Технология производства коленчатого вала
Назначение коленчатого вала, его конструктивные и функциональные особенности. Типы изнашивания поверхностей при механическом контакте. Обоснование выбора материала для изготовления детали. Способы получения заготовки. Термообработка коленчатых валов.
Рубрика | Производство и технологии |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 27.11.2013 |
Размер файла | 25,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Введение
Коленчатый вал - один из наиболее ответственных и дорогостоящих конструктивных элементов двигателя внутреннего сгорания. Это вращающееся звено в кривошипном механизме, применяются коленчатые валы в поршневых двигателях, компрессорах, насосах и т.д. Он преобразует возвратно-поступательное движение поршней в крутящий момент. Коленчатый вал воспринимает периодические переменные нагрузки от сил давления газов, а также сил инерции движущихся и вращающихся масс. Количество коленчатых валов в поршневых машинах в основном равно числу цилиндров. Изготавливают коленчатые валы чаще всего из углеродистых и легированных сталей или высокопрочного чугуна. Коленчатый вал двигателя, как правило, цельный конструктивный элемент, поэтому правильно его называть деталью. Вал изготавливается из стали с помощью ковки или чугуна путем литья. На дизельных и турбированных двигателях устанавливаются более прочные стальные коленчатые валы.
Глава 1. Назначение детали
Назначение коленчатого вала заключается в восприятии усилия от поршней через шатуны и преобразует их в крутящий момент, который затем передается через маховик на трансмиссию. Его изготовляют из высокопрочной стали или чугуна. Он имеет коренные и шатунные шейки, щеки и противовесы и фланец для крепления маховика. В передней части вала расположены: шестерня привода распределительного вала, шкив для привода генератора и вентилятора и храповик для пуска двигателя пусковой рукояткой. Коренные шейки коленчатого вала являются опорными. Они вращаются в подшипниках скольжения, укрепленных в верхней части картера блока цилиндров. Эти подшипники, как и шатунные, имеют тонкостенные вкладыши, залитые баббитом, и называются коренными. Щеки с противовесами соединяют между собой коренные и шатунные шейки вала. Противовесы уравновешивают центробежные силы, которые возникают при вращении коленчатого вала из-за наличия кривошипов. Коленчатый вал испытывает большие нагрузки и подвергается скручиванию, изгибу и механическому изнашиванию Крутящий момент, развиваемый на коленчатом валу, передается на трансмиссию автомобиля, а также используется для привода в действие различных механизмов двигателя. Силы, действующие на коленчатый вал, складываются из сил давления газов и инерционных сил движущихся масс. Особенно большие силы возникают в момент выключения сцепления. Основными неисправностями валов являются износ опорных шеек из-за повреждения вкладышей или деформация - искривление вала из-за перегрева. В результате этого увеличиваются зазоры в подшипниках, в то время как условия смазки ухудшаются, естественный износ шеек наблюдается при больших нагрузках на двигатель автомобиля. Кроме износа шеек под подшипники коленчатые валы поступают в ремонт, имеют обычно износ резьбы под храповик-(в зависимости от конструкции вала), износы отверстий во фланце под болты крепления маховика, под установочные пальцы или направляющие шпильки, отверстия под шарикоподшипник ведущего вала. Все эти нагрузки и силы, действующие, на коленчатый вал приводят к проявлению дефектов и возникновению изнашивания.На рисунке приведены виды изнашивания, способствующие разрушению поверхности коленчатых валов и других немаловажных деталей и агрегатов в автомобилях. Процесс изнашивания деталей сопровождается сложными физико-химическими явлениями и многообразием влияющих на него факторов. В зависимости от материала и качества поверхности сопряженных деталей, характера контакта, нагрузки скорости относительно перемещения процесс изнашивания протекает различно. Ведущим процессом разрушения является механическое изнашивание, в которое входит абразивный и усталостный износ. Сопутствующими видами износа являются молекулярно - механический и коррозионно-механические износы со всеми своими разновидностями, которые в зависимости от условий работы влияют на износ и при определенных условиях могут стать ведущими процессами износа.
Установлены три группы изнашивания в машинах: механическое, молекулярно-механическое и каррозионно-механическое. Рассмотрим механическое изнашивание и его подвиды, потому, что анализируемая нами деталь больше всего подвергается факторам, присущим для механического износа. Из приведенных видов изнашивания коленчатым валам характерно абразивное изнашивание схватывание и коррозионно-механическое и усталостный износ. Например, абразивное изнашивание является подвидом механического износа. Абразивное изнашивание получается в результате режущего или царапающего действия твердых тел и частиц. При этом протекание изнашивания не зависит от проникновения абразивных частиц на поверхности трения. Изменение размеров деталей при абразивном изнашивании зависит от ряда факторов: материала и механического свойства деталей, режущих свойств абразивных частиц, удельного давления и скорости скольжения при трении. По своей природе и механизму протекание абразивного изнашивания близко подходит к явлениям, имеющим место при резании металлов, отличаясь специфическими особенностями- геометрией абразивных частиц и малым сечением стружки. Абразивное изнашивание широко распространено при трении деталей машин, особенно работающих в абразивной среде, а также при трении деталей, восстановленных различными способами наплавки, металлизация, хромирование, железнения. На разрушение поверхности коленчатого вала очень сильно влияет усталостное изнашивание, которое возникает при трении, качении, и отчетливо проявляется на рабочих плоскостях. Разрушение поверхностных слоев происходит вследствие возникших микроскопических трещин, которые по мере работы развиваются в одиночные и групповые трещины и впадины. Глубина трещин и впадин зависит от механических свойств металла деталей, величины удельных давлений при контакте и размера контактных поверхностей. Абразивному изнашиванию на коленчатых валах, прежде всего, подвергаются шатунные и коренные шейки и вкладыши подшипников скольжения. Также на износ поверхности коленчатого вала очень сильно влияет усталостный износ.
Усталостный износ- особый тип разрушения поверхности вызванный повторно действующими циклами напряжения, амплитудное значение которого не превышает предела упругости материала. При усталостном изнашивании трущихся деталей возникает микропластические деформации сжатия и упрочнения поверхностных слоев металла. В результате упрочнения возникают остаточные напряжения сжатия. Повторно-переменные нагрузки превышающие предел текучести металла при трении качения, вызывают явления усталости, разрушающие поверхностные слои. Разрушение поверхностных слоев происходит вследствие возникших микро и макроскопических трещин, которые по мере работы развиваются в одиночные и групповые углубления и впадины. Глубина трещин и впадин зависит от механических свойств металла деталей, величины удельных давлений при контакте и размера контактных поверхностей. Рассмотрим молекулярно-механическое и коррозионно-механическое изнашивание которые играют не маловажную роль при износе вала.
Молекулярно-механическое изнашивание в результате одновременного механического воздействия и молекулярных или атомарных сил. В число этого изнашивания относится изнашивание при заедании в результате схватывания глубинного вырывания материала, переноса его с одной поверхности трения на другую и воздействия возникших неровностей на сопряженную поверхность.
Коррозионно-механическое изнашивание происходит при трении материала вступившего в химическое взаимодействие со средой. Коррозионно-механическим видам изнашивания относятся окислительное изнашивание и изнашивание при фреттинг-коррозии.
При эксплуатации коленчатого вала очень часто происходит возникновение износа схватыванием. Износ схватыванием первого рода возникает при отсутствии смазки и защитной пленки окислов при трении с малыми скоростями и удельными давлениями, превышающими предел текучести металла в местах действительного контакта. Схватывание происходит в результате большой пластической деформации поверхностных слоев металла и образования металлических связей между контактными участками поверхностей.
Схватывание второго рода возникает при трении скольжения с большими скоростями относительного перемещения и значительными удельными давлениями, при интенсивном повышении температуры в поверхностных слоях трущихся металлов и их пластичности. При схватывании происходят не допустимые повреждения трущихся поверхностей в результате возникновения металлических связей их деформации и разрушения с отделением частиц налипания и намазывания поверхности контактов.
2. Выбор материала детали
В машиностроении для изготовления деталей используют различные материалы: черные и цветные металлы и сплавы, порошковые, композиционные, резинотехнические, лакокрасочные материалы, пластмассы и др. Наибольшее распространение получили стали и чугуны.
Сталь -- это многокомпонентный сплав с содержанием углерода до 2,14%.Чугун -- сплав с содержанием углерода более 2,14 % и некоторым количеством кремния, марганца и других элементов.
Коленчатые валы для карбюраторных двигателей и дизелей изготовляют из сталей 45, 45А, 45Г2 и 50Г. Для дизелей, работающих в условиях высокого наддува, могут применяться легированные стали 18Х2Н4МА, и 18Х2Н4ВА, с повышенными пределами текучести и прочности. Зарубежные фирмы используют для изготовления коленчатых валов такие стали, как 40Х, 38ХМ, 40Х2НМ.Получили большое распространение коленчатые валы, отлитые из высокопрочного чугуна с шаровидным графитом, модифицированного магнием; перлитного ковкого чугуна; легированного никельмолибденового чугуна. Наибольшее применение нашли коленчатые валы двигателей из магниевого и перлитного ковких чугунов. Графит в структуре чугуна улучшает антифрикционные качества и снижает износы шеек.
В автомобильных бензиновых двигателях наибольшее распространение получили кованые коленчатые валы из углеродистой стали.
Высокопрочный чугун
Применение чугуна с шаровидным графитом для изготовления деталей, работающих в условиях переменных нагрузок. Основными требованиями, предъявляемыми к материалу деталей, работающих в условиях переменных нагрузок, являются высокие циклическая вязкость и усталостная прочность. По показателям циклической вязкости чугун с шаровидным графитом значительно превосходит углеродистую сталь, а по показателям усталостной прочности не уступает стали. Кроме того, чугун с шаровидным графитом лучше, чем сталь, воспринимает поверхностное упрочнение, вследствие чего усталостная прочность его значительно возрастает. Сочетание высоких показателей по циклической вязкости и усталостной прочности с хорошей износостойкостью и высоким модулем упругости делают чугун с шаровидным графитом хорошим материалом для изготовления коленчатых валов, валов генераторов, кулачковых валов и многих других деталей, подвергающихся циклическим напряжениям и износу.
Применение чугуна с шаровидным графитом для изготовления коленчатых валов. Вследствие сложной конфигурации коленчатые валы работают в условиях большой неравномерности распределения напряжений, которые являются переменными во времени и различными по величине. Разрушения коленчатых валов, наблюдающиеся в практике, носят усталостный характер, появляясь после определенного количества циклов нагрузки.
Исходя из этого к материалу, идущему на изготовление коленчатых валов, предъявляются высокие требования в части обеспечения общей статической прочности, высоких усталостной и циклической прочности и хорошей износостойкости.
Благодаря высоким техническим требованиям, предъявляемым к коленчатым валам, их изготовляли, как правило, коваными из легированной стали со сложной термической обработкой. Изготовление крупных стальных кованых коленчатых валов было связано с применением уникального кузнечнопрессового и станочного оборудования. С появлением чугуна с шаровидным графитом оказалось возможным изготовлять коленчатые валы литыми из этого чугуна. Преимущества литых коленчатых валов заключаются в том, что им можно придать наиболее желательную форму, изготовлять их пустотелыми и тем самым получить более равномерное распределение напряжений и максимально приблизить литую заготовку по форме и размерам к готовому валу. При переходе с кованых коленчатых валов на литые резко сокращается расход металла, уменьшается трудоемкость механической обработки и снижается себестоимость валов. При замене кованых коленчатых валов литыми из высокопрочного чугуна резко сокращается длительность цикла термической обработки, а в некоторых случаях удается полностью исключить термическую обработку. Точно также сокращается длительность общего цикла изготовления коленчатого вала.
Чугун с шаровидным графитом как материал для изготовления коленчатых валов удачно сочетает в себе высокую прочность при растяжении, сжатии, изгибе и кручении, высокую циклическую прочность, примерно в 2 раза превышающую циклическую прочность стали; высокие усталостную прочность и износостойкость благодаря наличию в его структуре включений графита.
Усталостная прочность полых коленчатых валов в сравнении со сплошными значительно выше (почти вдвое). Кроме того, усталостная прочность может быть значительно повышена путем упрочняющей обработки коленчатых валов, термической обработки отливок и легирования чугуна.
3. Получение материала
Высокопрочный чугун
Изобретение относится к черной металлургии, в частности к получению высокопрочного чугуна из исходного чугуна с содержанием серы свыше 0,04% и может быть использовано при массовом производстве отливок из высокопрочного чугуна с графитом шаровидной и вермикулярной формы. Способ включает расплавление шихты в плавильном агрегате, доведение температуры расплава до 1420-1460°С, первичное модифицирование его лигатурой с содержанием редкоземельных металлов и кремния с получением в структуре чугуна вермикулярного графита на изломе контрольного образца и вторичное модифицирование. Лигатуру при первичном модифицировании равномерно подают на струю металла через дозатор при сливе металла в раздаточный ковш, а при вторичном модифицировании вместе с вторичной лигатурой в расплав чугуна вносят дополнительно первичную лигатуру в количестве до 0,5% от массы жидкого чугуна с укладкой их на дно ковша для получения чугуна с шаровидной формой графита. Изобретение обеспечивает стабильность процесса при использовании в качестве шихты чугунного лома с разным химическим составом, сокращает расход лигатур за счет практически полной утилизации элементов первичной лигатуры при ее равномерной подаче на струю металла, снижает количество брака литья по несоответствию требуемой марке чугуна. Существующие способы получения высокопрочного чугуна с шаровидным и вермикулярным графитом предполагают использование лигатур с различным содержанием редкоземельных металлов, кремния, магния, алюминия, и др. элементов в различных сочетаниях. Одним из наиболее распространенных способов получения высокопрочного чугуна является способ, заключающийся в обработке жидкого металла лигатурой с содержанием редкоземельных металлов 30ч40%, кремния 40ч43%, алюминия 7,5ч8% в количестве 0,8ч2,5% от массы жидкого чугуна либо в обработке той же лигатурой в количестве 0,8ч1,5% от массы металла с вторичным модифицированием ферросилицием марки ФС75 в количестве 0,5ч0,8% от массы металла Однако возможное перенасыщение чугуна редкоземельными металлами свыше 0,05ч0,06% или кремнием свыше 3,0ч3,5% приводит к изменениям в металлической матрице отливок и обусловливает резкое снижение механических свойств чугуна.
Другим способом получения высокопрочного чугуна является способ обработки жидкого металла лигатурой с содержанием редкоземельных металлов, кремния и магния в количестве 1,5ч1,8% от массы чугуна.
При этом лигатура загружается на дно ковша перед его заполнением расплавом и присыпается стальной высечкой. Однако для реализации этого способа в качестве исходных требуются низкосернистые чугуны. Кроме того, присыпаемая стальная высечка резко снижает температуру обрабатываемого расплава, лигатура не растворяется и не реагирует с металлом, всплывает в шлак и легирующие элементы выгорают на воздухе. Таким образом, усвоение легирующих элементов составляет менее 50% .Широкое применение нашел способ внутриформенной обработки расплава лигатурой с содержанием редкоземельных металлов, кремния, магния в количестве 1,4ч1,6% от массы заливаемого в форму металла. Указанный способ требует строгой сортировки металлической шихты по химическому составу для возможности расчета массы внутриформенной закладки лигатуры. Исходный чугун должен иметь содержание серы не более 0,02%, а лигатура должна иметь строго выдержанный химический состав. Углеродистая сталь. Изобретение относится к черной металлургии и предназначено для получения углеродистой стали. Известен способ выплавки стали, при котором, с целью снижения загрязненности стали неметаллическими включениями и повышения качества металла, предварительное раскисление металла в печи производят сплавом алюминия с титаном на основе железа с плотностью выше, чем плотность расплава. Недостатком данного способа является повышенный расход дорогостоящих раскислителей, расходуемых на прекращение кипения ванны и фиксации содержания углерода. Загрязненность металла неметаллическими включениями довольно велика, т. к. при раскислении металла алюминием образуются неметаллические включения, значительная часть которых за время выпуска и разливки не успевает ассимилироваться шлаком и остается в металле. Наиболее близким по технической сущности и достигаемому результату является способ выплавки стали, в котором предусмотрено предварительное раскисление в печи перед выпуском, для удаления сверхравновесного кислорода порционными присадками кусковых материалов и последующую доводку. Согласно способу раскисление производится в два этапа. На первом этапе осуществляется присадка нейтральных отходов (охладителей), а на втором - материалов, содержащих алюминий. К существенным недостаткам способа можно отнести сравнительно медленное растворение введенных в ванну кусковых материалов, при этом недостаточно полно используется высокое сродство углерода к кислороду для снижения окисленности металла, т. к. все реакции протекают на границе раздела шлака и металла вследствие низкой плотности используемых материалов, что не позволяет получить сталь с низким содержанием неметаллических включений из-за повышенного расхода алюминий содержащего материала. Техническим результатом является снижение расхода ферросплавов, улучшение качества стали, снижение энергозатрат и повышение производительности печи. Технический результат достигается тем, что в известном способе производства углеродистой стали, предусматривающем раскисление металла перед выпуском из печи, для удаления сверхравновесного кислорода порционными присадками кусковых материалов и последующую доводку, по изобретению для удаления из металла сверхравновесного кислорода используют кусковые материалы с плотностью не менее плотности расплавленного металла и материалы, содержащие элементы, обладающие сродством к кислороду не менее чем у алюминия, при этом взаимодействие последних с кислородом осуществляют сразу после удаления расчетной сверхравновесной концентрации кислорода к углероду. В качестве кусковых материалов могут использоваться инертные материалы, ферросплавы, лигатуры, чугун и металлолом, в количестве, необходимом для удаления расчетной сверхравновесной концентрации кислорода. В качестве элементов, обладающих сродством к кислороду не менее чем у алюминия, используют алюминий, титан, бор, щелочноземельные и редкоземельные металлы и/или их сплавы в количестве, необходимом для поддержания равновесной концентрации кислорода с углеродом до начала доводки металла. Причем элементы, обладающие сродством к кислороду не менее чем у алюминия, можно присаживать в оболочках, обеспечивающих погружение их в шлак. Суть предварительного раскисления - это прекращение реакции обезуглероживания, что в общем случае осуществляется за счет снижения активности кислорода. При использовании слабых раскислителей (марганец и кремний при невысоких концентрациях) процесс реализуется преимущественно за счет снижения коэффициента активности при незначительном снижении концентрации кислорода в металле, а при использовании сильных раскислителей - преимущественно за счет снижения концентрации кислорода. Так как углерод при высоких температурах сам имеет высокое сродство к кислороду, то при использовании слабых раскислителей реакция обезуглероживания только притормаживается, а при использовании сильных раскислителей останавливается полностью. Предварительное раскисление осуществляют в печи углеродом, растворенным в металле, путем инициирования реакции обезуглероживания за счет ввода в ванну кусковых материалов с плотностью не менее плотности расплавленного металла (инертные материалы, ферросплавы, чугун, легированный металлолом и т.п.). На втором этапе в объем расплавленного металла вводят элементы, обладающие сродством к кислороду не менее чем у алюминия (алюминий, титан, бор, щелочноземельные и редкоземельные металлы и/или их сплавы) в количестве, необходимом для достижения фиксации и поддержания равновесной концентрации кислорода с углеродом до начала доводки металла с таким расчетом, чтобы их взаимодействие с кислородом начиналось сразу после прекращения кипения ванны (после снятия сверхравновесной концентрации кислорода по отношению к углероду). Эти материалы могут погружаться под шлак с помощью специальных приспособлений, оболочек или иных приемов, обеспечивающих погружение и нужный момент начала их взаимодействия с кислородом, поступающим в металл из шлака, огнеупорной футеровки и других источников. При использовании сильных раскислителей обмен кислородом между металлом и оксидными фазами становится сугубо диффузионным, т.е. очень сильно замедляется и повторное насыщение металла кислородом происходит очень медленно. Насыщение металла кислородом в таком режиме позволяет получить пересыщения по кислороду по отношению к сильным раскислителям, находящимся в металле. В таком металле пересыщения по кислороду реализуются во время выпуска в ковш, что позволяет получать готовый металл относительно чистый по неметаллическим включениям.Доводку - окончательное раскисление, легирование, модифицирование стали и т.п. осуществляют сплавами, содержащими кальций, алюминия, легирующие элементы и т.п. по необходимости и в зависимости от выплавляемой марки стали.
4. Получение заготовки
Заготовки коленчатых валов получают горячей штамповкой и литьём. Кованые коленчатые валы изготовляются из углеродистых и легированных сталей, а литые валы - из высокопрочных глобулярных чугунов, из ковких перлитных чугунов и легированных сталей. Литьё выполняется в земляные и оболочковые формы. Последний метод является более прогрессивным, т.к. он обеспечивает более высокую точность заготовки, снижает припуски на механическую обработку, а в некоторых случаях полностью её устраняет. Изготовление заготовок коленчатых валов горячей штамповкой отвечает требованиям поточно-массового производства, т.к. этот метод приближает форму и размеры заготовки к форме и размерам готовой детали за счёт применения специальной технологической оснастки и специального оборудования, что снижает отход металла в стружку при механической обработке. При этом обеспечивается выгодное расположение волокон в металле, что повышает прочностные показатели деталей. Заготовка подвергается термообработке (нормализации), это регламентирует твёрдость, снимает внутренние напряжения, что обеспечивает более производительную и качественную механическую обработку. При изготовлении горячештамповочных заготовок коленчатых валов требуется обеспечить особенно высокое уплотнение металла в местах наибольших напряжений (по коренным и шатунным шейкам) за счёт качественной проковки.
Не следует допускать перерезания волокон в местах сопряжения шеек вала со щёками. Современные технологические процессы изготовления горячештамповочных заготовок коленчатых валов обеспечивают кривизну вала 1,0--1,3 мм, овальность шеек 1,5--2,0 мм, продольный и поперечный перекосы 1,0--2,0 мм, неперпендикулярность торца фланца 0,5--0,8 мм, припуски по диаметру шеек 5,0--6,5 мм, припуски по торцам щёк 3,0--4,0 мм. В условиях крупносерийного и массового производства заготовки стальных коленчатых валов штампуются на ковочных прессах, это обеспечивает более высокую производительность (до 2 раз) по сравнению со штамповкой на молотах. Кроме того, штамповка на прессах повышает точность заготовки за счёт уменьшения штамповочных уклонов и позволяет снизить припуски на механическую обработку (на 30--40%) за счёт лучшего обжатия металла в штампах и повышения точности формы заготовки. Лучшие результаты получаются, когда сочетаются штамповка на ковочных прессах с высадкой фланца. Горячештамповочные заготовки коленчатых валов изготовляются по 8--9-му классам точности.
Заготовки чугунных коленчатых валов получают литьём в земляную или оболочковую форму. При литье валов коренные и шатунные шейки изготавливают полыми за счёт установки литейных стержней. У крупных литых валов делают полыми и щёки, что снижает вес вала. У литых валов исключается трудоёмкая обработка масляных каналов, т.к. при отливке вала ставятся специальные трубки. Структура литого вала способствует лучшему гашению вибрации при работе двигателя. При отливке в земляную форму в качестве связующего используют жидкое стекло, которое скрепляет форму при продувке её углекислым газом.
Более прогрессивным методом изготовления заготовки коленчатых валов является литьё высокопрочного глобулярного чугуна в оболочковые формы. Литьё в оболочковые формы обеспечивает высокий коэффициент использования металла, высокое качество отливки, точность до 5-го класса и чистоту до 4-го класса по ГОСТ 2789--59. Высокая точность отливки позволяет сократить трудоёмкость механической обработки (на 20--25%) за счёт уменьшения припусков. Литые валы лучше обрабатываются, менее чувствительны к концентрации внутренних напряжений и имеют меньшую начальную неуравновешенность, что облегчает условия эксплуатации станков и инструментов. В условиях крупносерийного и массового производства изготовления оболочковых форм на основе термореактивных смол может быть организовано по полуавтоматическому или автоматическому циклу, а литьё деталей в оболочковые формы производится на конвейере. Эти особенности оболочкового литья позволяют сократить технологический цикл изготовления заготовок коленчатых валов, потребность в площадях заготовительных цехов, а также потребность в формовочных материалах в 10--15 раз. Литые заготовки коленчатых валов подвергают термообработке (нормализация, обжиг) с целью снятия внутренних напряжений и выравнивания структуры.
5. Термическая обработка
Термическая обработка коленчатых валов преследует три цели:
1) увеличение прочности;
2) повышение износостойкости шеек, работающих в условиях трения и износа;
3) увеличение усталостной прочности, т. е. способности выдерживать большое число нагружений без поломок.
Коленчатые валы выполняют стальными и чугунными. Стальные изготовляют горячей штамповкой из легированных сталей 50Г, 40ХН и др. После штамповки следует нормализация. Коленчатые валы имеют сложную форму, и потому нужно принять все меры, чтобы не допустить их коробление при обработке. С этой целью целесообразно нагрев осуществлять в проходных печах щелевого типа. Валы подвешиваются на приспособлениях в вертикальном положении и с помощью подвесного конвейера продвигаются вдоль рабочего пространства печи. Если нормализация проводится с использованием теплоты после штамповки, то перед подачей валов в нормализационную печь необходимо снизить их температуру до 600--650 °С, с тем чтобы при последующем нагреве до температуры нормализации измельчить зерно. После нормализации валы подвергаются механической обработке, а затем производится поверхностная закалка шеек на установках ТВЧ. Наиболее распространенный способ закалки, применяемый на отечественных заводах и за рубежом, состоит в поочередной закалке шеек с помощью полуавтоматических закалочных станков. Коленчатый вал устанавливается в центрах: левом и правом. При пуске станка вал автоматически зажимается в центрах. Головка с верхними полуиндукторами и закалочными трансформаторами опускается до смыкания с нижними полуиндукторами, укрепленными в станине. При этом каждая шейка вала охватывается своим индуктором. Поворот головки с верхними полуиндукторами осуществляется с помощью гидроцилиндра. Управление работой станка производится кнопочным пультом. Все шейки вала закаливаются в определенной последовательности автоматически с одной установки вала.
Такой способ закалки имеет, однако, существенные недостатки: неравномерность нагрева, а также неравномерность по толщине и расположению закаленной зоны. Основная причина этого -- неравномерное распределение электромагнитного поля, которое неизбежно при нагреве такими индукторами. Поэтому на ряде заводов применяют новый способ нагрева ТВЧ, который получил название растушевки. Он заключается в нагреве вращающейся шейки вала односторонне расположенным петлевым индуктором, охватывающим часть шейки. Так, например, обрабатывают коленчатые валы дизелей ЯМЗ-236 и ЯМЗ-238. Валы изготовляют из стали 50Г, и после нормализации производят поверхностную закалку шеек. Наиболее напряженными участками коленчатого вала, откуда часто начинается разрушение в условиях эксплуатации, являются галтели. Так называют места перехода щеки вала в шейку. Упрочнение этих мест достигается одним из двух способов: закалкой галтелей одновременно с шейками; обкаткой галтелей с помощью роликов. При обкатке благодаря пластической деформации происходит упрочнение металла и создаются благоприятно действующие остаточные сжимающие напряжения. Поверхностная закалка шеек коленчатых валов с галтелями при индукционном нагреве является экономически более выгодным процессом. Крупные коленчатые валы, как, например, валы тепловозов, диаметр шеек которых достигает 300 мм, подвергают поверхностной упрочняющей обработке методом азотирования. На Коломенском тепловозостроительном заводе им. В. В. Куйбышева коленчатые валы массой до 1,5 т изготовляют из стали 38ХН3ВА. Такие валы после предварительной термической обработки в виде нормализации и высокого отпуска проходят механическую обработку, а затем подвергаются улучшению: закалке в масле от 850--870 °С и отпуску при 540 °С. После предварительной шлифовки валы поступают на азотирование. Участки вала, не подлежащие азотированию, защищаются жидким стеклом. Азотирование проводится в контейнерных печах. Вал укладывается на две призмы, которые устанавливаются под две крайние шейки вала. Под средние четыре шейки подкладываются клинья и оставляются небольшие зазоры -- по 0,3 мм. Режим азотирования двухступенчатый: I ступень -- 500--510 °С, выдержка 30 ч, степень диссоциации аммиака 20--40%; II ступень -- 520--540 °С, выдержка 50 ч, степень диссоциации аммиака до 60%. Толщина азотированного слоя получается не менее 0,7 мм.
6. Механическая обработка
Технологический процесс механической обработки усложняется в связи с тем, что они имеют сложную конструкцию недостаточной жёсткости и сравнительно легко деформируются под действие сил резания, в то время как высокие требования к точности обрабатываемых поверхностей вызывают особые требования к выбору методов базирования, закрепления и обработки вала, а также к последовательности, сочетанию операций и выбору оборудования. Как правило, базами коленчатого вала принимаются поверхности его опорных шеек. Однако не на всех операциях механической обработки возможно использовать эти базы. В некоторых случаях на отдельных операциях за технологическую базу принимают поверхности центровых отверстий. При проектировании процесса механической обработки стремятся компенсировать недостаточную жёсткость коленчатого вала за счёт введения промежуточных опор по длине вала. При использовании таких опор в качестве дополнительных баз принимают поверхности предварительно обработанных шеек.
Как правило, после обработки технологической базы в виде центровых отверстий обработку вала ведут с дополнительной опорой в средней его части. Кроме того, снятие припуска при механической обработке разбивается на ряд операций (черновая, получистовая, чистовая, доводочная), что позволяет снижать усилия резания, а следовательно, и упругие отжатия по мере приближения размеров заготовки к заданным размерам по чертежу вала. Существенное влияние на конечный результат обработки коленчатого вала оказывает установление надлежащего порядка обработки поверхностей. Более ответственные и точные поверхности должны обрабатываться последними со снятием минимальных припусков. Точность механической обработки повышается за счёт холодной правки вала в процессе механической обработки. При обработке шатунных шеек они устанавливаются со смещением от оси коренных шеек на величину радиуса кривошипа вала, а в угловом положении ориентируются по обработанным площадкам на щёках. На точность обработки влияют усилия закрепления вала на отдельных операциях, поэтому следует регламентировать их (величину и место приложения).
Сложность конструкций коленчатых валов и большое количество разнообразных технологических операций являются значительным затруднением в направлении полной автоматизации процессов механической обработки. В связи с этим автоматизация изготовления коленчатых валов осуществляется за счёт создания отдельных автоматических участков и высокопроизводительных автоматических станков для отдельных видов обработки: подрезка торцов и центровка, токарная обработка коренных и шатунных шеек, сверление отверстий, шлифование, суперфиниширование, динамическое балансирование.
При автоматизации технологических процессов обработки коленчатых валов синхронизацию работы оборудования осуществляют за счёт разделения лимитирующих операций, применения взаимозаменяемой инструментальной оснастки с принудительной сменой инструмента.
Воздействие сил резания на отдельных операциях вызывает деформацию обрабатываемого коленчатого вала, что вынуждает включать в технологический процесс его обработки многократные правки на прессах. В зависимости от конструкции коленчатого вала и типа производства количество правок может достигать 6--10. В то же время правка вызывает внутренние напряжения, которые могут привести к деформации вала при последующей обработке. С этих позиций правки следовало бы избегать, но сокращение или полное устранение правок вызовет увеличение припуска на обработку, что ведёт к повышению трудоёмкости механической обработки.
Заключение
коленчатый вал заготовка
В данной курсовой работе был разобран процесс изготовления коленчатого вала. Рассмотрена схема маршрутной технологии производства детали, режимы термической обработки, обеспечивающие необходимый уровень механических свойств металла. Также рассмотрены возможные причины брака.
Список используемой литературы
1. Лахтин Ю.М., Леонтьева В.П. Материаловедение. Учебник для вузов - М.
2. Марочник сталей и сплавов./ В.Г. Сорокин, А.В. Волосникова, С.А. Вяткин и др. / под ред. В.Г. Сорокина. - М.: Машиностроение, 1989.- 640с.
3. В.М. Зуев. Термическая обработка металлов: Учебник для сред. ПТУ.,1986. - 288с.
4. Детали машин / Ю.Н. Березовский, Д.В. Чернилевский, М.С. Петров/ под ред. Н.А. Бородина. - М.: Машиностроение, 1933. - 384с.
5. Фиргер И.В. Термическая обработка сплавов; Справочник. - М. Машиностроение, 1982. - 304с., ип (серия справочников для рабочих)
Размещено на Allbest.ru
...Подобные документы
Назначение ступицы шкива коленчатого вала и анализ технологического процесса ее изготовления. Анализ условия работы ступицы шкива коленчатого вала, видов и процессов ее изнашивания. Анализ дефекта детали и технологических способов восстановления.
курсовая работа [172,1 K], добавлен 26.12.2011Анализ базового технологического процесса и направления проектирования коленчатого вала четырехцилиндрового двигателя. Выбор метода получения заготовки и его техническое обоснование. Расчет межоперационных припусков, допусков и размеров заготовки.
курсовая работа [781,9 K], добавлен 18.06.2021Процесс получения заготовки для изготовления детали; анализ и назначение вала обгонной муфты. Выбор материала; оценка технологичности детали. Определение коэффициента унификации конструктивных элементов. Выбор и обоснование метода получения заготовки.
курсовая работа [175,3 K], добавлен 17.02.2012Служебное назначение вала. Анализ конструкции и технических требований. Материал, его состав и свойства, режимы термообработки. Определение типа производства и партии запуска. Выбор метода получения заготовки и его технико-экономическое обоснование.
курсовая работа [536,1 K], добавлен 01.05.2011Виды износа коленчатого вала, анализ вариантов восстановления. Использование процесса напыления. Обработка упрочненных поверхностей. Расчет годовой трудоемкости участка, затрат на заработную плату. Безопасность труда при проведении наплавочных работ.
дипломная работа [3,4 M], добавлен 20.10.2014Описание возможных дефектов работы коленчатого вала. Особенности наиболее рациональных способов восстановления дефектов. Разработка схемы и методики технологического процесса восстановления детали. Определение норм времени на выполнение операции.
контрольная работа [144,7 K], добавлен 23.01.2014Служебное назначение вала и технические требования, предъявляемые к нему. Анализ технологичности конструкции детали. Обоснование способа получения заготовки. Разработка маршрутной технологии обработки детали. Проектирование операционной технологии.
дипломная работа [338,9 K], добавлен 24.01.2016Обоснование размера производственной партии. Выбор способа восстановления дефектов коленчатого вала автомобиля ЗИЛ-131. Схемы технологических процессов. Определение припусков на обработку, годовой трудоёмкости. Оборудование и приспособления участка.
курсовая работа [35,2 K], добавлен 25.09.2013Служебное назначение и требование к точности коленчатых валов. Материал и способы получения заготовок для коленчатых валов. Механическая обработка коленчатых валов. Токарная обработка коренных шатунных шеек. Обработка внутренних плоскостей и смазочных кан
реферат [16,5 K], добавлен 07.11.2004Служебное назначение и технология изготовления первичного вала раздаточной коробки, классификация его поверхностей по функциональному назначению. Особенности расчета операционных припусков, размеров и режимов резания детали расчетно-аналитическим методом.
курсовая работа [654,6 K], добавлен 26.12.2010Проектирование двух методов получения заготовки для последующего изготовления из нее детали. Получение заготовки литьем в песчаные формы отверждаемые в контакте с оснасткой. Получение заготовки штамповкой на кривошипных горячештамповочных прессах.
курсовая работа [36,6 K], добавлен 19.07.2009Снижение трудоёмкости изготовления вала редуктора путём разработки технологического процесса. Служебное назначение детали, технологический контроль ее чертежа. Тип производства и форма организации технологического процесса. Метод получения заготовки.
контрольная работа [416,3 K], добавлен 07.04.2013Механические свойства стали. Анализ служебного назначения, условия работы детали. Систематизация поверхностей вала. Определение типа производства и выбор стратегии разработки технологического процесса. Выбор метода получения заготовки: отливка; штамповка.
курсовая работа [85,3 K], добавлен 15.04.2011Анализ служебного назначения детали и физико-механические характеристики материала. Выбор типа производства и метода получения заготовки. Разработка технологического маршрута, плана изготовления и схем базирования детали. Расчет режимов резания.
дипломная работа [467,9 K], добавлен 12.07.2009Описание конструкции шестерни приводной: назначение, условия работы; план технологического процесса изготовления. Обоснование выбора материала, анализ технологичности. Выбор метода получения заготовки, расчет количества ступеней обработки поверхностей.
курсовая работа [466,4 K], добавлен 22.02.2012Назначение вала, рабочий чертеж детали, механические свойства и химический состав стали. Анализ технологичности конструкции вала, определение типа производства. Разработка и анализ двух вариантов маршрутных технологических процессов изготовления детали.
курсовая работа [925,1 K], добавлен 28.05.2012Разработка технологического процесса обработки вала. Анализ технологичности конструкции детали. Определение типа производства. Выбор и экономическое обоснование способов получения заготовки. Выбор технологических баз и разработка маршрутной технологии.
курсовая работа [84,2 K], добавлен 06.08.2008Ознакомление с процессом производства ведущего вала машины. Выбор способа получения заготовки и определение ее размеров. Расчет технологической себестоимости изготовления детали. Оценка и сравнение эффективности производства с экономической точки зрения.
курсовая работа [1,1 M], добавлен 23.03.2014Определение типа и организационной формы производства. Служебное назначение и техническая характеристика детали. Выбор и обоснование вида заготовки и метода ее получения. Анализ конструкции детали. Разработка технологического маршрута изготовления детали.
курсовая работа [266,4 K], добавлен 22.03.2014Анализ технологичности конструкции детали, направление и специфика данного процесса. Способ получения заготовки и обоснование его выбора. Технологический процесс изготовления вала ступенчатого, нормирование. Расчёт припусков на механическую обработку.
контрольная работа [625,5 K], добавлен 22.02.2011