Механизм влияния различных модификаторов на строение литого металла

Понятие и функциональные особенности модификаторов, их классификация и типы в зависимости от природы воздействия, отличительные особенности: 1-го рода, 2-го и 3-го рода. Условия для выбора нерастворимых добавок с наибольшей модифицирующей способностью.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 05.11.2013
Размер файла 25,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Механизм влияния различных модификаторов на строение литого металла

По природе воздействия модификаторы можно разделить на три вида: модификаторы 1-го рода, 2-го и 3-го рода. Модификаторы 1-го рода влияют на структуру за счет изменения энергетических характеристик (энергия активации и поверхностное натяжение) зарождения новой фазы; модификаторы 2-го рода, как считается в большинстве литературных источников, изменяют структуру влияя на нее, как зародыши твердой фазы; модификаторы 3-го рода - холодильники / инокуляторы - снижают температуру металла и повышают скорость кристаллизации, тормозя тем самым развитие ликвации элементов.

Модификаторы 1-го рода (растворимые)

К модификаторам такого типа относят примеси, неограниченно растворимые в жидкой фазе и мало растворимые в твердой фазе (0,001…0,1%). Эти примеси в свою очередь можно разделить на два типа: не изменяющие поверхностные свойства кристаллизующейся фазы (а) и меняющие поверхностное натяжение на границе расплав-кристалл (б). Растворимые примеси типа «а» могут тормозить рост твердой фазы только за счет концентрационного барьера на границе кристалл-расплав (при коэффициенте распределения k < 1 концентрация второго компонента в приграничном слое жидкой фазы выше, чем в твердой фазе). При этом не происходит изменения энергетических характеристик процесса. Добавки типа «б», снижающие поверхностное натяжение на границе расплав кристалл и избирательно концентрирующиеся по этой причине на поверхности кристаллов (дендритов), называют поверхностно-активными.

Поверхностно-активные вещества способны создать сплошной адсорбционный слой. Это означает, что при практическом отсутствии растворимости поверхностно-активного модификатора в твердой фазе вокруг нее формируется оболочка жидкости, обогащенная элементами модификатора. При этом вязкость расплава оболочки может существенно возрасти, что, в свою очередь, снизит скорость диффузии атомов к зародышу. С понижением притока атомов к зародышу рост кристаллов затрудняется.

Формирование подобного обогащенного примесью / модификатором слоя перед фронтом кристаллизации в условиях продолжающегося теплоотвода приводит к повышению переохлаждения в жидком слое впереди фронта кристаллизации.

Действие добавок типа «б» основано на уменьшении величины поверхностного натяжения у на границе расплав-кристалл. Такие добавки (примеси) называют поверхностно-активными к кристаллизующейся фазе. Они снижают температурный интервал метастабильности (минимальное переохлаждение, превышение которого обеспечивает возникновение центров кристаллизации). Склонность к адсорбции определяется обобщенным отношением (моментом) заряда иона к его кристаллографическому радиусу. Если обобщенный момент иона поверхностно-активной добавки меньше, чем обобщенный момент металла, то эта добавка будет понижать поверхностное натяжение.

Сложность действия растворимых поверхностно-активных примесей связана с тем, что наряду с изменением поверхностного натяжения они могут изменять энергию активации. Примеси, растворимые в жидкой фазе и нерастворимые в твердой фазе, при росте кристаллов создают, как отмечено выше, повышенную концентрацию в жидком слое, прилегающем к растущим кристаллам. Тем самым они препятствуют росту кристаллов и повышают энергию активации, необходимую для обмена атомами между жидкой и твердой фазами. Поэтому обычно поверхностно-активная примесь наряду с понижением поверхностного натяжения, ускоряющим зарождение центров, повышает энергию активации, адсорбируется на поверхности растущих кристаллов, затрудняет переход атомов из жидкой фазы в твердую. При этом повышение энергии активации замедляет зарождение новых центров и снижает скорость их роста.

Таким образом, ввод модификаторов 1-го рода сопровождается изменением поверхностного натяжения и энергии активации в противоположных направлениях. Поскольку повышение энергии активации из-за адсорбции примеси на гранях кристаллов способствует снижению скорости роста кристаллов, то это вызывает огрубление дендритного строения зерна. Таким образом, под действием модификаторов 1-го рода одновременно измельчается макрозерно и укрупняется микрозерно, т.е. оказывается комплексное воздействие на макро- и микроструктуру.

Вышеизложенный механизм действия модификаторов данного типа был подтвержден в экспериментальных исследованиях при изучении модифицирования высоколегированных сталей магнием, бором, церием, барием. При этом было выявлено снижение поверхностного натяжения металла и его склонности к переохлаждению при введении добавок. Минимальному значению поверхностного натяжения модифицированного металла соответствовал наименьший размер зерна.

Модификаторы 1-го рода для различных металлов и сплавов

Металл (сплав)

Модификатор

Примечание

Сталь

Бор, РЗМ, церий кальций, магний, лантан, цирконий, литий, барий, уран

Алюминий и сплавы алюминия с кремнием (силумины) (АЛ2, АЛ4, АЛ9, АК9 и др.)

Натрий (0,006-0,012%), калий, литий, висмут, сурьма 0,1-0,3%, стронций 0,01-0,05% (сурьма и стронций - модификаторы длительного действия), смесь солей (0,1% натрия и 2% смеси фтористого и хлористого натрия)

Переохлаждение 6-15°С. Измельчение эвтектики в системе Al-Si натрием, стронцием. Пластинчатая форма кристаллов кремния переходит в компактную размером 2-5 мкм

Медь Медные сплавы без железа Медные сплавы с железом

Олово, сурьма Ванадий, цирконий, молибден Титан, бор, вольфрам

Чугун

Скандий, лантан

Чугун высокопрочный с шаровидным графитом

Первичное модифицирование сотыми долями магния или церия плюс вторичное (графитизирующее) модифицирование ферросилицием ФС75 для предотвращения появления в чугуне структурно-свободных карбидов

Перевод пластинчатых выделений графита эвтектики железо-графит в шарообразные частицы

Ковкий чугун, подлежащий термообработке

Тысячные доли процента висмута, сурьмы или олова

Магниевые сплавы, содержащие алюминий

Углеродсодержащие вещества (0,3-0,6%), хлорное железо, мел, мрамор, магнезит, гексахлорэтан, углекислый газ, ацетилен. Перегрев расплава-выдержка-охлаждение

Магниевые сплавы, не содержащие алюминий

Цирконий 0,5-0,7% либо кальций 0,1-0,2%

Модификаторы 2-го рода (нерастворимые)

Также на параметры кристаллизации и отражающую ее макроструктуру могут влиять и введенные в расплав твердые частицы. При этом ряд исследователей связывают это влияние именно с контактным действием на процесс зарождения центров кристаллизации. Объясняют это тем, что при введении в расплав нерастворимой примеси со свойствами, близкими к свойствам кристаллизующегося вещества, происходит существенное снижение интервала метастабильности расплава. На этом положении основан, так называемый, принцип П.Д. Данкова, согласно которому гетерогенное зарождение вызывают нерастворимые примеси, обладающие структурным сходством с кристаллизующимся веществом. Такие примеси называют изоморфными с кристаллизующимся веществом и модификаторами 2-го рода. Они имеют параметры кристаллической решетки, близкие к параметрам этого вещества, и ситается, что они обеспечивают, аналогично модификаторам 1-го рода, уменьшение интервала метастабильности и измельчение макрозерна. Изоморфными являются примеси, периоды решетки которых отличаются от периода решетки кристаллизующегося металла не более, чем на 10…15%. Обычное содержание модификаторов этого типа менее 0,1%. Считается необходимым, чтобы центры кристаллизации выделялись в очень дисперсном виде (не более 1 мкм), образуя при этом устойчивую взвесь, не склонную к коагуляции и расслоению во время длительной выдержки расплава в миксере и в процессе литья.

На основе обобщения различных работ сформулированы следующие условия для выбора нерастворимых добавок (частиц) с наибольшей модифицирующей способностью:

- необходимо использовать тугоплавкие нерастворимые вещества, образующие в расплаве самостоятельную фазу;

- частицы твердой фазы должны в максимальной мере подчиняться принципу структурного и размерного соответствия;

- более эффективны дисперсные частицы с большой суммарной поверхностью раздела фаз и сопоставимые по размерам с кластерами порядка 1…10 нм;

- желательно, чтобы частицы обладали металлическими свойствами (по типу химической связи);

- наиболее эффективны частицы устойчивых химических соединений эндогенного происхождения, т.е. образовавшихся в расплаве в результате взаимодействия добавки с одним из компонентов или основой сплава;

- в большинстве случаев эффективные добавки образуют с основой сплава интерметаллиды и эвтектику (или перитектику) с эвтектической точкой, сильно смещенной к базовому компоненту.

Примеры модификаторов 2-го рода

Металл (сплав)

Модификатор

Примечание

Алюминиевые сплавы

Хлористый натрий, титан - до 0,1 5%, ванадий - до 0,15%, скандий, цирконий, бор

Образуются тугоплавкие соединения, изоморфные алюминию: TiAl3, ScAl3, VAl6, ZrAl3, TiB2

Заэвтектические силумины

Фосфор 0,05-0,1% или сера

Введение центров кристаллизации (фосфид алюминия AlP), измельчение первичного кремния

Стали

Алюминий, титан

Образуются тугоплавкие соединения Al2O3, TiN

Серый чугун с пластинчатым графитом

Графититизирующий модификатор - кремний; стабилизирующие модификаторы - марганец, хром, олово, медь, сурьма и др.

Ввод силикокальция СК30 (0,3-0,6%) или ферросилиция ФС75 (0,5-0,8% от веса чугуна). Цель: измельчение графита и уменьшение склонности чугуна к отбелу

модификатор литой металл

Ряд исследователей считают, что модификаторы 2-го рода могут также образовываться из модификаторов 1-го рода. Так, характер действия модификаторов 1-го рода, например бора в стали, может меняться при образовании химических соединений модификатора с другими элементами. При этом новое химическое соединение будет в конечном счете играть роль самостоятельного модификатора. Эти соединения при одних условиях могут быть поверхностно-активными, а при других наоборот инактивными (не снижающими, а повышающими поверхностное натяжение). Так, бор в стали может образовать стойкое химическое соединение с железом FеВ2, которое послужит центром кристаллизации как модификатор 2 рода (нерастворимая примесь). При вводе алюминия в сталь возможно образование нитридов алюминия, которые также создадут центры кристаллизации.

При модифицировании серого чугуна кремнием с целью получения чугуна с пластинчатым графитом в расплаве образуется «силикатная муть» (кремний, являющийся графитизатором, способствует появлению графитной спели - центров графитизации). При этом устраняется отбел, измельчается структура (формируются мелкие пластинки графита). Одновременно уменьшается количество графитовых включений и повышаются механические свойства, их однородность, обеспечивается высокая износостойкость, обрабатываемость литых изделий. Наилучшие результаты модифицирования достигаются при пониженном содержании кремния и углерода в исходном сером чугуне.

Модифицирование добавками, способствующими появлению центров кристаллизации, сопровождается уменьшением переохлаждения (в отличие от модифицирования поверхностно-активными добавками, адсорбирующимися на поверхности растущих кристаллов).

Модификаторы 3-го рода - инокуляторы

Ввод в кристаллизующийся расплава инокуляторов обеспечивает повышение однородности и дисперсности литой структуры, оптимизацию формы и распределения неметаллических включений, уменьшение некоторых литейных дефектов (пористости, рыхлости, осевой и внеосевой ликвации), что существенно повышает уровень и изотропность свойств литого металла:

- при примерно равной прочности на 30…50% и более (до 2,5…3,0 раз) повышаются пластические характеристики металла и на 25…30% его ударная вязкость;

- максимальный эффект повышения пластических свойств в срединной (на половине радиуса) и осевой зонах свидетельствует о существенном повышении физико-химической однородности и изотропности свойств металла по сечению слитков;

- снижение анизотропии свойств суспензионного металла в продольном направлении в поверхностной зоне связано с устранением структуры столбчатых кристаллитов, которая обычно характерна для этой области.

- повышение уровня и изотропности характеристик пластичности и ударной вязкости стали, обусловленное введением порошков, сохраняется и после ковки (до 5…10-кратного укова);

- по пластичности слитки, отлитые с вводом экзогенных инокуляторов, приближаются к этому показателю кованного металла либо достигают максимальных значений уже при небольших 1,5- и 3-кратном уковах, ударная вязкость не снижается после 5…10-кратного укова.

Однако, несмотря на улучшение макроструктуры слитков и отливок, использование металлического порошка, литой дроби в качестве инокуляторов приводит к увеличению загрязненности стали неметаллическими включениями, в основном оксидами. Ограниченность применения данной технологии вызвана сложностью технологической цепочки получения дисперсных инокуляторов (порошка, дроби), для которых необходима защита их от окисления при хранении, транспортировке и вводе в слиток. Кроме того, имеющиеся способы и устройства к ним для обработки жидкой стали дисперсными инокуляторами не получили широкого внедрения из-за недостаточно отработанной технологии ввода, сложности эксплуатации и ряда конструктивных недостатков.

Перспективным направлением в области совершенствования технологии ввода инокуляторов и управления структурой металла является способ формирования инокуляторов в струе при отливке крупных слитков в вакууме. При таком способе разливке, предложенном Жульевым С.И., вводимые частицы имеют один химический состав с расплавом. Образование твердых частиц в этом случае обеспечивается дополнительным разделением струи расплава с созданием условий кристаллизации капель во время попадания их в изложницу.

Попадая в металл инокуляторы приводят к локальному охлаждению металлического расплава, при этом сначала на них происходит намораживание корочки твердой фазы, которая в дальнейшем вследствие нагрева от окружающего расплава расплавляется, позже расплавляется и сам инокулятор. Таким образом инокуляторы в расплаве отбирают тепло на собственный нагрев и расплавление, в результате чего снижается температура расплава. Эффект охлаждения вносимый им приводит в итоге к росту скорости кристаллизации, что в свою очередь отражается на снижении ликвационную неоднородность в заготовке и повышении однородности механических свойств в крупных кованных изделиях ответственного назначения. С увеличением массы вводимых инокуляторов скорость кристаллизации возрастает.

Комплексные модификаторы

Применение комплексных модификаторов продиктовано несколькими причинами:

- совместное действие двух и более модификаторов усиливает эффект, получаемый при использовании одиночного модификатора. Это связано с отмеченным выше зарождением центров кристаллизации на нерастворимых примесях в слое жидкой фазы с диффузионным переохлаждением, обусловленным введением растворимой примеси (особенно поверхностно-активной);

- при использовании комплексного модификатора создается возможность минимизировать содержание каждого из его компонентов, что облегчает выполнение условий ограничения состава сплава по примесям;

- сочетание модификаторов с физическими воздействиями усиливает эффект от действия модификаторов и создает возможность получения особо-мелких и специальных структур.

Различают комплексные модификаторы трех типов:

- рафинирующие, содержащие активные элементы Mn, Si, Са, Mg, Al, P3M и др.;

- упрочняющие, содержащие карбиды, бориды, нитриды, которые образуются в сплаве в результате взаимодействия соответствующих элементов и способствуют дисперсионному упрочнению основы;

- рафинирующе-упрочняющие, которые содержат активные элементы и соединения.

Модификаторы, содержащие такие активные элементы, как РЗМ, Ва, Са, являются эффективным средством изменения природы и формы неметаллических включений, получения наиболее предпочтительного типа оксидных включений в оболочке сульфидов.

Получило применение модифицирование стали нитридами ванадия, титана, циркония, алюминия путем введения в сталь специальных лигатур или азотированных ферросплавов. В результате в стали при закалке и последующем отпуске выделяются нитридные и карбонитридные дисперсные частицы. При модифицировании конструкционных сталей нитридами ванадия происходит измельчение аустенитного зерна на 3-4 балла, повышение пластичности, ударной вязкости и прочности.

Комплексные модификаторы

Металл (сплав)

Модификатор

Примечание

Серый чугун

Fe-Si-Ca + Al, Ti, Ce, La

Серый чугун с пониженным углеродным эквивалентом С + 0,3 Si (3,5-3,7)

Si-Mn-Zr

Цель: получение чугуна с пластинчатым графитом

Сталь

РЗМ с силикокальцием, ферромарганцем, ферросилицием

Цель: удаление сульфидов церия

Сталь

Ti-B-Ca, Ti-Ce-B, Mg-Zr-Ce, Ti-V-Ca

Алюминиевые сплавы

Ti+В.смеси хлористых и фтористых солей (хлористый натрий, фтористый натрий, хлористый калий и криолит)

Цель: получение более дисперсных и стабильных интерметаллидов

Ковкий чугун

Al + Bi + B

Цель: сокращение продолжительности отжига

Высокопрочный чугун с вермикулярным графитом

Mg + Ti, Y, Ce, Ca

Цель: получение разобщенных, утолщенных включений с округлыми концами (компактнее пластинчатого графита)

Особенностью модифицирования стали комплексными сплавами является то, что параллельно с измельчением структуры меняются природа и форма неметаллических включений, снижается в 1,5-2,0 раза загрязненность границ аустенитных зерен оксидными, сульфидными и нитридными включениями, повышается равномерность распределения структурных составляющих, обеспечивается увеличение пластичности и ударной вязкости стали.

При производстве чугуна с шаровидным графитом наряду с раздельными модификаторами (магний либо церий) применяют комплексный модификатор (магний + церий). Добавка церия к магнию нейтрализует действие вредных примесей (титан, алюминий, свинец, сурьма, мышьяк, висмут, олово), крайне вредно влияющих на качество чугуна, модифицированного магнием. Примеры комплексных модификаторов приведены в табл. 3

Обычно без модифицирования величина переохлаждения цветных металлов и сплавов доходит до 7-10°С. Как правило, при модифицировании в расплаве появляется большое число центров кристаллизации. В результате выделяется теплота кристаллизации и переохлаждение почти исчезает. Дальнейший рост центров кристаллизации зависит от характера влияния примесей либо физических воздействий на обстановку в пограничной зоне кристалл-расплав. В большинстве случаев растворимые либо нерастворимые примеси оказывают тормозящее действие на рост кристаллов, при этом конкретный механизм торможения роста зависит от природы примеси и механизма ее модифицирующего действия.

Размещено на Allbest.ru

...

Подобные документы

  • Определение товара, его физические свойства. Физико-химические и эксплуатационные свойства судовых топлив. Ассортимент гидравлических масел, система их обозначения, классы вязкости. Классификация присадок к маслам, особенности модификаторов трения.

    контрольная работа [59,1 K], добавлен 26.10.2010

  • Понятие и назначение уплотнителей, их классификация и типы: контактные и бесконтактные. Структура и внутреннее устройство уплотнителей, их эксплуатационные и функциональные особенности. Типы герметизаторов и особенности их действия, оценка необходимости.

    лекция [75,8 K], добавлен 24.12.2013

  • Классификация электрической сварки плавлением в зависимости от степени механизации процесса сварки, рода тока, полярности, свойств электрода, вида защиты зоны сварки от атмосферного воздуха. Особенности дуговой сварки под флюсом и в среде защитных газов.

    презентация [524,2 K], добавлен 09.01.2015

  • Классификация и особенности приводов. Принципы и критерии их выбора. Типы преобразующих механизмов. Общие сведения, функции и классификация систем управления и средства блокировки. Типы и построение цикловых диаграмм работы механизированных устройств.

    контрольная работа [468,4 K], добавлен 16.07.2015

  • Классификация металла в зависимости от профиля и габаритных размеров, определяющих условия перевозки. Перевозка продукции металлургической промышленности. Специализированный подвижной состав. Сохранение цилиндрической формы и прямолинейности труб.

    контрольная работа [11,6 K], добавлен 22.11.2010

  • Физическая сущность пластической деформации. Общая характеристика факторов, влияющих на пластичность металла. Особенности процесса нагрева металла, определение основных параметров. Специфика использования и отличительные черты нагревательных устройств.

    лекция [21,6 K], добавлен 21.04.2011

  • Агрегатные состояния вещества: твёрдое, жидкое и газообразное; переход между ними. Термодинамические условия и схема кристаллизации металла. Свободная энергия металла в жидком и твердом состоянии. Энергия металла при образовании зародышей кристалла.

    контрольная работа [1,5 M], добавлен 12.08.2009

  • Понятие и функциональные особенности валов и осей, их классификация и типы, общая характеристика и особенности конструкции. Нагрузки на валы и расчетные схемы, расчет на прочность, принципы определения жесткости, максимального прогиба, их нормирование.

    презентация [130,3 K], добавлен 24.02.2014

  • Понятие и функциональные особенности подшипников, оценка их роли и значения в общем механизме машины. Основные типы и спецификация подшипников: качения и скольжения, их классификация, механика, условное обозначение в России, преимущества и недостатки.

    реферат [857,0 K], добавлен 23.11.2013

  • Получение полиорганосилоксановых смол в результате гидролиза и последующей поликонденсации мономерных соединений кремния. Основные физические и химические свойства полиорганосилаксановых смол, их производство и применение. Цели добавления модификаторов.

    реферат [189,2 K], добавлен 07.05.2016

  • Описание методов подготовки различных добавок. Технологическая схема получения дегитратированной глины во вращающейся печи. Естественные методы обработки глины и ее предварительное рыхление. Дозирования глины и различных добавок, схема ящичного питателя.

    реферат [2,8 M], добавлен 25.07.2010

  • Процесс литья чугунных заготовок. Получение новых составов комплексных модификаторов, разработка установки для брикетирования пылевидных отходов дробления лигатур. Расчет капитальных вложений и срока окупаемости проекта, безопасность производства.

    дипломная работа [736,7 K], добавлен 12.01.2018

  • Группы и типы станков с числовым программным управлением, их отличительные признаки и сферы применения, функциональные особенности. Классификация станков по точности, по технологическим признакам и возможностям, их буквенное обозначение на схемах.

    реферат [506,2 K], добавлен 21.05.2010

  • Классификация и характеристика пищевых добавок в зависимости от технологического предназначения. Основные цели введения пищевых добавок. Различие между пищевыми добавками и вспомогательными материалами, употребляемыми в ходе технологического процесса.

    контрольная работа [28,1 K], добавлен 20.04.2019

  • Понятие и функциональные особенности подшипников качения, их отличительные признаки от подшипников скольжения. Основные типы подшипников качения: шарикоподшипники радиальные однорядные, с одной и двумя защитными шайбами, с канавкой на наружном кольце.

    реферат [22,9 K], добавлен 15.05.2012

  • Любой механизм помимо других свойств должен обладать прочностью, т.е. способностью его деталей, соединений выдерживать, не разрушаясь, действие внешних сил. Под действием внешних сил звенья механизмов изменяют свою форму, размеры, т. е. деформируются.

    реферат [1,8 M], добавлен 13.01.2009

  • Особенности сгибания заготовок из тонколистового металла в тисках и при помощи оправок, поочередность всех операций, характеристика инструментов. Анализ типичных дефектов при гибке металла. Этапы гибки прямоугольной скобы и металла круглого сечения.

    презентация [399,9 K], добавлен 16.04.2012

  • Общие сведения о подшипниках скольжения, их классификация и типы, функциональные особенности и сферы применения. Особенности работы и методика расчета, конструкции и материалы деталей. Статическая и динамическая грузоподъемность подшипников, их оценка.

    презентация [374,9 K], добавлен 24.02.2014

  • Выбор и обоснование способов сварки и сварочных материалов, рода тока и полярности. Характеристика основного металла. Описание механизированного сборочно-сварочного приспособления. Расчет режимов для ручной дуговой и механизированной сварки в среде СО2.

    курсовая работа [221,6 K], добавлен 20.01.2014

  • Характеристика рельсовой стали - углеродистой легированной стали, которая легируется кремнием и марганцем. Химический состав и требования к качеству рельсовой стали. Технология производства. Анализ производства рельсовой стали с применением модификаторов.

    реферат [1022,5 K], добавлен 12.10.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.