузке, составляющей 110%. расчетной разрушающей. Летные испытания этого крыла планируется начать в 1976 году (в случае успешного завершения статических испытаний).
Иностранная печать сообщает, что высокая стоимость технической оснастки, необходимой дли изготовления деталей из таких материалов, не позволила в должном объеме использовать перспективные композиционные материалы. Однако применение композиционных материалов в конструкциях новых боевых самолетов США все возрастает. Опыт применения графитоэпоксидных композитных материалов, полученный Фирмой "Дженерал дайнемикс" при разработке самолета F-111, учтен и при создании самолета F-16. Благодаря изготовлению обшивки киля, стабилизатора и руля направления из углепластика фирме удались снизить вес хвостовой части фюзеляжа самолета F16 примерно на 30%. В настоящее врем" фирма по контракту с ВВС разрабатывает переднюю часть фюзеляжа этого самолета из графитоэпоксидных материалов.
Во время модернизации тяжелого военно-транспортного самолета С-5А при создании некоторых узлов и деталей планера самолета (например, секции предкрылков) применяли композиционные материалы. Новая секция имеет повышенную прочность и жесткость, она значительно легче металлической.
Предпринимаются попытки использовать композиционные материалы в вертолётостроении. В частности, с целью исследования возможности изготовления некоторых основных элементов конструкции вертолетов из таких материалов американские и западногерманские фирмы проводят ряд опытно-конструкторских работ. По данным иностранной печати, американская Фирма "Сикорский" участвует в программе, предусматривающей повышение усталостной долговечности и улучшение динамических характеристик вертолета СН-54В за счет упрочнения композиционными материалами его хвостовой балки. Сообщается, что в результате упрочнения стрингеров бороэпоксидным материалом ресурс планера вертолета повысился в несколько раз, а вес снизился на 30%.
В зарубежной печати сообщалось, что министерство обороны США заключило с фирмой "Хьюз" контракт стоимостью 1,2 млн, долларов на разработку из композиционных материалов лопасти несущего винта для вертолета "Хью Кобра". По заявлению специалистов фирмы, применение композиционных материалов в конструкции лопасти позволит уменьшить ее вес, сохранить прочностные характеристики, добиться относительной неуязвимости лопасти от пуль. Кроме того, такие лопасти будут иметь большой ресурс и малую стойкость, а их производство можно наладить на автоматизированной линии.
Широкое применение композиционных материалов в конструкции несущего винта запланировано также в рамках перспективной программы HLH, предусматривающей создание тяжелого транспортно-десантного вертолета максимальной грузоподъемностью около 30 т. Но данным иностранной печати, к настоящему времени фирма "Боинг" с которой министерство обороны США заключило контракт на выполнение работ по программе HLH, изготовила роторы с несущими винтами, в их конструкции использованы композиционные материалы.
На основе исследований, проводившихся крупнейшей американской вертолетостроительной фирмой "Сикорский" применительно к вертолету CH-53D, сделан вывод о том, что широкое внедрение композиционных материалов в конструкциях вертолетов станет целесообразным и 80-х годах. Специалисты фирмы считают, что максимальная эффективность достигается при включении композиционных материалов в конструкцию фюзеляжа вертолета; при этом в наиболее нагруженных элементах фюзеляжа следует применять материал на основе углерода. Проведенный анализ показал, что за счет использования композиционных материалов вес конструкции вертолета CH-53D может быть снижен на 18,5%.
Изучая опыт применения композиционных материалов в конструкциях самолетов, американские специалисты считают эти материалы с точки зрения веса и механических характеристик весьма перспективными для ракетно-космической техники. По сообщениям иностранной печати, в США при изготовлении головных частей ракет предполагается использовать композиционные материалы с углеволокнистой матрицей, обладающие высокой радиопрозрачностью. Сообщается также о проведении тепловых испытании сопла ракетного двигателя, выполненного целиком из композиционных материалов.
Из углепластиков в сочетании с алюминиевой сотовой конструкцией уже изготовляется ряд деталей искусственных спутников Земли, например каркасы антенн. Это обеспечило не только экономию веса по сравнению с алюминиевой конструкцией, но и стабильность размеров панелей, так как у углепластиков чрезвычайно низкий коэффициент теплового расширения (в 50 раз меньше, чем у металлов).
Композиционные материалы планируется широко использовать для изготовления некоторых элементов орбитальной ступени, разрабатываемой в США транспортно-космической системы "Шатл". В частности, для теплозащиты носка фюзеляжа, нижней поверхности носовой части фюзеляжа, передней кромки крыла будет применен композиционный материал "углерод-углерод". Фирмой "Боинг" разработана рама жидкостного реактивного двигателя основной двигательной установки орбитальной ступени, располагающаяся в хвостовой части фюзеляжа. Она сделана из бороэпоксидного композиционного материала в сочетании с элементами из титанового сплава. Эта конструкция, по данным фирмы, позволит по сравнению с обычной титановой достичь экономии в весе около 30%.
Исследования, выполненные рядом американских самолетостроительных фирм под руководством лаборатории материалов ВВС США, показали, что применение композиционных материалов в конструкции военных самолетов и вертолетов 80-х годов позволит не только значительно снизить их вес и стоимость, но и повысить живучесть.
По прогнозам зарубежных специалистов, к началу 80-х годов доля композиционных материалов в планере самолета возрастет до 50%. Это должно обеспечить 20-30% экономию веса в равной мере как для дозвуковых, так и сверхзвуковых самолетов. Достигнутое при этом снижение веса конструкции позволит увеличить запас топлива или боевую нагрузку или уменьшить размеры самолета. Более того, считается, что высокие прочностные характеристики этих материалов могут привести к улучшению аэродинамических характеристик (путем уменьшения относительной толщины профиля и удлинения крыла), а в конечном итоге - к улучшению летных характеристик самолета.
Заключение
композиционный материал авиационный ракетный
Композиционные материалы постепенно занимают все большее место в нашей жизни. Области применения композиционных материалов многочисленны. Кроме авиационно-космической, ракетной и других специальных отраслей техники, они могут быть успешно применены в энергетическом турбостроении, в автомобильной и горнорудной, металлургической промышленности, в строительстве и т.д. Диапазон применения этих материалов увеличивается день ото дня и сулит еще много интересного. Можно с уверенностью сказать, что это материалы будущего.
Размещено на Allbest.ru
...Подобные документы
Состав и свойства пластмасс. Композиционные материалы с неметаллической матрицей. Резиновые материалы: общая характеристика, свойства и назначение. Клеящиеся материалы и герметики. Сущность и виды каучуков. Понятие, виды и физические свойства древесины.
реферат [27,1 K], добавлен 18.05.2011Многообразие космических материалов. Новый класс конструкционных материалов – интерметаллиды. Космос и нанотехнологии, роль нанотрубок в строении материалов. Самоизлечивающиеся космические материалы. Применение "интеллектуальных" космических композитов.
доклад [277,6 K], добавлен 26.09.2009Физические принципы, используемые при получении материалов: сепарация, центрифугирование, флотация, газлифт. Порошковая металлургия. Получение и формование порошков. Агрегаты измельчения. Наноматериалы. Композиционные материалы.
реферат [292,6 K], добавлен 30.05.2007Классификация композиционных материалов, их геометрические признаки и свойства. Использование металлов и их сплавов, полимеров, керамических материалов в качестве матриц. Особенности порошковой металлургии, свойства и применение магнитодиэлектриков.
презентация [29,9 K], добавлен 14.10.2013Общие сведения о композиционных материалах. Свойства композиционных материалов типа сибунита. Ассортимент пористых углеродных материалов. Экранирующие и радиопоглощающие материалы. Фосфатно-кальциевая керамика – биополимер для регенерации костных тканей.
реферат [1,6 M], добавлен 13.05.2011Твердые сплавы и сверхтвердые композиционные материалы: инструментальные, конструкционные, жаростойкие; их свойства и применение. Совершенствование технологии сплавов, современные разработки получения безвольфрамовых минералокерамических соединений.
реферат [964,1 K], добавлен 01.02.2011Магнитомягкие материалы для сильных токов и промышленных частот. Электротехнические стали, магнитомягкие материалы для постоянного тока и слабых токов низких и повышенных частот. Магнитострикционные материалы, материалы для высоких частот и СВЧ.
курсовая работа [514,3 K], добавлен 23.04.2012Материалы для электропечестроения. Огнеупорные растворы, бетоны, набивные массы и обмазки. Пористые огнеупоры. Теплоизоляционные и жароупорные материалы. Дешевизна и недефицитность. Материалы для нагревательных элементов электрических печей сопротивления.
реферат [66,1 K], добавлен 04.01.2009Получение полиорганосилоксановых смол в результате гидролиза и последующей поликонденсации мономерных соединений кремния. Основные физические и химические свойства полиорганосилаксановых смол, их производство и применение. Цели добавления модификаторов.
реферат [189,2 K], добавлен 07.05.2016Общие сведения о древесных композиционных материалах, их классификация и разновидности, направления и особенности практического применения. Инновационный композиционный материал, оценка его главных преимуществ и недостатков, перспективы развития.
реферат [273,8 K], добавлен 12.07.2015Технология монтажа санитарно-технических систем и оборудования. Изготовление узлов из термопластов, стальных и чугунных труб. Состав, строение и свойства композиционных материалов. Монтаж водостоков, внутриквартальной и дворовой сети газопотребления.
дипломная работа [587,2 K], добавлен 18.01.2014Типы композиционных материалов: с металлической и неметаллической матрицей, их сравнительная характеристика и специфика применения. Классификация, виды композиционных материалов и определение экономической эффективности применения каждого из них.
реферат [17,4 K], добавлен 04.01.2011Особенности формирования структуры и свойств обжиговых керамических композиционных материалов из грубодисперсных непластичных компонентов. Теория и практика плотной упаковки частиц в полидисперных системах. Исследование процессов образования волластонита.
диссертация [4,6 M], добавлен 12.02.2015Алюминий и его сплавы. Характеристика и классификация алюминиевых сплавов. Деформируемые, литейные и специальные алюминиевые сплавы. Литые композиционные материалы на основе алюминиевого сплава для машиностроения. Состав промышленных дюралюминов.
курсовая работа [2,8 M], добавлен 15.01.2014Основные типы сноубордов. Материалы, используемые для изготовления сноуборда. Три основных способа изготовления деревянной основы. Защита от внешних воздействий внутренних слоев доски. Экструдированный и спечёный скользяк. Новые композитные материалы.
реферат [799,5 K], добавлен 19.02.2015Свойства материалов систем цирконий–кислород, цирконий-азот, алюминий-азот. Экспериментальное получение керамического композиционного материала на основе системы AlN-ZrO2-ZrN с повышенным уровнем электро-, теплопроводности, механических свойств.
дипломная работа [9,2 M], добавлен 11.09.2012Материалы для изоляционных и антикоррозионных покрытий. Резиновые технические изделия и их применение в теплоэнергетическом оборудовании электростанций. Сущность электролитического способа. Металлизация распылением. Плакирование металла взрывом.
презентация [185,2 K], добавлен 22.10.2013Материалы с малой плотностью (легкие материалы), получение и способы их обработки. Химический состав стекла, его свойства и типы. Основы современной технологии получения стекла. Применение стекломатериалов в авиастроении, автомобилестроении, судостроении.
курсовая работа [1,7 M], добавлен 27.05.2013Технологический процесс получения отливок в литейном цехе, используемые формовочные материалы и приспособления. Свойства формовочных материалов и их применение в зависимости от требуемого результата. Отливочные модели и требования, предъявляемые к ним.
реферат [37,7 K], добавлен 12.07.2009Материаловедение. Общие сведения о строении вещества. Классическое строение, дефекты. Материалы высокой проводимости. Алюминий, свойства, марки, применение. Изоляционные лаки, эмали, компаунды. Полупроводниковые химические соединения. Диэлектрики.
контрольная работа [23,8 K], добавлен 19.11.2008