Основы метрологии: методы проведения измерений
Функциональная схема измерения методом непосредственной оценки. Признаки методов сравнения. Характеристика техник проведения метрологических наблюдений. Классификация измерений по условиям, определяющим точность результатов и способу их выражения.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 12.11.2013 |
Размер файла | 407,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
1. Метод непосредственной оценки и метод сравнения с мерой
1.1 Дифференциальный метод
1.2 Метод замещения
1.3 Нулевой метод
1.4 Метод совпадений
1.5 Метод противопоставлений
2. Прямые и косвенные измерения
3. Другие виды измерений
Список использованной литературы
1. Метод непосредственной оценки и метод сравнения с мерой
Все измерения могут производиться различными методами. Различают два основных метода измерений: метод непосредственной оценки и методы сравнения c мерой. Метод непосредственной оценки характеризуется тем, что значение измеряемой величины определяется непосредственно по отсчетному устройству измерительного прибора, заранее градуированного в единицах измеряемой величины. Этот метод является наиболее простым и поэтому широко применяется при измерении различных величин, например: измерение веса тела на пружинных весах, силы электрического тока стрелочным амперметром, разности фаз цифровым фазометром и т.д.
Функциональная схема измерения методом непосредственной оценки приведена на рисунке.
Приборы непосредственной оценки всегда содержат измерительный преобразователь, который преобразует измеряемую величину в другую, доступную для сравнения наблюдателем или автоматическим устройством. Так, в стрелочных приборах происходит преобразование измеряемой величины в угол поворота подвижной части, который отмечается стрелкой. По положению стрелки, т. е. сравнением угла поворота с делениями на шкале, находится значение измеряемой величины. Мерой в приборах непосредственной оценки служат деления шкалы отсчетного устройства. Они поставлены не произвольно, а на основании градуировки прибора. Градуировка прибора непосредственной оценки состоит в том, что на его вход от меры подается величина заданного размера и отмечается показание прибора. Этому показанию затем присваивается значение известной величины. Таким образом, деления шкалы отсчетного устройства являются как бы заменителем ("отпечатком") значения реальной физической величины и поэтому могут быть использованы непосредственно для нахождения значений измеряемых прибором величин. Следовательно, все приборы непосредственной оценки фактически реализуют принцип сравнения с физическими величинами. Но это сравнение разновременное и осуществляется опосредованно, с помощью промежуточного средства - делений шкалы отсчетного устройства.
Методы сравнения с мерой - методы измерений, в которых известную величину сравнивают с величиной, воспроизводимой мерой. Эти методы по сравнению с методом непосредственной оценки более точны, но несколько сложены. Группа методов сравнения с мерой включает в себя следующие методы: противопоставления, нулевой, дифференциальный, совпадения и замещения.
Определяющим признаком методов сравнения является то, что в процессе каждого измерительного эксперимента происходит сравнение двух однородных независимых друг от друга величин - известной (воспроизводимой мерой) и измеряемой. При измерениях методами сравнения используются реальные физические меры, а не их "отпечатки".
Сравнение может быть одновременным, когда мера и измеряемая величина воздействуют на измерительный прибор одновременно, и разновременным, когда воздействие измеряемой величины и меры на измерительный прибор разнесено во времени. Кроме того сравнение может быть непосредственным и опосредствованным. В первом случае измеряемая величина и мера непосредственно воздействуют на устройство сравнения, а во втором - через другие величины, однозначно связанные с известной и измеряемой величинами.
Одновременное сравнение осуществляется обычно методами: противопоставления, нулевым, дифференциальным и совпадения, а разновременное - методом замещения.
1.1 Дифференциальный метод
Дифференциальный метод представляет собой метод сравнения с мерой, в котором на измерительный прибор (обязательно прибор сравнения) воздействует разность измеряемой величины и известной величины, воспроизводимой мерой, причем эта разность не доводится до нуля, а измеряется измерительным прибором прямого действия.
На рисунке показана функциональная схема дифференциального метода.
Здесь мера имеет постоянное значение Х 0, разность измеряемой величины Х и меры Х 0, т.е.
= Х - Х 0,
не равна нулю и измеряется измерительным прибором. Результат измерения находятся как:
Y = X0 + .
То обстоятельство, что здесь измерительный прибор измеряет не всю величину Х, а только её часть позволяет уменьшить влияние на результат измерения погрешности измерительного прибора, причем, влияние погрешности измерительного прибора тем меньше, чем меньше разность .
В приведенном выше примере измерения напряжения дифференциальным методом использовалось непосредственное сравнение.
Другим примером дифференциального метода измерения может служить определение отклонения сопротивления резистора от номинала неуравновешенным (процентным) мостом (здесь реализуется опосредствованное сравнение).
1.2 Метод замещения
Метод замещения есть метод сравнения с мерой, в котором измеряемую величину замещают известной величиной, воспроизводимой мерой.
Функциональная схема метода замещения изображена на рисунке.
В нем используется измерительный прибор непосредственной оценки.
Техника измерения состоит в следующем. Сначала на вход измерительного прибора подают измеряемую величину Х и отмечают показания прибора (отсчет) Y1. После этого вместо измеряемой величины на тот же самый вход (это очень существенно) прибора подают величину Х 0, воспроизводимую мерой. В этом случае показание прибора становится равным Y2. Изменяя величину, воспроизводимую мерой, добиваются равенства показаний, т. е. Y1= Y2. При этом можно утверждать, что Х = Х 0 независимо от погрешности измерительного прибора. Действительно, в первом случае получаем:
Y1= X + 1,
где 1 - погрешность измерительного прибора при получении счета Y1.
При воздействии на прибор меры:
Y2= X + 2.
Здесь 2 - погрешность измерительного прибора при получении счета Y2.
Поскольку мы добиваемся одинаковых показаний (Y1=Y2), а интервал времени между двумя измерениями невелик, то на одной и той же отметке шкалы прибора погрешность одинакова, т.е. 1=2. Следовательно, из равенства Y1 = Y2 или:
X + 1 = X + 2
вытекает, что Х = Х 0.
Исключение погрешности измерительного прибора из результата измерений является новым достоинством метода замещения. В нулевом методе измерения погрешность измерительного прибора проявляет себя тем, что нулевое показание может не соответствовать равенству измеряемой величины и меры, а в дифференциальном методе она представляет собой погрешность измерения разности меры и измеряемой величины. Для получения большой точности измерения нулевым и дифференциальным методом необходимо, чтобы погрешности измерительных приборов были невелики. А вот метод замещения не требует этого условия! Даже если погрешность измерительного прибора достаточно велика, это не скажется на результате измерения. Таким образом, методом замещения можно осуществить точное измерение, имея прибор с большой погрешностью. Нетрудно сообразить, что точность измерения методом замещения определяется погрешностью меры. Правда, при более строгом подходе к методу замещения следует учитывать два обстоятельства.
Во-первых, здесь сравнение разновременное, а за время между двумя измерениями погрешность измерительного прибора может несколько измениться, так что равенство 1=2 несколько нарушится. Теперь становится ясно, почему измеряемая величина и мера должны подаваться на один и тот же вход прибора. Это, прежде всего, связано с тем, что погрешность измерительного прибора на разных входах даже при одинаковых показаниях может быть разной!
Во-вторых, метод замещения сводится к получению одинаковых показаний прибора. Само равенство показаний может быть установлено с конечной точностью. А это также ведет к погрешности измерения. Точность установления равенства показаний будет больше в приборе, обладающем большей чувствительностью. Следовательно, при измерении методом замещения следует использовать пусть не точный, но зато чувствительный и быстродействующий прибор. Тогда остаточная погрешность, обусловленная измерительным прибором, будет невелика.
Метод замещения является самым точным из всех известных методов и обычно используется для проведения наиболее точных (прецизионных) измерений. Ярким примером метода замещения является взвешивание с поочередным помещением измеряемой массы и гирь на одну и ту же чашку весов (вспомните - на один и тот же вход прибора). Известно, что таким методом можно правильно измерить массу тела, имея неверные весы (погрешность прибора), но никак не гири! (погрешность меры).
Сравнивая между собой метод замещения и метод непосредственной оценки, мы обнаружим их разительное сходство. Действительно, метод непосредственной оценки по своей сути представляет метод замещения. Почему он выделен в отдельный метод? Все дело в том, что при измерении методом непосредственной оценки мы выполняем только первую операцию - определение показаний. Вторая операция - градуировка (сравнение с мерой) производится не при каждом измерении, а лишь в процессе производства прибора и его периодических поверках. Между применением прибора и его предыдущей поверкой может лежать большой интервал времени, а погрешность измерительного прибора за это время может значительно измениться. Это и приводит к тому, что метод непосредственной оценки дает обычно меньшую точность измерения, чем метод сравнения.
1.3 Нулевой метод
Нулевой метод является разновидностью метода противопоставления, в котором результирующий эффект воздействия величин на прибор сравнения доводят до нуля. Функциональная схема нулевого метода измерения приведена на рисунке.
Здесь измеряемая величина X и мера X0 воздействуют на два входа измерительного прибора сравнения. Результирующий эффект воздействия определяется разностью этих величин, т. е.
Y = X - X0.
Изменяя величину, воспроизводимую мерой (это схематически указано на рисунке стрелкой), можно довести величину Y до 0. Это обстоятельство отмечается индикатором нуля. Если Y = 0, то Х = Хо, результат измерения Y есть полученное значение меры, т. е. Y = X0.
Поскольку на индикатор нуля воздействует разность величин, то его предел измерения может быть выбран меньшим, а чувствительность большей, чем у прибора для измерения X методом непосредственной оценки. Точность индикации равенства двух величин может быть весьма большой. А это ведет к повышению точности измерения. Погрешность измерения нулевым методом определяется погрешностью меры и погрешностью индикации нуля. Вторая составляющая обычно много меньше первой, практически точность измерения нулевым методом равна точности меры.
Примерами нулевых методов измерений являются: измерение массы на равноплечих весах с помещением измеряемой массы и уравновешивающих её гирь на двух чашках весов и полным уравновешиванием весов или измерение напряжения путем компенсации его напряжением образцового источника (в обоих случаях осуществляется непосредственное сравнение); а также измерение электрического сопротивления мостом с полным его уравновешиванием (опосредствованное сравнение).
Нулевой метод измерения требует обязательного применения многозначных мер. Точность таких мер всегда хуже однозначных мер, кроме того мы можем не иметь меры переменной величины. В таком случае нулевой метод не применим.
1.4 Метод совпадений
Метод совпадений (или метод "нониуса") представляет собой метод сравнения с мерой, в котором разность между измеряемой величиной и величиной, воспроизводимой мерой, измеряют, используя совпадение отметок шкал или периодических сигналов.
Этот метод применяется в тех случаях, когда измеряемая величина меньше цены деления заданной меры. При этом применяются две меры с разными ценами деления, которые отличаются на размер оцениваемого разряда отсчетов.
Примером измерения методом совпадения может служить измерение длины детали с помощью штангенциркуля с нониусом. Другим примером - измерение частоты вращения детали с помощью мигающей лампы стробоскопа: наблюдая положение метки на вращающейся детали в моменты вспышек лампы, по частоте вспышек и смещению метки определяют частоту вращения детали. Метод "нониуса" находит также широкое применение при измерении временных интервалов двух близких частот (биений) и в других случаях.
1.5 Метод противопоставлений
Метод противопоставления - метод сравнения с мерой в котором измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения, с помощью которого устанавливается соотношение между этими величинами. Функциональная схема метода противоставления приведена на рис. 8.
В этом методе измеряемая величина Х и мера Х 0 воздействуют на два входа прибора сравнения. Результирующий эффект воздействия определяется разностью этих величин, т. е. X = Х - Х 0 и снимается с отсчетного устройства прибора сравнения. Результат измерения находят как:
Y = X0 + X
Этот метод удобен, если имеются точная многозначная мера и несложные устройства сравнения. Примером этого метода является взвешивание груза на равноплечих весах с помещением измеряемой массы и уравновешивающих её гирь на двух чашках весов и с полным уравновешиванием весов. При этом измеряемая масса определяется как сумма массы гирь, её уравновешивающих, и показания по шкале весов. Метод противопоставления позволяет значительно уменьшить воздействие на результат измерений влияющих величин, поскольку последние более или менее одинаково искажают сигналы, как в цепи преобразования измеряемой величины, так и в цепи преобразования величины, воспроизводимой мерой. Отсчетное устройство прибора сравнения реагирует на разность сигналов, вследствие чего эти искажения в некоторой степени компенсируют друг друга. Этот метод также применяют при измерении ЭДС, напряжения, тока и сопротивления.
2. Прямые и косвенные измерения
Прямые и косвенные измерения различают в зависимости от способа получения результата измерений. Прямое измерение - измерение, при котором искомое значение физической величины получают непосредственно. В примечании отмечено, что при строгом подходе существуют только прямые измерения и предлагается применять термин прямой метод измерений. Это предложение нельзя назвать удачным (см. далее классификацию методов измерений). Как примеры прямых измерений приведены: измерение длины детали микрометром, силы тока амперметром, массы на весах. измерение метод непосредственная сравнение
В ходе прямых измерений искомое значение величины определяют непосредственно по устройству отображения измерительной информации применяемого средства измерений. Формально без учета погрешности измерения они могут быть описаны выражением Q = х, где Q - измеряемая величина, х - результат измерения.
Косвенными измерениями называют такие измерения, при которых значение искомой величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. При косвенных измерениях измеряют не собственно определяемую величину, а другие величины, функционально с ней связанные. Значение измеряемой косвенным путем величины X находят вычислением по формуле:
X = F(Y1, Y2, …,Yn)
где Y1, Y2, … Yn - значения величин, подученных путем прямых измерений. Примером косвенного измерения является определение электрического сопротивления с помощью амперметра и вольтметра. Здесь путем прямых измерений находят значения падения напряжения U на сопротивлении R и ток I через него, а искомое сопротивление R находят по формуле:
R = U/I.
Операцию вычисления измеряемой величины может производить как человек, так и вычислительное устройство, помещенное в прибор.
Прямые и косвенные измерения в настоящее время широко используются в практике и являются наиболее распространенными видами измерений.
3. Другие виды измерений
По числу наблюдений измерения подразделяются на:
- обыкновенные измерения - измерения, выполняемые с однократным наблюдением;
- статистические измерения - измерения с многократными наблюдениями.
Наблюдение при измерении - экспериментальная операция, выполняемая в процессе измерений, в результате которой получают одно значение из группы значений величин, подлежащих совместной обработке для получения результатов измерений.
Результат наблюдения - результат величины, получаемый при отдельном наблюдении.
По характеру зависимости измеряемой величины от времени измерения разделяются на:
- статические, при которых измеряемая величина остается постоянной во времени в процессе измерения;
- динамические, при которых измеряемая величина изменяется в процессе измерения и является непостоянной во времени.
При динамических измерениях для получения результата измерения необходимо учитывать это изменение. А для оценки точности результатов динамических измерений необходимо знание динамических свойств средств измерений.
По числу измеряемых мгновенных значений в заданном интервалы времени измерения подразделяются на дискретные и непрерывные (аналоговые).
Дискретные измерения - измерения, при которых на заданном интервале времени число измеряемых мгновенных значений конечно.
Непрерывные (аналоговые) измерения - измерения, при которых на заданном интервале времени число измеряемых мгновенных значений бесконечно.
По условиям, определяющим точность результатов, измерения бывают:
- максимально возможной точности, достигаемой при существующем уровне техники;
- контрольно-поверочные, погрешность которых не должна превышать некоторое заданное значение;
- технические, в которых погрешность результата определяется характеристиками средств измерений.
По способу выражения результатов измерения различают абсолютные и относительные измерения.
Абсолютные измерения - измерения, основанные на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант.
Относительные измерения - измерение отношения величины к одноименной величине, играющей роль единицы, или измерения величины по отношению к одноименной величине, принимаемой за исходную.
Список использованной литературы
1. РМГ 29-99 ГСИ. Метрология. Основные термины и определения.
2. ГОСТ 8.207-76 ГСИ. Прямые измерения с многократными наблюдениями. Методы обработки результатов наблюдений. Основные положения.
3. Пронкин Н.С. Основы метрологии: Практикум по метрологии и измерениям. - М.: Логос, 2007.
4. Ю.В. Димов. Метрология, стандартизация и сертификация.
5. Кострикин А.М. Теоретическая метрология: Учебное пособие.
6. Гвоздев В.Д. Прикладная метрология: Величины и измерения. - М.:МИИТ, 2011.
Размещено на Allbest.ru
...Подобные документы
Теоретические основы и главные понятия метрологии. Методы нормирования метрологических характеристик средств измерений, оценки погрешностей средств и результатов измерений. Основы обеспечения единства измерений. Структура и функции метрологических служб.
учебное пособие [1,4 M], добавлен 30.11.2010Этапы проведения измерений. Вопрос о предварительной модели объекта, обоснование необходимой точности эксперимента, разработка методики его проведения, выбор средств измерений, обработка результатов измерений, оценки погрешности полученного результата.
реферат [356,6 K], добавлен 26.07.2014Общая характеристика объектов измерений в метрологии. Понятие видов и методов измерений. Классификация и характеристика средств измерений. Метрологические свойства и метрологические характеристики средств измерений. Основы теории и методики измерений.
реферат [49,4 K], добавлен 14.02.2011Методика и основные этапы обработки исправленных результатов прямых равнорассеянных наблюдений, механизм и значение проведения проверки нормальности их распределения. Результаты наблюдений многократных прямых измерений, их анализ и формирование выводов.
курсовая работа [96,7 K], добавлен 06.04.2015Общие вопросы основ метрологии и измерительной техники. Классификация и характеристика измерений и процессы им сопутствующие. Сходства и различия контроля и измерения. Средства измерений и их метрологические характеристики. Виды погрешности измерений.
контрольная работа [28,8 K], добавлен 23.11.2010Сведения о методах и видах измерений. Описание теории и технологической схемы процесса искусственного охлаждения. Метрологическое обеспечение процесса. Выбор и обоснование системы измерений, схема передачи информации. Расчет погрешностей измерения.
курсовая работа [437,4 K], добавлен 29.04.2014Обработка результатов прямых равноточных и косвенных измерений. Нормирование метрологических характеристик средств измерений классами точности. Методика расчёта статистических характеристик погрешностей в эксплуатации. Определение класса точности.
курсовая работа [1,2 M], добавлен 16.06.2019Основные термины и определения в области метрологии. Классификация измерений: прямое, косвенное, совокупное и др. Классификация средств и методов измерений. Погрешности средств измерений. Примеры обозначения класса точности. Виды измерительных приборов.
презентация [189,5 K], добавлен 18.03.2019Классификация средств измерения. Виды поверки и поверочная схема. Сущность и сравнительная характеристика методов поверки: непосредственное сличение, прямые и косвенные измерения. Порядок разработки и требования к методикам поверки средств измерения.
реферат [24,5 K], добавлен 20.12.2010Исследование приемов сравнения измеряемой величины с ее единицей в соответствии с реализованным принципом измерений. Методы прямых измерений: оценки, противопоставления, полного замещения. Сертификат пожарной безопасности. Добровольная сертификация.
контрольная работа [926,7 K], добавлен 07.01.2015Метрология как наука, история ее становления и значение в контроле качества продукции. Измерение как экспериментальные процедуры, их классификация по различным признакам и назначение, этапы и принципы проведения. Точность и погрешность измерений.
реферат [198,2 K], добавлен 01.08.2009История развития мер и измерительной техники. Основные единицы системы измерений. Классификация видов измерений, механические средства для их проведения. Применение щуповых приборов для определения параметров шероховатости поверхности контактным методом.
курсовая работа [1,7 M], добавлен 16.04.2014Способы нормирования и формы выражения метрологических характеристик. Обозначение классов точности средств измерений в документации. Нормативные документы по стандартизации в России. Государственные и отраслевые стандарты. Правила по стандартизации.
контрольная работа [39,6 K], добавлен 11.06.2014Цели разработки государственных стандартов Российской Федерации. Определения стандартов, условные обозначения, применение. Альтернативы основному методу определения стандартных отклонений повторяемости и воспроизводимости стандартного метода измерений.
реферат [47,3 K], добавлен 12.11.2013Общие задачи метрологии как науки о методах и средствах измерений. Метрологическое обеспечение машиностроения, качество измерений. Метрологическая экспертиза документации и поверка средств измерений. Ремонт штангенциркулей, юстировка и поверочные схемы.
презентация [680,0 K], добавлен 15.12.2014Технические средства электрических измерений. Классификация электроизмерительных приборов. Приборы непосредственной оценки и приборы сравнения, их принцип действия, преимущества и недостатки. Измерение неэлектрических величин электрическими методами.
курсовая работа [1,5 M], добавлен 24.07.2012Составление эскиза детали и характеристика средств измерений. Оценка результатов измерений и выбор устройства для контроля данной величины. Статистическая обработка результатов, построение гистограммы распределения. Изучение ГОСТов, правил измерений.
курсовая работа [263,8 K], добавлен 01.12.2015Основные сведения о физических величинах, их эталоны. Система международных единиц, классификация видов и средств измерений. Количественные оценки погрешности. Измерение напряжения и силы тока. Назначение вольтметра, осциллографа и цифрового частотомера.
шпаргалка [690,1 K], добавлен 14.06.2012Определение значений измеряемых величин. Выборочные совокупности результатов измерений. Статистические характеристики погрешностей результатов прямых многократных наблюдений. Наличие аномальных значений (выбросов). Среднее квадратичное отклонение.
задача [13,5 K], добавлен 27.07.2010Расчет результатов прямых измерений. Выявление грубых ошибок. Расчет коэффициентов корреляции результатов наблюдений. Расчет среднего значения величины косвенного измерения. Расчет абсолютных коэффициентов влияния. Предельные инструментальные погрешности.
курсовая работа [125,4 K], добавлен 08.01.2013