Коррозия металла
Классификация коррозионных процессов: химические и электрохимические; газовые, атомсферные, радиационные. Смешанная кислородно-водородная деполяризация. Полная катодная поляризационная кривая. Влияние легирующих присадок на жаропрочность и жаростойкость.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 23.11.2013 |
Размер файла | 269,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. Классификация коррозионных процессов
Коррозия - это самопроизвольный процесс разрушения материалов и изделий из них под химическим воздействием окружающей среды.
Коррозия металлов - разрушение металлов вследствие физико-химического воздействия внешней среды, при котором металл переходит в окисленное (ионное) состояние и теряет присущие ему свойства.
Коррозионные процессы классифицируют:
· По механизму процесса различают химическую и электрохимическую коррозию металлов.
Химическая коррозия -- это процесс взаимодействия металла с коррозионной средой, при котором окисление металла и восстановление окислительного компонента среды протекают единовременно в одном акте. Продукты взаимодействия пространственно не разделены.
Электрохимическая коррозия -- это процесс взаимодействия металла с коррозионной средой (раствором электролита), при котором ионизация атомов металла и восстановление окислительного компонента коррозионной среды протекают не в одном акте и их скорости зависят от электродного потенциала.
· По виду коррозионной среды и условиям протекания различают несколько видов коррозии.
Газовая коррозия -- это химическая коррозия металлов в газовой среде при минимальном содержании влаги (как правило не более 0,1 %) или при высоких температурах. В химической и нефтехимической промышленности такой вид коррозии встречается часто. Например, при получении серной кислоты на стадии окисления диоксида серы, при синтезе аммиака, получении азотной кислоты и хлористого водорода, в процессах синтеза органических спиртов, крекинга нефти и т.д.
Атмосферная коррозия -- это коррозия металлов в атмосфере воздуха или любого влажного газа.
Подземная коррозия -- это коррозия металлов в почвах и грунтах.
Биокоррозия -- это коррозия, протекающая под влиянием жизнедеятельности микроорганизмов.
Контактная коррозия -- это вид коррозии, вызванный контактом металлов, имеющих разные стационарные потенциалы в данном электролите.
Радиационная коррозия -- это коррозия, обусловленная действием радиоактивного излучения.
Коррозия внешним током и коррозия блуждающим током. В первом случае -- это коррозия металла, возникающая под воздействием тока от внешнего источника. Во втором случае -- под воздействием блуждающего тока
Коррозия под напряжением -- коррозия, вызванная одновременным воздействием коррозионной среды и механических напряжений. Если это растягивающие напряжения, то может произойти растрескивание металла. Это очень опасный вид коррозии, особенно для конструкций, испытывающих механические нагрузки (оси, рессоры, автоклавы, паровые котлы, турбины).
Если металлические изделия подвергаются циклическим растягивающим напряжениям, то можно вызвать коррозионную усталость. Происходит понижение предела усталости металла. Такому виду коррозии подвержены рессоры автомобилей, канаты, валки прокатных станов.
Коррозионная кавитация -- разрушение металла, обусловленное одновременным коррозионным и ударным воздействием внешней среды.
Фреттинг-коррозия -- это коррозия, вызванная одновременно вибрацией и воздействием коррозионной среды.Устранить коррозию при трении или вибрации возможно правильным выбором конструкционного материала, снижением коэффициента трения, применением покрытий и т.д.
· По характеру изменения поверхности металла или сплава различают несколько видов коррозионных разрушений (рис. 1.1) - когда скорость процесса неодинакова на различных участках поверхности.
коррозионный деполяризация присадка жаропрочность
Равномерная коррозия наблюдается, например, при коррозии железных труб на воздухе.
При избирательной коррозии (рис. 1.1, в) разрушается одна структурная составляющая или один компонент сплава. В качестве примеров можно привести графитизацию чугуна или обесцинкование латуней.
Местная (локальная) коррозия охватывает отдельные участки поверхности металла (рис. 1.1, г, д, е). Местная коррозия может быть выражена в виде отдельных пятен, не сильно углубленных в толщу металла; язв - разрушений, имеющих вид раковины, сильно углубленной в толщу металла (рис. 1.1, д или точек (питтингов), глубоко проникающих в металл. Первый вид наблюдается, например, при коррозии латуни в морской воде. Язвенная коррозия отмечена у сталей в грунте, а питтин-говая -- у аустенитной хромоникелевой стали в морской воде.
Подповерхностная коррозия (рис. 1.1, ж) начинается на поверхности, но затем распространяется в глубине металла. Продукты коррозии оказываются сосредоточенными в полостях металла. Этот вид коррозии вызывает вспучивание и расслоение металлических изделий.
Межкристаллитная коррозия (рис. 1.1, з) характеризуется разрушением металла по границам зерен. Она особенно опасна тем, что внешний вид металла не меняется, но он быстро теряет прочность и пластичность и легко разрушается. Связано это с образованием между зернами рыхлых малопрочных продуктов коррозии. Этому виду разрушений особенно подвержены хромистые и хромоникелевые стали, никелевые и алюминиевые сплавы
Щелевая коррозия вызывает разрушение металла под прокладками, в зазорах, резьбовых креплениях и т.д.
2. Смешанная кислородно - водородная деполяризация. Полная катодная поляризационная кривая
Термодинамика электрохимической коррозии. Рассмотрим условия, при которых возможна коррозия с кислородной и водород деполяризацией. Коррозия как самопроизвольный процесс протекает если энергия Гиббса реакции G имеет отрицательное значение. Так как энергия Гиббса реакции непосредственно связана с ЭДС элемента , то возможность протекания коррозии может быть установлена по знаку ЭДС элемента. Если ЭДС элемента имеет положительное значение (> 0), то коррозия возможна. Так как ЭДС равна разности потенциалов окислителя и восстановителя , то коррозия возможна при условии, что потенциал окислителя положительнее потенциала металла: >
Потенциал кислородного электрода при 298 К описывается уравнением
E /OH =1,23 + 0,014718 gр - 0,059рН.
Потенциал водородного электрода описывается уравнением
E= - 0.059pH - 0.02951gp
Уравнение позволяет определить возможность протекания коррозии различных металлов. Если потенциал металла положительнее потенциала кислородного электрода, то коррозия металла невозможна. Потенциал золота, например, в отсутствие лигандов во всей области рН положительнее потенциала кислородного электрода, поэтому золото с поглощением и выделением корродировать не может. Если потенциал металла положительнее потенциала водородного электрода и отрицательнее потенциала кислородного электрода, то коррозия возможна с поглощением кислорода и невозможна с выделением водорода. Наконец, если потенциал металла отрицательнее потенциала водородного электрода, то возможна коррозия как с поглощением кислорода, так и с выделением водорода. К таким металлам относятся щелочные и щелочно-земельные металлы, алюминий, цинк и др.
Таким образом, при контакте раствора электролита с металлами большинство металлов может корродировать с поглощением кислорода и лишь некоторые металлы - с выделением водорода.
Если потенциал металла отрицательнее потенциала водорода электрода, то процесс коррозии протекает как с поглощением кислорода, так и с выделением водорода. Если кислород в системе отсутствует или быстро расходуется в результате коррозии, например, в крытой системе, то коррозия протекает лишь с выделением водорода. Однако и при наличии кислорода в системе, скорость восстановления в некоторых случаях мала по сравнению со скоростью выделения водорода, например, в растворе кислоты на цинке, железе, марганце. При этом в первом приближении можно пренебречь скоростью коррозии за счет поглощения кислорода и говорить лишь о скорости коррозии с выделением водорода. Ввиду большой подвижности ионов обычно стадия подвода не лимитирует реакцию катодного выделения водорода. Скорость процесса определяется скоростью собственной реакции восстановления ионов водорода:
или соединением атомов водорода в молекулу
Полная катодная поляризационная кривая.
Защита металлов, основанна на изменение их свойств, осуществляется или специальной обработкой их поверхности, или легированием. Обработка поверхности металла с целью уменьшения коррозии проводится одним из следующих способов: покрытием металла поверхностными пассивирующими пленками из его трудно растворимых соединений (окислы, фосфаты, сульфаты, вольфраматы или их комбинации), созданием защитных слоев из смазок, битумов, красок, эмалей и т.п. и нанесением покрытий из других металлов, более стойких в данных конкретных условиях, чем защищаемый металл (лужение, цинкование, меднение, никелирование, хромирование, свинцование, родирование и т.д.).
Обработку поверхности металлов применяют для предохранения машин, оборудования, аппаратов и предметов домашнего обихода при временной защите в условиях транспортировки, хранения и консервации (смазка, пассивирующие пленки) и для более длительной защиты при их эксплуатации (лаки, краски, эмали, металлические покрытия). Общим недостатком этих металлов является то, что при удалении (например, вследствие износа или повреждения) поверхностного слоя скорость коррозии на поврежденном месте резко возрастает, а повторное нанесение защитного покрытия не всегда бывает возможно.
В этом отношении легирование является значительно более эффективным (хотя и более дорогим) методом повышения коррозионной стойкости металлов. Примером повышения коррозийной стойкости металла легированием являются сплавы меди с золотом. Несравненно меньше количество легирующих компонентов требуется для повышения устойчивости металла, если эти компоненты способны образовывать с кислородом защитные пассивирующие пленки. Так, введение хрома в количестве нескольких процентов резко увеличивает коррозионную стойкость сталей. Теоретический и практический интерес представляет повышение коррозионной стойкости легированием катодными добавками (Томашов). Для выяснения принципов, на которых основан этот метод, можно, следуя Колотыркину, рассмотреть потенциостатические кривые. В отсутствие внешнего поляризующего тока металл находится при стационарном потенциале , лежащим в области его активного растворения (до легирования). Скорость коррозии определяется при этом пересечением кривых и соответствует току . При введении в исходный металл небольшого количества палладия (или другого металла с низким перенапряжением водорода) поляризационная кривая выделения водорода будет отвечать прямой , которая пересечет анодную кривую уже в области пассивного состояния. В результате этого стационарный потенциал сместится в положительную сторону до некоторого значения , а скорость коррозии снизится до величины , отвечающей скорости растворения металла в пассивном состоянии. Таким образом, снижение скорости коррозии достигается за счет уменьшения торможений катодного процесса. Такой механизм защиты возможен лишь в том случае, если обратимый потенциал водородного электрода в данных условиях положительнее, чем Фладе - потенциал, и если точка пересечения катодной и анодной поляризационных кривых лежит в области пассивного состояния металла
Рис. 2. Поляризационная диаграмма, показывающая возможность защиты пассивирующегося металла от коррозии при увеличении скорости катодного процесса.
3. Жаростойкость, жаропрочность. Влияние легирующих присадок
Жаростойкость - стойкость по отношению к газовой коррозии при высоких температурах.
Жаропрочность - свойство конструкционного материала сохранять высокую механическую прочность при значительном повышении температуры. Жаростойкость обычно обеспечивается легированием металлов и сплавов, на пример, стали хромом, алюминием и кремнием. Эти элементы при высоких температурах окисляются энергичнее, чем железо, и образуют при этом плотные защитные пленки оксидов.Хром и кремний улучшают также жаропрочность сталей. Стали, легированные 4-9% хрома, молибденом или кремнием применяют, например, в парогенераторо- и турбостроении. Сплав содержащий 9 - 12% хрома, применяют для изготовления лопаток газовых турбин, деталей реактивных двигателей, в производстве двигателей внутреннего сгорания и т.п.
Сплавы Сr-А1-Fе обладают исключительно высокой жаростойкостью. Например, сплав, содержащий 30% Сr, 5% А1, 0,5% Si, устойчив на воздухе до 1300°С. Эти сплавы используют, в частности, в качестве материала дня изготовления спиралей и деталей нагревательных элементов печей сопротивления. К их недостаткам относятся низкая жаропрочность и склонность к хрупкости при комнатной температуре после продолжительного нагрева на воздухе, вызываемая в известной степени образованием нитридов алюминия. По этой причине положение спиралей в печах должно быть фиксировано, а для беспрепятственного термического расширения и сжатия спирали обычно гофрируют. Жаростойкость никеля еще больше повышается при добавлении хрома. Сплав, содержащий 20% Сr и 80% Ni, устойчив на воздухе до 1150 C. Этот сплав - один из лучших жаростойких и жаропрочных сплавов
Большинство металлов взаимодействует с кислородом воздуха с образованием стабильных оксидов металла. Скорость, с которой происходит окисление, сильно зависит от температуры, и при нормальной температуре на металлической поверхности образуется только тонкая пленка оксида (на меди, например, это заметно по потемнению поверхности). При более высоких температурах процесс окисления протекает быстрее. Обычные конструкционные металлы окисляются с образованием четырех типов оксидных соединений: летучих, плотных, защитных или непористых. Небольшое число тугоплавких металлов, таких, как вольфрам и молибден, становятся хрупкими при высоких температурах и образуют летучие оксиды, поэтому защитный оксидный слой не образуется и при высокой температуре металлы следует защищать инертной атмосферой (инертные газы). Сверхлегкие металлы образуют, как правило, слишком плотные оксиды, которые пористы и не защищают металлы от дальнейшего окисления. По этой причине магний окисляется очень легко. Защитные оксидные слои образуются у многих металлов, но обычно они обладают умеренной защитной способностью. Оксидная пленка на алюминии, например, полностью покрывает металл, однако при напряжениях сжатия развиваются трещины, по-видимому, за счет изменений температуры и влажности. Защитный эффект оксидных слоев ограничивается относительно низкими температурами. Многие "тяжелые металлы" (например, медь, железо, никель) образуют непористые оксиды, которые, хотя и не растрескиваются, не всегда защищают основной металл. Теоретически эти оксиды представляют большой интерес и активно исследуются. Они содержат менее стехиометрического количества металла; отсутствующие атомы металла образуют дырки в решетке оксида. Вследствие этого атомы могут диффундировать сквозь решетку, и толщина оксидного слоя постоянно увеличивается. Жаропрочная сталь 20Х23Н18 - соновная сталь этого класса применяемая в отечественном машиностроении. Жаропрочные сплавы на основе никеля
Размещено на Allbest.ru
...Подобные документы
Процесс легирования стали и сплавов - повышение предела текучести, ударной вязкости, прокаливаемости, снижение скорости закалки и отпуска. Влияние присадок легирующих элементов на механические, физические и химические свойства инструментальной стали.
курсовая работа [375,9 K], добавлен 08.08.2013Коррозия металлических сооружений причиняет огромный ущерб всем отраслям народного хозяйства. Особенно велики потери в результате коррозии нефте- и газопромыслового оборудования. Основные положения теории коррозии. Принципы создания коррозионных сплавов.
контрольная работа [438,6 K], добавлен 25.08.2010Понятия химической коррозии, жаростойкости и жаропрочности. Теории легирования для повышения жаростойкости. Уменьшение дефектности образующегося оксида, образование защитного оксида легирующего элемента, образование высокозащитных двойных оксидов.
реферат [27,1 K], добавлен 22.01.2015Виды коррозии, ее причины. Факторы агрессивности грунтов. Математическое моделирование коррозионных процессов трубной стали под воздействием свободных токов. Методы предотвращения коррозионного воздействия на трубопровод при его капитальном ремонте.
дипломная работа [5,6 M], добавлен 22.11.2015Общая характеристика легированных сталей и их специфические свойства: износостойкость, жаропрочность, прокаливаемость в крупных сечениях, кислотостойкость. Распределение легирующих элементов в сталях, зависимость механических свойств от их содержания.
контрольная работа [1,1 M], добавлен 17.08.2009Классификация, свойства, применение, маркировка углеродистых и легированных сталей. Влияние углерода и примесей на их свойства. Термическая обработка сплава 30ХГСА. Измерение твёрдости методом Роквелла. Влияние легирующих элементов на рост зерна стали.
дипломная работа [761,3 K], добавлен 09.07.2015Жаропрочность как способность материала выдерживать механические нагрузки без существенных деформаций при высоких температурах, основные факторы, влияющие на нее. Добавки, придающие сталям повышенную жаропрочность: хром, кремний, молибден, никель.
презентация [319,6 K], добавлен 28.11.2015Сущность и свойства присадок к моторным маслам. Классификация веществ, разработанных для предотвращения коррозии смазываемых подшипников и механизмов. Состав и действие антикоррозийных присадок. Влияние их степени осерения на защитные свойства масел.
презентация [175,7 K], добавлен 18.10.2013Повышение износостойкости наплавочных материалов за счет их структурно-фазового состояния. Назначение, характеристика состава и микроструктура наплавленного металла. Влияние легирующих элементов на повышение износостойкости. Борьба с шумом и вибрацией.
дипломная работа [2,7 M], добавлен 22.06.2011Основные задачи, решаемые при производстве стали, перспективы развития кислородно-конвертерного производства. Максимально возможный расход металлического лома и уточнение количества шлака. Расчет потерь и выхода жидкого металла, материальный баланс.
курсовая работа [93,2 K], добавлен 25.03.2009Понятие, классификация и механизм атмосферной коррозии металлов. Описание основ процесса конденсации влаги на поверхности металла. Особенности и факторы влажной атмосферной коррозии металлов. Изучение основных методов защиты от влажной коррозии.
контрольная работа [422,9 K], добавлен 21.04.2015Виды коррозии, ее электрохимический и химический механизмы. Технологическая схема, конструктивные особенности, условия эксплуатации и характеристика возможных коррозионных процессов в аппаратах: циклон, распылительный абсорбер и рукавный фильтр.
контрольная работа [185,7 K], добавлен 26.10.2011Классификация, особенности и механизм возникновения влажной атмосферной коррозии. Конденсация влаги на поверхности корродирующего металла. Влажность воздуха как один из главных факторов образования коррозии. Методы защиты от влажной атмосферной коррозии.
реферат [1,1 M], добавлен 21.02.2013Резервуары и сварные стальные металлоконструкции. Анализ условий и механизма протекания процессов стресс-коррозии магистральных трубопроводов. Пути предотвращения стресс-коррозионного разрушения нефтегазового оборудования в средах, содержащих сероводород.
курсовая работа [594,0 K], добавлен 20.11.2015Влияние легирующих элементов на свойства стали. Состав, свойства и методы термической обработки хромистых сталей с повышенной прочностью и стойкостью против коррозии в агрессивных и окислительных средах. Технологии закалки окалиностойких сильхромов.
реферат [226,9 K], добавлен 22.12.2015Коррозия, старение и биоповреждения изделий и материалов как одни из самых разрушительных процессов, их место и негативное влияние в металлургической промышленности. Требования стандартов ЕСЗКС, направления. Параметрические ряды и предпочтительные числа.
лекция [27,3 K], добавлен 19.04.2011Сущность и основные причины появления коррозии металла, физическое обоснование и этапы протекания. Ее разновидности и отличительные свойства: химическая, электрохимическая. Способы защиты от коррозии, используемые технологии и материалы, ингибиторы.
презентация [734,6 K], добавлен 09.04.2015Параметры процесса кристаллизации, их влияние на величину зерна кристаллизующегося металла. Влияние явления наклепа на эксплуатационные свойства металла. Диаграмма состояния железо-цементит. Закалка металла, состав, свойства и применение бороволокнитов.
контрольная работа [79,3 K], добавлен 12.12.2011Почвенная коррозия - разрушение металла под воздействием агрессивной почвенной среды, ее механизм. Защита газопроводов от коррозии: пассивная и активная. Определение состояния изоляции подземных трубопроводов. Расчет количества сквозных повреждений.
реферат [1,5 M], добавлен 04.04.2015Обоснование строительства кислородно-конвертерного цеха ОАО "ММК". Производственная структура отделения ковшевой обработки стали. Конструкция агрегата "печь-ковш" и установки циркуляционного вакуумирования стали. Автоматизация производственных процессов.
дипломная работа [788,6 K], добавлен 22.11.2010