Каталитический метод очистки отходящих газов
Классификация методов и аппаратов для обезвреживания газовых выбросов. Каталитическая очистка газов, сущность метода. Конструкция каталитических реакторов. Определение размеров реактора для каталитического окисления вредных примесей промышленного выброса.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 14.12.2013 |
Размер файла | 410,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
1 Литературный обзор
1.1 Классификация методов и аппаратов для обезвреживание газовых выбросов
1.2 Каталитическая очистка газов. Суть метода
1.3 Катализаторы для очистки газов
1.4 Конструкция каталитических реакторов
2 Расчетная часть
Выводы
Список используемых источников
Приложения
1 Литературный обзор
1.1 Классификация методов и аппаратов для обезвреживание газовых выбросов
Основными источниками загрязнения атмосферного воздуха являются промышленные предприятия, транспорт, тепловые электростанции, животноводческие комплексы. Загрязнения в атмосферу поступают из источников непрерывно или периодически, залпами или мгновенно. В случае залповых выбросов за короткий промежуток времени в воздух выделяется большое количество вредных веществ. Залповые выбросы возможны при авариях, при сжигании быстрогорящих отходов производства на специальных площадках уничтожения. При мгновенных выбросах загрязнения выбрасываются в доли секунды иногда на значительную высоту. Они происходят при взрывных работах и авариях. С отходящими газами в атмосферу поступают твердые, жидкие, паро- и газообразные неорганические и органические вещества, поэтому по агрегатному состоянию загрязнения подразделяют на твердые, жидкие, газообразные и смешанные. Отходящие газы промышленности, содержащие взвешенные твердые или жидкие частицы, представляют собой двухфазные системы. Сплошной фазой в системе являются газы, а дисперсной -- твердые частицы или капельки жидкости. Такие системы называют аэрозолями, которые разделяют на пыли, дымы, и туманы. Пыли содержат твердые частицы размером от 5 до 50 мкм, а дымы -- от 0,1 до 5 мкм. Туманы состоят из капелек жидкости размером 0,3--5 мкм и образуются в результате конденсации паров или при распылении жидкости в газе.
Организованный промышленный выброс -- это выброс, поступающий в атмосферу через специально сооруженные газоходы, воздуховоды, трубы, а неорганизованным выбросом называют промышленный выброс, поступающий в атмосферу в виде ненаправленных потоков газа в результате нарушения герметичности оборудования, отсутствия или неудовлетворенной работы оборудования по отсосу газа в местах загрузки, выгрузки и хранения продукта.
Для обезвреживания аэрозолей (пылей и туманов) используют сухие, мокрые и электрические методы. Кроме того, аппараты отличаются друг от друга как по конструкции, так и по принципу осаждения взвешенных частиц. В основе работы сухих аппаратов лежат гравитационные, инерционные и центробежные механизмы осаждения или фильтрационные механизмы. В мокрых пылеуловителях осуществляется контакт запыленных газов с жидкостью (осаждение происходит на капли, на поверхность газовых пузырей или на пленку жидкости). В электрофильтрах отделение заряженных частиц аэрозоля происходит на осадительных электродах.
1.2 Каталитическая очистка газов. Сущность метода
Каталитическая очистка газов основана на гетерогенном катализе и служит для превращения примесей либо в безвредные соединения, либо в соединения, легко удаляемые из газовой смеси. [5]
Достоинства метода:
1)высокая степень очистки;
2)компактность;
3)небольшая металлоемкость;
4)высокая производительность;
5)легкость автоматического управления.
Недостатки:
1)образование новых веществ, которые часто надо удалять из газа;
2)высокая стоимость катализаторов.
Особенность каталитической очистки газов состоит в том, что очищаются большие объемы отходящих газов с малым содержанием примеси.
Суть каталитических процессов газоочистки заключается в реализации химических взаимодействий, приводящих к конверсии подлежащих обезвреживанию примесей в другие продукты в присутствии специальных катализаторов. Последние не вызывают изменения энергетического уровня молекул взаимодействующих веществ и смещения равновесия простых реакций. Их роль сводится к увеличению скорости химических взаимодействий. Каталитические взаимодействия в гетерогенном катализе происходят на границе раздела фаз конвертируемой газовой смеси и катализатора. Последний обеспечивает взаимодействие на его поверхности конвертируемых веществ с образованием активированных комплексов в виде промежуточных поверхностных соединений катализатора и реагирующих веществ, формирующих затем продукты катализа, освобождающие (восстанавливающие) поверхность катализатора. Схема этого явления для газовой реакции А+В=С в присутствии катализатора К может быть представлена следующим образом:
А+В+К = К[АВ],
К[АВ] = С+К,
где К[АВ]--активированное промежуточное соединение на поверхности канализатора.
В ряде случаев функции поверхности катализатора заключаются в зарождении реакционных цепей, развивающихся затем в объеме конвертируемой газовой фазы, где осуществляется дальнейшая конверсия целевого компонента по гетерогенно-гомогенному механизму. [7]
Изменение реакционного пути химического взаимодействия в присутствии катализатора в соответствии с указанными механизмами приводит к понижению его энергии активации, что и выражается в ускоряющем действии катализатора, как это следует из уравнения Аррениуса:
где k -- константа скорости реакции; k0 -- предэкспоненциальный множитель: Е -- энергия активации; R -- газовая постоянная; Т -- абсолютная температура.
В некоторых типах каталитических взаимодействий с понижением энергии активации уменьшается предэкспоненциальный множитель в уравнении Аррениуса. Поэтому рассчитанное на основании снижения значения Е увеличение константы скорости и соответственно скорости каталитического взаимодействия несколько превышает действительное. В случае каталитических взаимодействий, при которых не происходит изменения kQ по сравнению с некатализируемыми, ускоряющее действие катализатора выражают его активностью А, характеризующейся отношением констант скоростей реакций, происходящих с участием катализатора kК и без него k:
где ?Е=Е--Ек; Ек -- энергия активации реакции в присутствии катализатора.
Активность катализатора обычно определяется совокупностью физико-химических свойств как самого катализатора, так и конвертируемого газового потока. В наибольшей степени она зависит от температуры каталитического превращения, структуры катализатора, содержания в нем промоторов, давления, объемного расхода, концентрации и молекулярных масс исходных реагентов и продуктов конверсии в газовой смеси. [1]
Активность различных катализаторов при заданных условиях конвертирования определенной газовой смеси наиболее просто можно сопоставить по степени превращения исходных регентов. Оценка активности одного катализатора в различны условиях проведения определенного каталитического превращения может быть выражена, например, отношением количества образующихся в единицу времени продуктов GП к объему V, массе GK, работающей S или удельной SУД поверхности катализатора:
А=GП/V;
А=GП/GК;
А=GП/S;
АУД=GП/SУД ·V.
Гетерогенное каталитическое превращение является сложным многоступенчатым процессом, включающим в качестве основных стадий диффузию исходных реагентов из ядра газового потока к поверхности гранул (зерен) катализатора (внешняя диффузия), проникание этих веществ в порах катализатора к активным центрам его внутренней поверхности (внутренняя диффузия), активированную адсорбцию продиффундировавших реагентов поверхностью катализатора с образованием поверхностных химических соединений, химическое взаимодействие адсорбированных веществ с образованием продуктов, десорбцию продуктов и их перенос к наружной поверхности гранул катализатора (внутренняя диффузии) и затем от этой поверхности в ядро газового потока (внешняя диффузия). [6]
Наблюдаемая скорость такого комплексного процесса определяется скоростью наиболее медленной, лимитирующей его стадии при условии практически мгновенного достижения равновесия в других стадиях. В случае примерного равенства скоростей каждой стадии процесса говорят о протекании каталитического превращения в смешанной области.
1.3 Катализатор для очистки газов
Катализаторы должны обладать следующими свойствами:
1)активностью и селективностью к извлекаемому компоненту;
2)пористой структурой;
3)стойкостью к катализаторным ядам;
4)механической прочностью;
5)низкой температурой зажигания;
6)большим температурным интервалом работы;
7)термостойкостью;
8)низким гидравлическим сопротивлением;
9)иметь небольшую стоимость.
Обычно катализатор представляет собой смесь нескольких веществ (контактная масса): каталитически активного вещества, активатора и носителя.
Каталитически активное вещество -- основа катализатора. Именно оно вступают в реакцию обменного действия. В настоящее время накоплен достаточно большой опыт выбора каталитически активных веществ для проведения различных процессов. В качестве каталитически активного вещества используются чистые металлы, оксиды металлов, а также большое количество химических соединений. Основные материалы, используемые в качестве каталитически активных веществ, применяемых при очистке газов: платиновые металлы, палладий, рутений, родий, сплавы, содержащие никель, хром, медь, цинк, ванадий. [7]
Активаторы -- вещества, которые повышают активность катализаторов. При этом сами активаторы обычно не обладают каталитическими свойствами, но способны усиливать действие каталитически активных веществ. Активаторы могут усиливать действие каталитически активных веществ в сотни и тысячи раз. Их действие до конца не изучено, предполагают, что они вступают в реакцию с каталитически активным веществом. В качестве активатора могут использоваться самые разнообразные вещества, выбор которых осуществляется чаще всего эмпирическим путем.
Носители -- основание, на которое наносится катализатор. В ряде случаев они могут оказывать влияние на активность и селективность катализаторов. В качестве носителей чаще всего используют инертные пористые вещества, обладающие развитой поверхностью: силикагели, алюмосиликаты, цеолиты и т. д.
В качестве контактной массы чаще всего используют:
1) Активный металлический катализатор на металлическом носителе. Например, катализатор -- платина или другой благородный металл -- вместе с активаторами наносят на стружку из никелевого сплава. Разработаны специальные катализаторы для селективных реакций. Обычная каталитическая установка представляет собой неглубокую матрицу, хотя для некоторых операций используются цилиндрические патроны. [9]
2) Активный металлический катализатор на носителе из оксида металла. Например, тонкий слой металла платиновой группы наносят на носитель -- обожженный оксид алюминия либо фосфор (свечного типа). Носитель изготавливают в виде цилиндрических гранул, расположенных рядами, смещенными по отношению друг к другу. Катализатором может быть также оксид алюминия с большой удельной поверхностью и платиновым покрытием. К этой же группе относится палладиевый катализатор на носителе из оксида алюминия.
3) Активный катализатор -- оксид металла на подложке из оксида металла. Активные оксиды, обладающие высокой удельной поверхностью, могут быть нанесены на носитель из оксида металла. Такая система обладает следующими преимуществами: она способна выдержать высокие температуры; в ее состав входят дешевые материалы (по сравнению с катализаторами из благородных металлов); кроме того, она может быть изготовлена в виде стержней или таблеток. К этой категории относят также катализаторы, целиком состоящие из активного материала, включая и носитель; такие катализаторы называют иногда «бесподложечные». К их числу относят смесь оксидов меди и марганца («Хопкалит»), обеспечивающую полное сгорание углеводородов при 300-400 °С, за исключением метана (30% при 400 °С).
4) Активный оксид металла на металлическом носителе. Например, каталитическая система, представляющая собой металлическую проволоку в качестве носителя. В процессах очистки газов такие системы практически не используются.[4]
Важнейшим требованием к катализаторам, используемым в очистке газов, является стойкость к каталитическим ядам. Рассмотрим действие основных каталитических ядов на катализаторы при очистке выбросов.
Фосфорорганические соединения, встречающиеся в аэрозолях, образуемых смазками, при окислении дают фосфорную кислоту, которая покрывает катализатор тонким дезактивирующим слоем.
Тяжелые металлы -- свинец и мышьяк -- действуют подобно фосфатам, образуя тонкие дезактивирующие пленки. Дезактивация и засорение катализатора могут быть обусловлены присутствием пыли в очищенном газе.
Если эта пыль огнеупорная (оксиды алюминия, кремния и железа), ее дезактивирующее действие может быть постоянным; если не произошло спекание, фильтрующие элементы могут быть очищены и активность катализатора частично восстановится. Временная потеря активности может быть вызвана отложением мелкой угольной пыли и сажи вследствие неполного сгорания. В этом случае уголь выжигается из катализатора при кратковременном повышении температуры до 350°С.
Стоимость катализатора зависит от стоимости исходного сырья и технологии его получения. Часто для приготовления катализаторов используют драгоценные и редкие металлы: платину, серебро, радий, палладий, рутений, церий и другие, а также цветные металлы: медь, цинк, хром, никель кобальт, олово, алюминий, титан, молибден и другие. С целью снижения стоимости следует синтезировать, где это возможно, катализаторы, не содержащие драгоценных металлов или снижать их содержание. В ряде случаев такие катализаторы по активности и другим показателям не уступают катализаторам, в состав которых входят драгоценные металлы. [6]
Немаловажное влияние на стоимость катализаторов оказывает технология их приготовления. Технология получения катализаторов зависит от того, в каком виде его получают. Например, в виде металлических сеток, гофрированной ленты, керамических блоков, таблеток, колец, шариков и др. Наиболее часто контактные массы получают в виде таблеток путем совместного осаждения каталитически активных веществ с последующим добавлением активаторов и наполнителей. Производство таких катализаторов включает следующие стадии: подготовку сырья, растворение, осаждение, фильтрование, промывку, сушку, прокаливание, формовку.
1.4.Конструкция каталитических реакторов
Требования к реакторам :
1)высокая производительность;
2)обеспечение непрерывности процесса при оптимальных технологических режимах;
3)легкость в управлении;
4)возможность автоматизации;
5)малое гидравлическое сопротивление;
6)доступность загрузки и выгрузки катализатора;
7)наличие устройства для подогрева газовых смесей и рекуперации тепла;
8)небольшая металлоемкость, доступность монтажа, ремонта и транспортировки.
По способу взаимодействия газов с катализатором аппараты подразделяются на 3 группы:
1)Каталитические реакторы с фильтрующим слоем катализатора. К аппаратам с фильтрующим слоем относятся емкостные, трубчатые и полочные аппараты, принцип действия которых основан на фильтрации газа через слой неподвижного катализатора, которые представлены на рисунке 1. На этом принципе основана работа большинства контактных аппаратов. Причем катализатор может находиться в виде металлических сеток, натянутых по ходу движения газа, трубчатых контактных аппаратов или в виде твердых тел различной формы, располагаемых на перфорированных решетках. Достоинства таких аппаратов: простота конструкции. К недостаткам следует отнести отсутствие теплообмена, что позволяет проводить в них только те реакции, которые сопровождаются небольшими тепловыми эффектами. Для полноты протекания процесса в одном аппарате может быть установлено несколько слоев контактной массы. Многослойные контактные аппараты чаще всего устанавливают, когда имеется необходимость очищаемый газ подвергать дополнительной обработке (нагреванию, охлаждению и т. д.). Это позволяет вести процесс при оптимальном температурном режиме на каждой полке.[11]
а -- контактный аппарат с катализатором в виде сеток; б-- трубчатый контактный аппарат; в -- контактный аппарат с перфорированными решетками; г -- многослойный контактный аппарат; д -- контактный аппарат с трубками Фильда; е -- контактный аппарат с теплообменником.
Рисунок 1-Схемы контактных аппаратов с фильтрующим слоем катализатора
В зависимости от функционального назначения контактные аппараты с фильтрующим слоем катализатора имеют несколько вариантов конструктивного оформления: реакторы каталитические с твердым катализатором, размещенном в отдельном корпусе (тип К); реакторы каталитические, в которых в общем корпусе размещены контактный узел и подогреватель (тип ТК); реакторы термокаталитические, в которых в общем корпусе размещены контактный узел и рекуператор тепла (тип KB); реакторы каталитические, в которых в общем корпусе размещены подогреватель, контактный узел и рекуператор тепла (тип ТКВ). Наиболее перспективными являются аппараты ТКВ, которые в максимальной степени отвечают экологическим требованиям. Например, термокаталитический дожигатель конструкции Гипрогазочистка представленный на рисунке 2.
1--горелка; 2--слой катализатора; 3--теплообменник-рекуператор.
Рисунок 2-Каталитический дожигатель конструкции Гипрогазочистка
Газ, содержащий вредные примеси, подогревается очищенными газами в теплообменнике-рекуператоре. Затем смешивается с топочными газами, образующимися при сжигании топлива в горелках 1, после чего происходит обезвреживание на поверхности катализатора 2. [9]
Недостатком аппаратов с фильтрующим слоем является возможность засорения катализатора твердыми частицами. В этом случае могут быть использованы трубчатые реакторы с нанесенными на внутреннюю поверхность трубок катализаторами. Для отвода (подвода) тепла из реакторов с неподвижным слоем используют теплообменники, расположенные вне слоев катализатора.
2)Каталитические реакторы со взвешенным слоем катализатора. Недостатком фильтрующего слоя является наличие зон, плохо омываемых газом в местах соприкосновения гранул катализатора. Для устранения этих недостатков используют кипящий слой, в котором каждая гранула катализатора интенсивно , со всех сторон соприкасается с газом, что интенсифицирует процесс очистки, который представлен на рисунке 3.
1 - цилиндрическая часть корпуса; 2- зернистый катализатор; 3 - верхняя часть корпуса; 4 - циклон; 5 - шнековое устройство; 6 - газораспределительная решетка.
Рисунок 3- Каталитический реактор с кипящим слоем катализатора
Достоинством таких аппаратов является также хорошая теплопроводность слоя, возможность механизировать и интенсифицировать процесс загрузки и выгрузки катализатора, исключение возможности локального перегрева или переохлаждения, возможность использовать мелкий катализатор (в фильтрующем слое мелкозернистый катализатор не используется из-за повышенного сопротивления и неравномерности температурного слоя). [8]
К недостаткам взвешенного слоя следует отнести истирание и унос пылевидного катализатора из аппарата, что требует установки пылеулавливающего аппарата и предъявляет повышенные требования к прочности катализаторов, а также невозможность осуществления противотока, что снижает движущую силу процесса. Перечисленные недостатки не являются определяющими и многие из них могут быть полностью или частично устранены.
Для упорядоченного перемешивания твердой фазы в кипящем слое иногда вводят механические мешалки, что способствует усреднению времени пребывания частиц в аппарате.
Для увеличения степени очистки газов используют многополочные аппараты с кипящем слоем.
Для отвода (подвода) тепла из реакторов со взвешенным слоем используют теплообменники, расположенные внутри слоев катализатора.
3) Каталитические реакторы с пылевидным катализатором. В аппаратах с пылевидным катализатором измельченный катализатор распыляют в рабочую зону с помощью специальных сопел, представленный на рисунке 4. Этим достигается более полное использование реакционного объема. Реакция протекает в тот момент, когда частицы катализатора находятся в полете. Обычно процессы каталитического восстановления и окисления рассматривают отдельно.
1 -- цилиндрический корпус; 2 -- циклон; 3 -- сопло; 4 -- бункер;5 -инжекторное устройство.
Рисунок 4- Каталитический реактор с пылевидным реактором
Каталитическое окисление используют для удаления диоксида серы из дымовых газов, очистки выбросов от окиси углерода, органических веществ, а каталитическое восстановление для обезвреживания газов от оксидов азота.
После каталитического окисления газы направляют на дальнейшую переработку, например, абсорбцию, с получением готового продукта. Для некоторых газов эта стадия не предусмотрена, так как загрязнитель превращается в безвредное соединение. [6]
2 Расчетная часть
Определяем основные размеры реактора для каталитического окисления вредных примесей промышленного выброса.
Объем выброса G = 15000 м3/час
Температура выброса t = 14?C
Температура в реакторе tр = 300?C
ПДК фенола 0,01 мг/м3
ПДК ксилола 50 мг/м3
Катализатор CuO
диаметр частиц 0,002 м,
длина частиц 0,004 м,
форма частиц цилиндрическая,
Порозность е = 0,45
Требуемая степень очистки по веществу с меньшей ПДК,
т.е. по фенолу 0,998
Химический состав выброса, % (об.):
Азот 78
Кислород 21
Пары воды 0,5
Диоксид углерода 0,5
Концентрация вредных примесей:
Фенол 1,7 г/м3
Ксилол 0,5 г/м3
Значения необходимых величин в процессе расчета взяты из справочников.
Расчет:
Кинетическое уравнение окисления фенола на катализаторе CuO
k0 = 9,11 •1013
E =134403 кДж/моль
b0 = 2,76 •10-5
Q =72016 кДж/моль
Где r- скорость химической реакции, г/м3*с
k- константа скорости химической реакции,с-1
С-концентрация окислительного вещества,г/м3
b- коэффициент кинетического уравнения
k0,b0- предэкспоненциальные множители
Е- энергия активации, кДж/моль
Q- энергия адсорбционных стадий, кДж/моль
1. Конечная концентрация фенола Ск составит:
Ск= 1,7(1-0,998)= 0,0034 г/м3
2. Необходимое число единиц переноса определяется по формуле:
где Сн,Ск - начальная и конечная концентрация окисляемого вещества, г/м3.
3. Определим скорость фильтрования (см.по таблице приложения 1)Uф= 0,775 м/с.
4. Коэффициент массопередачи определяют по формуле:
где - коэффициент диффузии, м2/с
- порозность слоя катализатора, м3/м3
- кинематическая вязкость воздуха при нормальной температуре, м2/с;
- эквивалентный диаметр каналов слоя катализатора, м
Для этого рассчитываем некоторые величины:
1) Рассчитываем по формуле коэффициент диффузии:
7,2•10-6 м2/с
где VA,VB - мольные объемы окисляемого вещества и воздуха соответственно;
MA, MB - молекулярные массы окисляемого вещества и воздуха;
P0 - атмосферное давление, Мпа.
Мольные объемы фенола составляют C6H6O= 96,36
Мольный объем воздуха=20,1
Молекулярная масса фенола МА=94,12
Молекулярная масса воздуха МВ=29
Давление Р0=0,1 Мпа
2) Удельная поверхность слоя цилиндрических частиц
м3/м3
где d, l - диаметр и длина частицы соответственно, м.
3)Эквивалентный диаметр каналов слоя катализатора определяются по формуле:
4)Конечная температура катализатора Тк рассчитывается по формуле:
Тк=Тн+gа.р(Сн-Ск),
где qа.р. - удельная величина адиабатического разогрева, м3 К/г.
Величину qа.р вычисляют по формуле:
м3•К/г.
где QH - теплота сгорания окисляемого вещества, кДж/моль;
cV - теплоемкость воздуха, кДж/(м3 К), равная
CV=Cp-R/22.4
где ср - теплоемкость воздуха при постоянном давлении, кДж/(моль К), ср = 30 кДж/(моль К).
Теплоту сгорания органического вещества находят из соотношения
Qн=393,6·nC+121,0·mH
Qн=393,6·6+121,0·6=3087,6 кДж/моль,
где nC, mH - число атомов углерода и водорода в молекуле вещества.
сv=(30-8,31)/22,4=0,966кДж/(м3К)
м3•К/г.
Тк=23+33,96·(1,7-0,0034)=580,61 К
Средняя температура катализатора:
Тс = 0,5·(Тн + Тк) = 0,5·(523+580,61)=551,805 К
где вязкость воздуха при 0?С = 13,3•10-6 м2/с
м/с.
5.Удельная доступная поверхность катализатора:
где а0 - удельная поверхность слоя катализатора, м2/м3;
- коэффициент доступной поверхности =0,85.
м2/м3
6.Высота слоя по массопередаче:
где N - необходимое число единиц переноса;
µ - коэффициент массопередачи, м/с;
а - удельная доступная поверхность катализатора, м2/м3;
uф - скорость фильтрования, м/с;
Тн -температура в реакторе, К; Т0 =273 К.
7. Константа скорости реакции окисления фенола:
с-1.
8. Коэффициент кинетического уравнения:
9. Скорость реакции окисления фенола:
г/м3•с.
10. Составляющая высота слоя по кинетике рассчитывается по формуле:
м.
11Рабочая высота слоя катализатора: hp= 1,35(0,0034+3,14)=4,25 м
12. Необходимая поверхность фильтрования:
м3
где G' - объем промышленного выброса, м3/ч.
13. Объем катализатора составит Vк(м3):
V=р*Dcp*hp(H+2h)
где Н - рабочая высота кольцевой корзины, м;
Dср - средний диаметр кольца, м.
Принимаем кольцевую корзину, у которой отношение H/Dср = 2, тогда
,
м,
Выводы
каталитический очистка газ выброс
В курсовой работе проведен анализ и изучен каталитический метод очистки отходящих газов. Этот метод очистки основаны на химических превращениях токсичных компонентов в нетоксичные на поверхности твердых катализаторов. Очистке подвергаются газы, не содержащие пыли и катализаторных ядов. Методы используется для очистки газов от оксидов азота, серы, углерода и от органических примесей.
Так же рассмотрены катализаторы, применяемые для этого метода. Катализаторы для таких процессов приготовляют на основе меди, хрома, кобальта, марганца, никеля, платины, палладия и других металлов. В отдельных случаях используют некоторые природные материалы (бокситы, цеолиты).
Изучены конструкции различных каталитических реакторов. Рассмотрена и представлена схема установки каталитического обезвреживания.
Произведен расчет каталитического реактора с катализатором CuO. Вычислены его основные размеры: диаметр, высота и объем.
Используемые в промышленной практике установки каталитической очистки газовых выбросов от паров органических веществ различаются конструкцией контактных аппаратов, способами повышения до необходимого уровня температуры поступающих в них газовых потоков, используемыми катализаторами, приемами рекуперации тепла, наличием рецикла обезвреженных газов.
Список использованной литературы
1. Родионов А.И., Клушин В.Н., Торочешников Н.С. / Техника защиты окружающей среды / - М.: Химия, 1989. - 511 с.
2. Родионов А.И., Клушин В.Н., Систер В.Г. /Технологические аспекты экологической безопасности - Калуга: изд. Н.Бочкаревой, 200. - 800 с.
3. Юшин В.В., Попов В.М., Кукин П.П. и др. /Техника и технология защиты воздушной среды - М.: Высш. шк., 2005. - 391 с.
4. Защита атмосферы от промышленных загрязнений / Справ. изд. в 2-х ч. под ред. Калверта С., Инглунда Г./ - М.: Металлургия, 1988. - 758 с.
5. Страус В. /Промышленная очистка газов/ пер. с англ. - М.: Химия, 1981. - 616 с.
6. Кузнецов И.Е., Троицкая Т.М. /Защита воздушного бассейна от загрязнений предприятиями химической промышленности / - М.: Химия, 1974. - 474 с.
7. Павлов К.Ф., Романков Н.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии. Л.: Химия, 1981, 560 с.
8. Иоффе И.Л. Проектирование процессов и аппаратов химической технологии. Учебник для техникумов. - Л.: Химия, 1991 г. - 352с.
9.Дытнерский Ю.И. Основные процессы и аппараты химической технологии: Пособие по проектированию. - М.: Химия, 1991 г. - 496с.
10.Плановский А.Н., Рамм В.М., Каган С.З. Процессы и аппараты химической технологии. Учебник для техникумов. - М.: Химия, 848 с.
11. Дытнерский Ю.И. Процессы и аппараты химической технологии: Учебник для вузов. Изд. 3-е. В 2-х кН. М.: Химия, 2002 г.
Приложения 1
Таблица приложения 1- Рекомендуемые скорости фильтрования, отнесенные к полному сечению слоя (для рабочей температуры 250?С)
dэ |
е = 0,35 |
е = 0,40 |
е = 0,45 |
|
Допускаемое гидравлическое сопротивление слоя 2000 Па |
||||
0,001 0,002 0,003 |
0,4-0,5 0,5-0,6 0,6-0,7 |
0,5-0,6 0,6-0,7 0,7-0,8 |
0,8-0,9 0,9-1,05 1,0-1,2 |
|
Допускаемое гидравлическое сопротивление слоя 1000 Па |
||||
0,001 0,002 0,003 |
0,3-0,4 0,35-0,45 0,4-0,5 |
0,35-0,45 0,4-0,5 0,45-0,55 |
0,5-0,6 0,6-0,7 0,7-0,8 |
Примечание: с увеличением рабочей температуры на 50?С скорость фильтрования следует уменьшить на 0,025 м/с.
Размещено на Allbest.ru
...Подобные документы
Классификация методов и аппаратов для обезвреживания газовых выбросов. Каталитическая очистка газов: суть метода. Конструкция каталитических реакторов. Технологическая схема установки каталитического обезвреживания отходящих газов в производстве клеенки.
курсовая работа [1,7 M], добавлен 12.06.2011Теоретические основы абсорбции. Растворы газов в жидкостях. Обзор и характеристика абсорбционных методов очистки отходящих газов от примесей кислого характера, оценка их преимуществ и недостатков. Технологический расчет аппаратов по очистке газов.
курсовая работа [834,6 K], добавлен 02.04.2015Суть технологических процессов газоочистки, виды и свойства катализаторов. Принцип действия каталитической очистки промышленных выбросов электронной промышленности. Способ каталитической очистки высокотемпературных отходящих газов от смолистых веществ.
курсовая работа [522,2 K], добавлен 29.09.2011Описание абсорбционных, каталитических, термических методов очистки отходящих газов. Физико-химические свойства Н-бутанола и бензола. Расчет адсорбера системы ВТР периодического действия с неподвижным слоем адсорбента для улавливания паров н-бутанола.
курсовая работа [174,5 K], добавлен 16.12.2012Система менеджмента качества Новокузнецкого алюминиевого завода. Образование газов при электролитическом производстве алюминия. Особенности технологии сухой очистки отходящих газов, типы реакторов, устройства для улавливания фторированного глинозема.
отчет по практике [523,3 K], добавлен 19.07.2015Организация машинного производства. Методы очистки технологических и вентиляционных выбросов от взвешенных частиц пыли или тумана. Расчет аппаратов очистки газов. Аэродинамический расчет газового тракта. Подбор дымососа и рассеивание холодного выброса.
курсовая работа [1,5 M], добавлен 07.09.2012Система термической очистки газовых выбросов при использовании в качестве топлива природного газа. Обоснование и выбор системы очистки с энергосберегающим эффектом. Разработка и расчет традиционной системы каталитической очистки от горючих выбросов.
курсовая работа [852,0 K], добавлен 23.06.2015Классификация углеводородных газов. Процесс очистки газов от механических примесей. Осушка газа от воды гликолями. Технология удаление сероводорода и углекислого газа. Физико-химические свойства абсорбентов. Процесс извлечения тяжелых углеводородов.
презентация [3,6 M], добавлен 26.06.2014Осветление и охлаждение охмеленного сусла. Определение потенциального содержания алкоголя в пиве. Рассмотрение основного химического состава пива. Полное и неполное сжигание топлива. Основные методы очистки отходящих газов от газообразных компонентов.
курсовая работа [2,0 M], добавлен 22.06.2022Подготовка газов к переработке, очистка их от механических смесей. Разделение газовых смесей, низкотемпературная их ректификация и конденсация. Технологическая схема газофракционной установки. Специфика переработки газов газоконденсатных месторождений.
дипломная работа [628,4 K], добавлен 06.02.2014Гравитационная очистка газов, пылеосадительные камеры. Очистка газов под действием инерционных и центробежных сил. Очистка газов фильтрованием, мокрая и электрическая. Основные размеры и схема пенного газопромывателя, предназначенного для очистки от пыли.
курсовая работа [1,8 M], добавлен 02.12.2010Расчет необходимой степени очистки промышленных газов и массы веществ. Разработка вариантов схемы и выбор наиболее рациональной. Выбор пылегазоочистного оборудования и сущность механизмов очистки газов. Расчет платы за выбросы загрязняющих веществ.
курсовая работа [965,7 K], добавлен 10.12.2010Методы очистки промышленных газов от сероводорода: технологические схемы и аппаратура, преимущества и недостатки. Поверхностные и пленочные, насадочные, барботажные, распыливающие абсорберы. Технологическая схема очистки коксового газа от сероводорода.
курсовая работа [108,5 K], добавлен 11.01.2011Каталитический крекинг как крупнотоннажный процесс углубленной переработки нефти. Количество катализатора и расход водяного пара, тепловой баланс. Расчет параметров реактора и его циклонов. Вычисление геометрических размеров распределительного устройства.
курсовая работа [721,3 K], добавлен 16.05.2014Технологическая схема каталитического крекинга. Выбор и описание конструкции аппарата реактора для получения высокооктановых компонентов автобензинов из вакуумных газойлей. Количество катализатора и расход водяного пара. Параметры реактора и циклонов.
курсовая работа [57,8 K], добавлен 24.04.2015Виды сепараторов как устройств для очистки всевозможных газов смесей от механических примесей и влаги, находящейся в мелкодисперсном виде. Принцип работы оборудования, нормативная документация. Расчет вертикального гравитационного сепаратора по газу.
курсовая работа [1,5 M], добавлен 25.10.2014Основное уравнение массопередачи при абсорбции. Абсорбенты, применяемые для очистки отходящих газов в промышленности. Материальный и тепловой баланс абсорбции, кривая равновесия. Абсорбционно-биохимическая установка для очистки вентиляционного воздуха.
реферат [866,0 K], добавлен 29.01.2013Расчет установки для утилизации тепла отходящих газов от клинкерной печи цементного завода. Скрубберы комплексной обработки уходящих газов. Параметры теплоутилизаторов первой и второй ступеней. Определение экономических параметров проектируемой системы.
курсовая работа [357,3 K], добавлен 15.06.2011Электросталеплавильное производство, состав отходящих газов. Фильтровальные материалы рукавного фильтра, газоотводящие тракты. Расчет дымососа-вентилятора, рукавного фильтра и дымовой трубы. Особенности принципиальных схем центробежных скрубберов.
курсовая работа [858,7 K], добавлен 27.06.2019Понятие и причины истечения газов как рабочих процессов в паровых и газовых турбинах, соплах реактивных двигателей, а также в соплах и отверстиях различных технологических аппаратов химической и пищевой промышленности. Расчетные зависимости и их вывод.
презентация [520,3 K], добавлен 02.01.2014