Диаграмма равновесия углерода. Синтез алмаза

Технология синтеза алмаза при высоких статистических давлениях и температурах. Кривая равновесия углерода. Условия стабильности графита и алмаза. Гидравлический пресс для синтеза алмаза. Получение алмазных пленок. Синтез алмазов ювелирного качества.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 06.12.2013
Размер файла 120,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Северо-Восточный Федеральный университет им. М.К. Аммосова

Кафедра обработки драгоценных камней и металлов

”Диаграмма равновесия углерода. Синтез алмаза”

Работу выполнила:

Маркова Сардана

Группа ФТ-12-2

Якутск-2013

Содержание

1) Какие технологии синтеза алмаза существуют в настоящее время?

2) В чем состоит технология синтеза алмаза при высоких статистических давлениях и температурах

3) Какую роль играют металлы при этом?

4) Как осуществляется синтез алмаза путем прямого перехода графита в алмаз

5) Как получают алмазные пленки

6) Приведите кривую равновесия углерода

7) Приведите условия стабильности графита и алмаза

8) Как устроен гидравлический пресс для синтеза алмаза

9) Какое оборудование используется для получения алмазных пленок

10) Возможен ли синтез алмазов ювелирного качества

1) Какие технологии синтеза алмаза существуют в настоящее время?

2) В чем состоит технология синтеза алмаза при высоких статистических давлениях и температурах?

3) Какую роль играют металлы при этом?:

Теоретические обоснования получения искусственных алмазов были сделаны в конце 30-х годов XX века. Первые оценки условий превращения графита в алмаз, сделанные О.И. Лейпунским, показали, что такой переход возможен при давлении Р = 6 ГПа и температуре Т = 2300 К. Синтез алмаза был впервые осуществлен в Швеции (1953 год), США (1954 год) и СССР (1959 год). В настоящее время алмазы синтезируются с применением различных технологий, определяемых фазовой диаграммой углерода в координатах давление-температура (Р-Т ) (рис. 1): в области термодинамической устойчивости алмаза при Р > 4 ГПа, T > 1270 К; в метастабильных для алмаза условиях при Р от 1 до 100 ГПа и Т от 870 до 1070 К. В первом случае синтез происходит в конденсированной фазе (давления либо статические, либо динамические). Во втором случае образование алмазов происходит в результате конденсации углерода из газовой фазы.

Способы получения искусственных кристаллов алмаза:

Первым способом получения искусственных алмазов является метод приближенный к естественному возникновению природных алмазов, это сочетание очень высокого давления и высокой температуры.

Первый способ самый надежный, но и самый технологически сложный: Лабораторная установка по получению искусственных алмазов представляет собой пресс высокого давления. В корпус пресса вставляется рабочий цилиндр. В этом цилиндре предусмотрены сверления для циркуляции хладагента, и отверстия для подачи воды под давлением. В этот корпус вставляется камера, выполненная из карбида тантала(химическое соединение металла тантала и углерода с формулой TaC) в которой размещают заготовку - графит который должен превратится в алмаз. Предусмотрен подвод медных шин для подачи электрического тока к рабочей камере.

Технология получения алмаза происходит в несколько этапов.

Вначале, после установки цилиндра в пресс высокого давления, подается вода и происходит процесс предварительного сжатия графита давлением воды, примерно до 2-3 тысячи атмосфер. Вторым этапом подается хладоагент и замораживается вода до температуры минус 12 градусов Цельсия. При этом происходит дополнительное сжатие графита до 20 тысяч атмосфер за счет расширения льда.

На следующем этапе подается мощный импульс электрического тока продолжительностью 0.3 секунды.

На заключительном этапе размораживают лед и вынимают алмазы.

Полученные подобным образом алмазы в основном грязного цвета, имеют пористую структуру, форма кристаллов тетраэдрическая.

Второй способ: Вторым способом, возможно технологически простым, но сложным по применяемой аппаратуре является способ наращивания кристаллов алмаза в среде метана (СН4). При этом методе кристалл алмаза нагревают до температуры 1111 0С. и обдувают метаном. Давление в рабочей камере может быть небольшим, порядка 0,1 технической атмосферы. Это давление в основном служит для препятствия проникновения в камеру атмосферного кислорода. Необходимо помнить, что начиная с 1200 0С алмаз начинает свой переход в состояние графита ( без доступа кислорода). Процесс наращивания кристалла алмаза происходит на раскаленной поверхности алмаза путем добавления атомов углерода в существующую кристаллическую решетку затравочного кристалла алмаза. Количество выделенного углерода (алмаза) 0.2 % от поверхности затравочного кристалла за один час. Форма кристаллов получаемая подобным способом кубическая, в отличии от природной тетраэдрической, цвет черный, прочность сопоставима с естественными алмазами. По своей сути это чистый карбид, но называется алмазом в связи с очень высокой твердостью полученных кристаллов, и в связи с тем, что в качестве затравочного кристалла используют настоящие алмазы.

Третьим способом получения алмазов является метод взрыва: При этом способе получают очень мелкую алмазную пыль для производства заточных камней, абразивов. Применяют или взрыв «обычного» взрывчатого вещества, или взрыв проволоки большим импульсом тока. Для получения плотной детонационной волны необходима мембрана которая рвется со скоростью звука в том металле из которого изготовлена мембрана (для железа это - 5000 м/сек.). «Подогретый» графит, находящийся на так называемой "сковородке" в момент прохождения детонационной волны превращается в кристаллы алмаза. Этот способ дает выход продукции намного больше в процентном отношении от количества графита, чем способ высокого давления. Кристаллы получаются бесцветные, чистейшей воды, прозрачные, но очень мелкие (30 - 50 мкрн.). Форма кристаллов тетраэдрическая прочность сопоставима с природными алмазами. Сущность данного способа получения алмазов, методом взрыва, заключается в том, что при подрыве взрывчатого вещества в замкнутом пространстве, детонационная волна при ударе с препятствием на пограничном слое, ударная волна - препятствие, создает одновременно и высокое давление и высокую температуру. Давление может достигать свыше 300 000 атм, температура десятки тысяч градусов. К сожалению ( или к счастью) все это по времени укладывается в миллионные доли секунды и размеры (толщина) детонационной волны не превышает 10-30 микрон. В момент разрыва мембраны ударная волна приобретает «плотность» и своего рода такое качество как - гомогенность. Некоторые кристаллики алмазов получаемые подобным способом могут иметь в диаметре до 50 мк. Большое значение в данном способе имеет положка на которой расположен подогретый графит и толщина рабочего слоя. В данном случае жадность может сгубить идею в самом прямом смысле этого понимания. Толщину графита не рекомендуется превышать 60 микрон. Интересны эксперименты по «вторичному» прессованию полученных алмазов тем же способом взрыва, по принципу порошковой металлургии. В данном случае, в алмазном производстве, можно получить кристаллы различного размера и веса из алмазного порошка. В подавляющем большинстве кристаллы мутного цвета. Отмечается хрупкость полученных вторичных кристаллов алмаза. Прочность намного ниже естественных.

В четвертом способе получения алмазов применяют катализаторы: Применение катализаторов в алмазном производстве значительно помогает сократить величину давления и температуру.Кристаллы алмаза образуются в разделительном слое между раскаленным графитом и пленкой металла катализатора. При соответствующих подборах технологий можно получать до 50 граммов технических алмазов за один технологический цикл. Наилучшим катализатором является железо, затем следуют никель, родий, палладий, платина. Возникающие на границе перехода графит - катализатор, кристаллы алмаза продолжают свой рост при неизменных условий в рабочей камере до тех пор, пока пленка из металла катализатора продолжает соединяться с графитом. Рост кристаллов продолжается и в самом легирующем металле за счет проникновения атомов углерода через тонкую пленку металла. Искусственные алмазы полученные подобным способом представляют собой очень мелкие кристаллы (30 -200 микрон). Полученные при низких температурах кристаллы алмазов имеют квадратную форму строения кристаллов, черного цвета, по прочности равны или превосходят естественные. Кристаллы полученные при высоких температурах и больших давлениях имеют октаэдрическую форму, цвет различен - желтый, синий, зеленый, белый, прозрачные и непрозрачные кристаллы. По прочности равны или превосходят естественные алмазы. Влияние катализаторов на цвет очевидно. Примесь никеля в кристаллах алмаза придает алмазу зеленоватые тона, присадки бериллия придают алмазам синие тона расцветки.

4) Как осуществляется синтез алмаза путем прямого перехода графита в алмаз

Для прямого перехода графита в алмаз необходимы еще более экстремальные условия по сравнению с методикой, использующей металл-растворитель. Это связано с большой устойчивостью графита обусловленной очень прочными связями его атомов. Результаты первых эскспериментов по прямому превращению графит--алмаз, выполненных П. Де-Карлн и Дж. Джеймисоном из «Аллайд кемикл Корпорэйпш» , были опубликованы в 1961 г. Для создания давления использовалось взрывчатое вещество большой мощности, с помощью которого в течение примерно миллионной доли секунды поддерживалась температура около 1200° С и давление порядка 300000 атм. В этих условиях в образце графита после опыта обнаруживалось некоторое количество алмаза, в виде очень мелких частичек. Полученные кристаллиты по размерам (100 А=10 нм, или одна стотысячная доля миллиметра) сопоставимы с «карбонадо», встречающимся в метеоритах, образование которых объясняется воздействием мощной ударной волны, возникающей при ударе метеорита о земную поверхность.
В 1963 г. Фрэнсису Банди из «Дженерал электрик» удалось осуществить прямое превращение графита в алмаз при статическом давлении, превышающем 130 000 атм . Такие давления были получены на модифицированной установке «белт» с большей внешней поверхностью поршней и меньшим рабочим объемом. Для создания таких давлений потребовалось увеличение прочности силовых деталей установки. Эксперименты включали искровой нагрев бруска графита до температур выше 2000° С. Нагревание осуществлялось импульсами электрического тока, а температура, необходимая для образования алмаза, сохранялась в течение нескольких миллисекунд , т. е. существенно дольше, чем в экспериментах Де-Карли и Джеймисона.

Размеры новообразованных частиц были в 2-5 раз больше по сравнению с получающимися при ударном сжатии. Обе серии экспериментов дали необходимые параметры для построения фазовой диаграммы углерода, графически показывающей области температур и давлений, при которых стабильны алмаз, графит и расплав.

Интересные эксперименты были проведены Банди и Дж. Каспером , которые использовали монокристаллы графита вместо металлического материала. Кристаллы алмаза в их первых опытах имели обычную кубическую кристаллическую структуру. Еще Де-Карли и Джеймисон обратили внимание на то, что превращение в алмаз происходит легче, когда частички графита в образцах имеют удлинение вдоль так называемой оси с, т. е. перпендикулярно гексагональным слоям. Когда Банди и Каспер поместили монокристаллы таким образом, что давление прикладывалось вдоль оси с, и измерили электросопротивление кристаллов под давлением, то оказалось, что сопротивление увеличивается, когда достигается давление в 140 000 атм. Это связывали с переходом графита в алмаз, хотя при снятии давления происходило обратное превращение в графит. Однако, когда эта процедура сопровождалась нагревом образца до 900 С и выше, образовывались кристаллиты новой фазы высокого давления, имеющие гексагональную структуру, а не обычную - кубическую. Гексагональный углерод также изредка находили в природных образцах, особенно в метеоритах. Он получил название лонсдейлит в честь Кэтлин Лонсдеил из Лондонского университета за ее большие заслуги в области кристаллографии, в частности в изучении алмаза.

В 1968 г. Г. Р. Коуэну. Б. В, Даннингтону и А. X. Хольцману нз компании «Дюпон де Немюр» был выдан патент на новый процесс, заключающийся в ударном сжатии металлических блоков, например железных отливок, содержащих небольшие включения графита, при давлениях, превышающих 1 млн. атм. металл, у которого сжимаемость меньше, чем у графита, выполняет функции холодильника, очень быстро охлаждающего включения. Это предотвращает обратный переход алмаза, образовавшегося под действием ударной волны, в графит после прохождения этой волны--тенденции, характерной для экспериментов с монокристаллами при холодном сжатии. Конечный продукт, получаемый при использовании этой технологии, частично представлен гексагональным углеродом, что также подтверждает тенденцию к образованию лонсдейлита в условиях очень высоких давлений и относительно низких температур. Изготовленный таким способом материал используется в качестве шлифовального порошка.

Время от времени сообщается об исследованиях, направленных на модификацию того или иного из этих методов. Так, Л. Труеб применил принцип Де-Карли - Джеймисона для создания давления в 250 000-450 000 атм в течение 10-30 мкс, сопровождаемого разогревом после удара до 1100°С. Использовался графит в виде частичек диаметром 0,5--5 мкм, и получаемые алмазы имели те же размеры. Однако установлено, что эти частички образованы очень мелкими кубическими алмазами. В настоящее время нет сведений о том. что продукция «Аллайд кемикл корпорэйшн» поступает в коммерческую торговлю. Способ, разработанный этой компанией, чтобы он мог успешно конкурировать с методом, использующим растноритель, и методом компании «Дюпон де Немюр», нуждается в дальнейшем совершенствовании. Потенциальное преимущество методов ударного сжатия в том, что взрыв - дешевый путь создания высоких давлений.

5) Как получают алмазные пленки?

9) Какое оборудование используется для получения алмазных пленок?

Методом газофазного синтеза:

Изобретение относится к получению высокоэффективных пленок для полевых эмиттеров электронов. Способ заключается в зажигании тлеющего разряда постоянного тока в разрядном промежутке между катодом и анодом в потоке водорода, нагреве подложки до 700-900°С, в подаче углеводородсодержащего газа в поток, осаждении алмазной пленки при плотности разрядного тока 0,3-2 А/см2 в смеси водорода с углеродсодержащим газом, при концентрации углеродсодержащего газа в газовом потоке 3-10% и удаление излишков графитовой фазы в разряде в потоке водорода. В качестве углеродсодержащего газа может использоваться метан с концентрацией 3-8% в газовом потоке. При осаждении алмазной пленки как на диэлектрическую, так и на проводящую подложку подложка может быть расположена на заземленном или изолированном подложкодержателе вне разрядного промежутка на расстоянии 0,1-5 мм от анода. При этом анод выполняют в виде сетки из молибденовой проволоки диаметром 0,1-1 мм с шагом 1-3 мм. Осаждение алмазной пленки до требуемой толщины проводят при концентрации метана в газовом потоке 3-8%. Удаление излишков графитовой фазы проводят в разряде в потоке водорода в течение 5-10 мин. Техническим результатом является получение алмазных пленок с высокими электронно-эмиссионными характеристиками. Изобретение относится к области получения высокоэффективных пленок для полевых эмитеров электронов, которые могут быть использованы для создания плоских дисплеев, в электронных микроскопах, СВЧ электронике и ряде других приложений.

Известен способ получения пленки аморфного алмаза методом лазерного распыления, который заключается в осаждении на холодную подложку углерода, испаряемого из графитовой мишени излучением мощного лазера. Недостатком такого метода является его сложность, дороговизна, ограниченные возможности масштабирования, а также низкая плотность эмитирующих центров (порядка 1000 на см 2 при поле 20 В/мкм), что явно недостаточно для создания полноцветного монитора с 256 градациями яркости.

Известен способ получения алмазных пленок методом газофазного синтеза, включающий зажигание тлеющего разряда постоянного тока в разрядном промежутке между катодом и анодом в потоке водорода, нагрев подложки до температуры осаждения, подачу углеродсодержащего газа в поток и осаждении алмазной пленки в смеси водорода с углеродсодержащим газом, удаление излишков графитовой фазы в разряде в потоке водорода [1]. Разряд горит при плотности тока порядка 1 А/см2нагрев осуществлялся до температуры 1000oC, осаждение проводилось в потоке смеси водорода с метаном при концентрациях метана от 0.3 до 3%. При таких параметрах способа осаждаемые алмазные пленки имеют поликристаллическую структуру с микронным размером микрокристаллитов.

Основой для использования алмазных материалов в качестве холодных эмитеров электронов является свойство отрицательного электронного сродства, присущее алмазу. Однако получаемые описанным способом алмазные пленки также не обладают эмиссионными свойствами, достаточными для создания катода для полноцветного монитора, поскольку плотность эмитирующих центров не более 1000 на см2, в то время как требуется более 105. До настоящего времени все попытки создать высокоэффективный эмитер электронов на основе поликристаллических алмазных пленок нельзя считать успешними, в частности в связи с крайне низкой плотностью эмитирующих центров,

Целью предлагаемого изобретения является получение алмазных пленок с высокими электронно-эмиссионными характеристиками, которые могут быть использованы в качестве полевых эмитеров электронов при создании плоских дисплеев, в электронных микроскопах, СВЧ электронике и ряде других приложений.

Предлагаемый способ получения алмазных пленок методом газофазного синтеза включает зажигание тлеющего разряда постоянного тока в разрядном промежутке между катодом и анодом в потоке водорода, нагрев подложки до температуры осаждение, подачу углеродсодержащего газа в поток и осаждени алмазной пленки в смеси водорода с углеродсодержащим газом, удаление излишков графитовой фазы в разряде в потоке водорода.

Отличие предлагаемого способа заключается в том, что нагрев подложки осуществляют до температуры 700 - 900 C, осаждение алмазной пленки проводят при плотности разрядного тока 0.3 - 2 А/см2 при концентрации углеродсодержащего газа в газовом потоке 3-10%.

При этом в качестве углеродсодержащего газа при осаждении алмазной пленки может быть использован метан с концентрацией 3-8% в газовом потоке.

Осаждение алмазной пленки проводят на диэлектрическую или проводящую подложку, расположенную на заземленном или изолированном подложкодержателе вне разрядного промежутка на расстоянии 0.1 - 5 мм от анода, выполненного в виде сетки из молибденовой проволоки диаметром 0.1 - 1 мм с шагом 1 - 3 мм, при температуре анода 1200 - 2000oC, при концентрации метана в газовом потоке 3-8% до требуемой толщины, а затем в разряде в потоке водорода удаляются излишки графитовой фазы.

При осаждении алмазной пленки на проводящую подложку, расположенную на аноде, осаждение алмазной пленки до требуемой толщины проводят при концентрации метана в газовом потоке 3-8% и удаляют излишки графитовой фазы.

При осаждении алмазной пленки на кремниевую подложку проводят удаление естественного окисла кремния с подложки в потоке водорода, создают на подложке слой карбида кремния при подаче в газовый поток 7 - 12% метана в течениt 10 - 20 мин при токе 0.3 - 2 A/см2 и проводят осаждение алмазной пленки до требуемой толщины при концентрации метана в газовом потоке 3-8%.

При нагреве подложки ниже температуры 700 C происходит осаждение только графитовой фазы, а выше 900oC происходит осаждение поликристаллической пленки с микронным размером микрокристаллов.

При плотности тока разряда выше 2 А/см2 происходит развитие неустойчивости разряда, а ниже 0.3 А/см2 не происходит достаточной активации газовой фазы.

При использовании концентрации углеродсодержащего газа ниже 3% происходит осаждение неэмитирующей пленки, а выше 10% растет графит. Как показали результаты исследований использование в качестве углеродосодерщащего газа метана позволяет получить наиболее высокие эмиссионные характеристики. В этом случае концентрация метана не должна превышать 8%.

Предлагаемый способ позволяет проводить осаждение как на проводящие, так и диэлектрические подложки, а также на кремниевую подложку, которая при нагреве в указанном диапазоне температур приобретает проводящие свойства.

При проведении осаждения на диэлектрическую или проводящую подложку вне разрядного промежутка анод выполняется в виде сетки для пропускания тока, а подложка располагается под анодом "вниз по потоку" на заземленном или изолированном подложкодержателе вне разрядного промежутка. Расположение подложкодержателя на расстоянии менее 0.1 мм от анода не технологично, а на расстоянии более 5 мм происходит либо осаждение графита, либо осаждение пленки не происходит вовсе. Разогрев анода ниже 1200oC не приводит к необходимой дополнительной термической активации газовой смеси, а выше 2000oC приводит к карбидизации нитей. Анод выполняется в виде сетки из молибденовой проволоки, исходя из требований высокотемпературной стойкости до 2000oC, низкой распыляемости и химической активности в потоке водорода с углеродсодержащим газом. Анод, выполненный из проволоки диаметром менее 0.1 мм, не позволяет пропускать требуемую плотность тока. Выполнение анода в виде сетки из проволоки диаметром выше 1 мм не позволяет разогреть его до требуемой температуры порядка 1200oC. Шаг сетки менее 1 мм приводит к излишнему затенению подложки, а более 3 мм к большой неоднородности.

В случае осаждения алмазной пленки на кремниевую подложку достаточно толстый слой карбида кремния при подаче в газовый поток менее 7 % метана не успевает образоваться до роста алмазной пленки, а при подаче метана в газовый поток выше 12% разряд неустойчив. Время создания карбидного слоя определяется скоростью его образования и роста до толщины порядка доли микрометра.

В результате осаждения алмазной пленки предлагаемым способом образовывалась нанокристаллическая алмазная пленка. Установлено, что именно за счет нанокристаллической структуры пленки возможно получение алмазных пленок с улучшенными (рекордными) по плотности тока, порогу эмиссии, плотности эмитирующих центров эмиссионными свойствами.

Изобретение поясняется чертежами, где на фиг.1 схематично изображена установка газофазного синтеза, на которой осуществятся способ, на фиг. 2 изображено расположение подложки на аноде, а на фиг. 3 - расположение подложки под анодом, на фиг.4 представлено электронно-микроскопическое изображение алмазной пленки, полученной предлагаемым способом.

Установка состоит из источника тока (1), баластного сопротивления (2), катода (3), выполненный из молибдена, буферного объема (4), газовых трактов (5), анода (6) и подложкодержателя (7), на котором располагается подложка (8), насосов (9) и камеры (10).

Способ осуществляется следующим образом.

Камера (10) откачивается с помощью насосов (9) до достижения необходимого вакуума, затем по одному из газовых трактов (5) в камеру подается водород.

На катод (3) подается от источника постоянного тока (1) через балластное сопротивление (2) напряжение, необходимое для пробоя и поддержания разряда. Разряд или нагреватель обеспечивают нагрев подложки (8) до необходимой температуры (700-900)oC. После этого по другому газовому тракту (5) через буферный объем (4) в газовый поток добавляется углеродсодержащий газ при концентрации в газовом потоке 3 -10%, осаждение алмазной пленки проводят при плотности разрядного тока 0.3 - 2 А/см2. Перед удалением излишков графитовой фазы прекращают подачу углеродсодержащего газа и удаление производят в разряде в потоке водорода.

6) Приведите кривую равновесия углерода

7) Приведите условия стабильности графита и алмаза:

Фазовая диаграмма углерода:

1 и 2-области устойчивости соотв. графита и алмаза; 3 -область существования расплава углерода; 4 - линия равновесия графит-алмаз; 5, 6, 7, 8-линии плавления соотв. графита, метастабильного графита (приблизительная граница существования метастабильного графита в поле алмаза), алмаза и метастабильного алмаза в поле графита (приблизительная граница); А и В-области существования термодинамически неустойчивых алмаза и графита соответственно.

8) Как устроен гидравлический пресс для синтеза алмаза

Принцип работы гидравлического пресса

Гидравлический пресс -- это машина, которая позволяет при приложении малого усилия в одном месте, получать большое в другом месте. Его конструкция базируется на двух соединенных цилиндрах (с поршнями) разного диаметра, заполненных водой, маслом или другой жидкостью. По законам гидростатики давление (сила, действующая на единицу площади) в любом месте жидкости (или газа), находящегося в состоянии покоя, одинаковый во всех направлениях и одинаково передается во всем объеме.

Это закон Паскаля, названный по имени французского философа и ученого Б. Паскаля. Если до малого поршня приложить силу F1, то давление в жидкости увеличится на величину F1/S1, где S1 -- площадь малого поршня. Это давление передастся большому поршню, а значит: F1 / S1 = F2 / S2, откуда F2 = (A2/A1) F1. Если площадь S2 гораздо больше площади S1, то сила F2 будет намного больше силы F1.

Такой принцип действия гидравлического пресса широко используется в технике. Следует иметь в виду, что работа, которая осуществляется силой F1, должна (при пренебрежении трением) равна работе, совершаемой против силы F2. Если через l обозначить перемещение поршня, то это можно записать в виде F1l1 = F2l2, откуда l2 = (F1/F2) l1, то есть перемещение большого поршня гораздо меньше, чем малого.

В состав гидравлической прессовой установки входят:

§ собственно гидравлический пресс;

§ рабочая жидкость;

§ источник жидкости высокого давления;

§ привод;

§ приемники для жидкости -- баки;

§ трубопровод с соответствующей аппаратурой, соединяющий все указанные элементы в единую систему;

§ электропривод.

Тип привода определяется источником жидкости высокого давления, который питает пресс во время рабочего хода. Оно значительно влияет на схему и действие гидропрессового установки, в связи с чем последние классифицируют по этому признаку.

При насосных безакумуляторних приводах питание гидравлического пресса рабочей жидкостью высокого давления осуществляется непосредственно от насосов.

В насосно-аккумуляторных приводов прессов относят приводы, которые осуществляют питание гидравлического пресса рабочей жидкостью при рабочем ходе одновременно от аккумулятора и насоса.

В мультипликаторных приводах питание пресса во время рабочего хода осуществляется мультипликатором, который подает рабочую жидкость определенными порциями в гидравлический пресс. Мультипликатор -- это что-то вроде одноцилиндрового насоса. Тип привода характеризует принципиальные свойства прессовой установки.

Для характеристики гидропрессового установки необходимо указывать не только тип привода, а род рабочей жидкости, который применяется определяет конструктивные особенности прессовой установки, например, маслонасосные безакумуляторний привод.

При насосно-аккумуляторном приводе аккумулятор накапливает энергию в течение полного цикла работы гидравлического пресса для осуществления рабочего хода. В результате нагрузка насоса и электродвигателя становится равномерным. Недостаток насосно-аккумуляторной поводу в том, что расход энергии не зависит от сопротивления поковки.

Для насосного безакумуляторного поводу мощность насоса и электродвигателей определяется максимальной мощностью развивается прессом. Привод расходует энергию в соответствии с работой, которую осуществляют гидравлическим прессом.

Привод от парового или воздушного мультипликатора расходует энергию независимо от сопротивления поковки. Он может обеспечить большого количества коротких ходов, часто повторяются. Привод от механического мультипликатора обеспечивает расход энергии в зависимости от осуществляемой работы, большое количество ходов, повторяются, и постоянный уровень проникновения бойка в металл.

10)Возможен ли синтез алмазов ювелирного качества?

Технология производства выращенных алмазов довольно сложна. Дело в том, что каждый кристалл растет индивидуально. Одна лаборатория ежегодно может выращивать лишь две-три сотни алмазов. Поэтому, в отличие от большинства синтетических монокристаллов, выращенный алмаз имеет довольно высокую себестоимость, и зачастую выращенный алмаз небольшого размера стоит значительно дороже природного. Также как и природный алмаз, выращенный кристалл может содержать включения, так как абсолютно чистый бездефектный бриллиант - понятие скорее теоретическое, чем практическое. Условия роста кристаллов алмазов в процессе их образования настолько нестабильные и разнообразные, что в них всегда присутствуют либо дефекты механического происхождения, либо инородные образования. На сегодня методы позволяют выращивать алмазы высокой чистоты, не ниже категории SI, согласно общепринятой (GIA) классификации.

Отдельно следует сказать об окраске алмазов. В природе встречаются алмазы почти всех цветов, от черного до красного, но они достаточно редки и поэтому очень дороги (кроме черных и коричневых): например, красный алмаз стоит в 13 раз дороже своего бесцветного собрата. Выращенный в лабораторных условиях кристалл алмаза имеет медово-желтую (Y3/6) окраску за счет высокого содержания азота в исходных компонентах. Такие кристаллы, благодаря характерному цвету, эксперты сразу определяют как выращенный алмаз. Для придания бриллианту цветов, аналогичных цветам природных цветных алмазов (интенсивно-желтых, зелёных, розовых и красных), используются технологии постростовой термобарической обработки (HPHT) - дополнительный отжиг кристалла при высоких давлениях и температурах.

Применяя различные режимы, а также внося примеси в ростовую систему, можно получать алмазы разных цветов: желтые, красные, зеленые. При этом, чтобы стать владельцем цветного выращенного алмаза, вам не надо выкладывать огромные суммы. На сегодняшний день мы готовы предложить вам интенсивно-желтые (cognac), зеленовато-желтые (canary), в перспективе красные, голубые и синие выращенные алмазы. Отдельно следует упомянуть, что выращенный алмаз, особенно после термобарической обработки, обладает более совершенной кристаллической структурой, чем его природный собрат, что приводит к изменению его люминесцентных свойств - характеру свечения в ультрафиолетовых лучах. Алмазы с идеально упорядоченной структурой в природе редки, очень редко удается найти правильный монокристалл.

Бриллианты состоят из кристаллического углерода, следовательно, можно искусственно получить эти камни, тем более, что научно-технический прогресс не стоит на месте, и в настоящее время разработано геммологическое оборудование для этих целей. По технологии LifeGem в бриллианты можно переработать даже человеческие останки, богатые углеродом. Для этого их нагревают до высокой температуры, а затем сжимают под высоким давлением. Кристаллы затем обрабатывают и получают бриллианты, которые затем используют в ювелирных изделиях.

В Китае разработан метод получения искусственных бриллиантов с использованием диоксида углерода и металлического калия. Правда, размер создаваемых камней не превышает 1,2 миллиметра. Тем не менее, ведется активная работа по разработке и модификации оборудования с целью получения крупных образцов.

Еще один способ создания искусственного бриллианта - прессование бриллиантовой пыли, которая образуется в результате обработки и огранки алмазов. Такие бриллианты очень недолговечны: их можно разбить как стекло.

Размещено на Allbest.ru

...

Подобные документы

  • Критические температуры превращений железа. Различия критических точек при нагревании и охлаждении. Механические свойства железа. Условия перехода алмаза в графит. Особенности жидкого раствора углерода в железе. Сходство в строении графита и цементита.

    презентация [456,8 K], добавлен 29.09.2013

  • Получение органических соединений, материалов и изделий посредством органического синтеза. Основные направления и перспективы развития органического синтеза. Группы исходных веществ для последующего органического синтеза. Методика органического синтеза.

    реферат [1,6 M], добавлен 15.05.2011

  • Основной потребитель добываемых в мире золота и алмазов. Годовой объем продаж ювелирных изделий с бриллиантами. Крупные предприятия по выпуску ювелирной продукции. Основные виды алмаза. День ювелира в Якутии, выставки достижений ювелирной промышленности.

    презентация [2,3 M], добавлен 18.11.2011

  • Технология и химические реакции стадии производства аммиака. Исходное сырье, продукт синтеза. Анализ технологии очистки конвертированного газа от диоксида углерода, существующие проблемы и разработка способов решения выявленных проблем производства.

    курсовая работа [539,8 K], добавлен 23.12.2013

  • Тенденции развития органического синтеза. Синтез-газ как альтернатива нефти. Получение этанола прямой каталитической гидратацией этилена. Замена двухстадийного процесса синтеза ацетальдегида из этилена через этанол одностадийным окислительным процессом.

    курсовая работа [116,4 K], добавлен 27.02.2015

  • Физико-химические основы синтеза карбамида из аммиака и двуокиси углерода. Равновесие жидкость – газ при синтезе. Тепловой баланс процесса. Предельно допустимые концентрации аммиака, двуокиси углерода, карбамида и солей аммония в атмосфере и водоемах.

    курсовая работа [2,2 M], добавлен 19.11.2014

  • Технология изготовления бриллиантов фантазийной формы "овал". Выбор кристалла алмаза и его разметка. Требования к бриллиантам овальным с пятьюдесятью семью гранями. Предварительная огранка, обдирка заготовки, огранка. Оценка бриллианта по цвету и чистоте.

    курсовая работа [3,0 M], добавлен 24.06.2011

  • Сущность "псевдоравновесного синтеза". Синтез веществ конгруэнтно растворимых с учетом диаграммы состояния тройных систем. Метод осаждения из газовой фазы. Окислительно-восстановительные реакции в растворах. Физико-химические методы очистки веществ.

    контрольная работа [62,9 K], добавлен 07.01.2014

  • Описание аппарата синтеза метанола из конвертированного газа на медьсодержащем катализаторе. Теоретический анализ процесса. Обоснование оптимальных технологических параметров. Описание технологической схемы синтеза, анализ экологической безопасности.

    курсовая работа [389,7 K], добавлен 23.06.2014

  • Критические точки в стали, зависимость их положения от содержания углерода. Диаграмма состояния железоуглеродистых сплавов, фазы и структурные составляющие: линии, точки концентрации, температуры; анализ фазовых превращений при охлаждении стали и чугуна.

    реферат [846,6 K], добавлен 30.03.2011

  • Диаграмма стабильного равновесия железо–углерод и процесс образования в чугуне графита – графитизация. Связь структуры чугуна с его механическими свойствами. Особенности маркировки серого чугуна, его основные разновидности и область применения.

    контрольная работа [847,3 K], добавлен 17.08.2009

  • Основные виды присадок - веществ, добавляемых к жидким топливам и смазочным материалам с целью улучшения их эксплуатационных свойств. Физико-химические основы синтеза биметальной присадки. Схема и описание лабораторной установки для осуществления синтеза.

    дипломная работа [1,7 M], добавлен 15.04.2015

  • Производство и применение катализаторов синтеза аммиака. Строение оксидного катализатора, влияние на активность условий его восстановления. Механизм и кинетика восстановления. Термогравиметрическая установка восстановления катализаторов синтеза аммиака.

    дипломная работа [822,5 K], добавлен 16.05.2011

  • Эффективность антихолинэстеразного, противоглаукомного и миотического действия хлофосфола. Характеристика класса препарата. Теоретическое обоснование выбора схемы синтеза. Характеристика используемых в синтезе веществ. Идентификация готового продукта.

    курсовая работа [839,2 K], добавлен 23.12.2012

  • Задачи и методы динамического синтеза рычажного механизма, построение планов аналогов скоростей. Диаграммы работ, изменения кинетической энергии, диаграммы Виттенбауэра, синтез кулачкового механизма: звенья приведения, жесткости пружин механизма.

    дипломная работа [445,1 K], добавлен 25.11.2010

  • Производство, строение и синтез полиимидных пленок. Диэлектрические и электрические свойства, влияние повышенной температуры и радиационного облучения. Энергетические характеристики разрушения изоляционных материалов под воздействием частичных разрядов.

    дипломная работа [3,6 M], добавлен 18.10.2011

  • Области применения азотированного феррохрома. Ресурсный потенциал хромитоносных провинций Российской Федерации. Вакуумтермическая технология производства. Примерный состав нитрида хрома. Технология самораспространяющегося высокотемпературного синтеза.

    контрольная работа [645,4 K], добавлен 20.03.2014

  • Определение передаточных функций элементов нескорректированной системы автоматического управления. Проведение синтеза последовательного корректирующего устройства по логарифмическим частотным характеристикам. Расчет кривых переходных процессов в системе.

    курсовая работа [172,8 K], добавлен 13.12.2014

  • Физико-химические свойства эпихлоргидрина. Перспективы использования эпихлоргидрина как сырья для глицерина. Способы получения этого химического вещества: методом гипохлорирования хлористого аллила, путем синтеза дегидрохлорированием дихлогидринов.

    контрольная работа [165,0 K], добавлен 12.11.2015

  • Применение газовых сенсоров в системах автоматической пожарной сигнализации. Основные стадии наночастиц и наноматериалов. Механические свойства наноматериалов. Мицеллярные и полимерные гели. Золь-гель метод синтеза тонких пленок с солями металлов.

    курсовая работа [1,6 M], добавлен 21.12.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.