Принципы построения мехатронных систем
Раскрытие понятия мехатроники. Построение мехатронных модулей на основе синергетической интеграции элементов. Рассмотрение использования мехатронных технологических машин в машиностроении. Анализ современных тенденций развития мехатронных систем.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 18.12.2013 |
Размер файла | 104,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
1. Понятие «Мехатроника»
2. Структура и принципы построения мехатронных систем
2.1 Построение мехатронных модулей на основе синергетической интеграции элементов
2.2 Мехатроные технологические машины в машиностроении
3. Уровни интеграции мехатронных систем
4. Современные тенденции развития мехатронных систем
5. Список литературы
1. Понятие «Мехатроника»
мехатроника машиностроение синергетический интеграция
«Мехатроника -- это новая область науки и техники, посвященная созданию и эксплуатации машин и систем с компьютерным управлением движением, которая базируется на знаниях в области механики, электроники и микропроцессорной техники, информатики и компьютерного управления движением машин и агрегатов».
Мехатроника является научно-технической дисциплиной, которая изучает построение электромеханических систем нового поколения, обладающих принципиально новыми качествами и, часто, рекордными параметрами.
Некоторые исследователи видят главную суть мехатроники в объединении, прежде всего, механики и электроники, в отличие от электромеханики, появившейся в свое время на стыке механики и электротехники.
Обычно мехатронная система является объединением собственно электромеханических компонентов с новейшей силовой электроникой, которые управляются с помощью различных микроконтроллеров, ПК или других вычислительных устройств. При этом система в истинно мехатронном подходе, несмотря на использование стандартных компонентов, строится как можно более монолитно, конструкторы стараются объединить все части системы воедино без использования лишних интерфейсов между модулями. В частности, применяя встроенные непосредственно в микроконтроллеры АЦП, интеллектуальные силовые преобразователи и т. п. Это уменьшает массу и размеры системы, повышает ее надёжность и дает некоторые другие преимущества. Любая система, управляющая группой приводов, может считаться мехатронной. В частности, если она управляет группой реактивных двигателей космического аппарата.
Иногда система содержит принципиально новые с конструкторской точки зрения узлы, такие как электромагнитные подвесы, заменяющие обычные подшипниковые узлы. К сожалению, такие подвесы дороги и сложны в управлении и в нашей стране применяются редко (на 2005 г.). Одной из областей применения электромагнитных подвесов являются турбины, перекачивающие газ по трубопроводам. Обычные подшипники здесь плохи тем, что в смазку проникают газы -- она теряет свои свойства.
Мехатронными модулями называют составляющие мехатронной системы. Такие модули могут объединять в одном корпусе несколько компонентов, например, двигатель, редуктор и датчики.
Вообще, многие современные системы являются мехатронными или используют идеи мехатроники, поэтому постепенно мехатроника становится «наукой обо всём».
Рисунок 1 - Составные части мехатроники
Мехатроника изучает особые методологический подход построения машин с качественно новыми характеристиками. Этот подход является универсальным и может быть применен в машинных системах различного назначения. Однако, следует отметить, что обеспечить высокое качество управления мехатронной системой можно только с учетом специфики конкретного управляемого объекта.
В определении подчеркивается синергетический характер интеграции составляющих элементов мехатронных объектов. Синергия - это совместное действие, направленное на достижение единой цели. При этом важно, что составляющие части непросто дополняют друг друга, а объединяются таким образом, что образованные системы обладают качественно новыми свойствами. В мехатронике все энергетические и информационные потоки направлены на достижение единой цели в реализации заданного управляемого движения.
Интегрированные мехатронные элементы выбираются разработчиком уже на стадии проектирования машин, а затем обеспечиваются необходимые инженерная и технологическая поддержка при производстве и эксплуатации машин. В этом отличие мехатронных машин от традиционных, когда пользователь зачастую был вынужден самостоятельно объединять систему в разнородные механические, электронные и информационные управляющие устройства различных изготовителей. Именно поэтому многие сложные комплексы показали на практике низкую надежность и невысокую технико-экономическую эффективность.
Методологической основой разработки мехатронных систем служат методы параллельного проектирования. При традиционном проектировании машин с компьютерным управлением проводятся разработка механической, электронной, сенсорной и компьютерной частей системы, а затем выбор интерфейсных блоков. Особенность параллельного проектирования заключается в одновременном и взаимосвязанном синтезе всех компонентов системы.
Базовыми объектами изучения мехатроники является мехатронный модуль, который выполняет движения по одной управляемой кординате. Из таких модулей как из функциональных кубиков компонуются сложные системы модульной архитектуры.
Мехатронные системы предназначены для реализации заданного движения. Критерий качества выполнения движения мехатронных систем - проблемное ориентирование, то есть определяется постановкой конкретной прикладной задачи. Специфика задач автоматизированного машиностроения состоит в реализации перемещений выходных звеньев рабочего органа технологической машины (инструмент на станке). При этом необходимо координировать управление пространством перемещения мехатронных систем с управлением различными внешними процессами.
Примерами таких процессов могут служить регулирование силового взаимодействия рабочего органа с объектом работ при механообработке, контроль и диагностика текущего состояния критических элементов мехатронных систем, управление дополнительными технологическими воздействиями на объект работ при комбинированных методах обработки, управление вспомогательным оборудованием, выдача и прием сигналов от устройств электроавтоматики. Такие сложные координированные движения называют функциональными движениями.
В современных мехатронных системах для реализации высокого качества и точности движения применяются методы интеллектуального управления. Данная группа методов опирается на новые идеи теории управления современным аппаратным и программным средством вычислительной техники, перспективные подходы к синтезу управляемого движения мехатронных систем.
Мехатроника как новая область науки и техники находится в стадии своего становления, ее терминология, границы и классификационные признаки еще строго не очерчены.
2. Структура и принципы построения мехатронных систем
Мехатронные устройства - это выделившийся в последние десятилетия класс машин или узлов машин, базирующийся на использовании в них достижений точной механики, электропривода, электроники, компьютерного управления.
Хотя все эти элементы можно встретить в громадном количестве традиционной техники, все же можно выделить ряд признаков мехатронного устройства, к которым можно отнести следующие.
1.Наличие интеграции следующих функциональных элементов:
-выходного механического звена (ВМЗ), выполняющего внешние функции мехатронного устройства;
-двигателя выходного звена с механизмом передачи движения к ВМЗ, привода ВМЗ;
-усилителя-преобразователя энергии питания двигателя (УПЭП);
-устройства цифрового программного управления приводом;
- информационной системы, контролирующей состояние внешнего мира и внутренних параметров мехатронного устройства.
2. Минимум преобразований информации и энергии (например, прямое цифровое управление безредукторным приводом) - принцип минимума преобразований.
3. Использование одного и того же элемента мехатронного устройства для реализации нескольких функций (например, параметры двигателя (ток, противо-ЭДС) используются для измерения его момента и скорости) - принцип совмещения функций.
4. Проектирование функций различных элементов мехатронного устройства таким образом, чтобы цели служебного назначения изделия достигались совместным выполнением этих функций без их дублирования и с максимальным эффектом (принцип синергетики).
5. Объединение корпусов узлов мехатронного устройства - принцип совмещения корпусов.
Рисунок 2 - Принцип построения мехатронной системы
Устройство компьютерного управления осуществляет следующие основные функции:
1. Управление процессом механического движения мехатронного модуля или многомерной системы в реальном времени с обработкой сенсорной информации.
2. Организация управления функциональными движениями мехатронной системы, которая предполагает координацию управления механическим движением мехатронной системы и сопутствующими внешними процессами. Как правило, для реализации функции управления внешними процессами используются дискретные входы/выходы устройства.
3. Взаимодействие с человеком-оператором через машинный интерфейс в режимах автономного программирования (режим off-line) и непосредственно в процессе движения мехатронной системы (режим on-line).
4. Организация обмена данными с периферийными устройствами, сенсорами и другими устройствами системы.
Задачей мехатронной системы является преобразование входной информации, поступающей с верхнего уровня управления в целенаправленное механическое движение с управлением на основе принципа обратной связи. Характерно, что электрическая энергия (гидравлическая, пневматическая) используется в современных системах как промежуточная энергетическая форма.
2.1 Построение мехатронных модулей на основе синергетической интеграции элементов
Мехатронные модули - это базовые функциональные компоненты мехатронных систем и машин с компьютерным управлением, предназначенные для выполнения движений, как правило, по одной управляемой координате.
Качественно новые свойства мехатронных модулей по сравнению с традиционными приводами достигаются синергетической интеграцией составляющих элементов.
Синергетическая интеграция - это не просто соединение отдельных частей в систему с помощью интерфейсных блоков, а построение единого приводного модуля через конструктивное объединение и даже взаимопроникновение элементов, которые имеют, как правило, различную физическую природу.
Назначением мехатронных модулей является реализация заданного управляемого движения, как правило, по одной управляемой координате.
Мехатронные модули движения являются теми функциональными «кубиками», из которых затем можно компоновать сложные многокоординатные мехатронные системы.
Сущность мехатронного подхода к проектированию состоит в объединении в единый приводной модуль составляющих элементов. Применение мехатронного подхода к проектированию модуля движения базируется на определении возможных точек интеграции элементов в структуре привода. Выявив также точки интеграции можно затем на основе технико-экономического и технологического анализа принимать конкретные инженерные решения на проектирование и изготовления модуля движения. Приведем схему энергетических и информационных потоков в электромеханическом мехатронном модуле.
На вход мехатронного модуля поступает информация о цели движения, которое формируется верхним уровнем системы управления, а выходом является целенаправленное мехатронное движение конечного звена, например, перемещение выходного вала модуля.
Для физической реализации электромеханического мехатронного модуля теоретически необходимы четыре основных функциональных блока последовательно-соединенные: информационно-электрический и электромеханический функциональный преобразователь в прямой цепи и электро-информационный и механико-информационные преобразователи в цепи обратной связи.
2.2 Мехатронные технологические машины в машиностроении
Построение диагностического прогноза в развитие машиностроения и выбор основных тенденций и стратегий его развития концентрируется на:
1. интеграции технологий и знаний
2. интеллектуализации производственных технологий
3. мехатронных технологий машинах и роботах
4. сквозных информационных систем
Во многих областях техники МС приходят на смену традиционным механическим машинам, которые уже не соответствуют современным качественным требованиям. Мехатронный подход в построении машин нового поколения заключается в переносе функциональной нагрузки от механических узлов к интеллектуальным, электронным, компьютерным информационным компонентам, которые легко перепрограммируются под новую задачу и при этом являются относительно дешевыми. Анализ производственных машин показывает, что доля механической части сократилась с 70% в начале 90-х годов до 25-30% в настоящее время. Принципиально важно подчеркнуть, что мехатронный подход в проектирование предполагает не расширение, а именно замещение функций традиционно выполняемые механическими элементами системы на электронные и компьютерные блоки.
Принципиально важно, что тенденция перехода от чисто механических к мехатронным технологиям в современном машиностроении не закрывает механику. Наоборот стимулирует ее развитие на фоне с интеллектуальными компонентами в рамках единой мехатронной системы. Системный подход диктует новые требования к встроенным механическим и гибридным компонентам, что в свою очередь ведет к развитию новых технологий и конструкторских решений в области механики.
3. Уровни интеграции мехатронных систем
В качестве основного классификационного признака в мехатронике представляется целесообразным принять уровень интеграции составляющих элементов. В соответствии с этим признаком можно разделять мехатронные системы по уровням или по поколениям, если рассматривать их появление на рынке наукоемкой продукции исторически. Мехатронные модули первого уровня представляют собой объединении только двух исходных элементов. Типичным примером модуля первого поколения может служить "мотор-редуктор", где механический редуктор и управляемый двигатель выпускаются как единый функциональный элемент.
Мехатронные системы на основе этих модулей нашли широкое применение при создании различных средств комплексной автоматизации производства (конвейеров, транспортеров, поворотных столов, вспомогательных манипуляторов).
Мехатронные модули второго уровня появились в 80-х годах в связи с развитием новых электронных технологий, которые позволили создать миниатюрные датчики и электронные блоки для обработки их сигналов. Объединение приводных модулей с указанными элементами привела к появлению мехатронных модулей движения, состав которых полностью соответствует введенному выше определению, когда достигнута интеграция трех устройств различной физической природы: механических, электротехнических и электронных. На базе мехатронных модулей данного класса созданы управляемые энергетические машины (турбины и генераторы), станки и промышленные роботы с числовым программным управлением. Развитие третьего поколения мехатронных систем обусловлено появлением на рынке сравнительно недорогих микропроцессоров и контроллеров на их базе и направлено на интеллектуализацию всех процессов, протекающих в мехатронной системе, в первую очередь - процесса управления функциональными движениями машин и агрегатов. Одновременно идет разработка новых принципов и технологий изготовления высокоточных и компактных механических узлов, а также новых типов электродвигателей (в первую очередь высоко моментных, бесколлекторных и линейных), датчиков обратной связи и информации. Синтез новых прецизионных, информационных и измерительных наукоемких технологий дает основу для проектирования и изготовления, интеллектуальных мехатронных модулей и систем. В дальнейшем мехатронные машины и системы будут объединяться в мехатронные комплексы на базе единых интеграционных платформ.
Цель создания таких комплексов - добиться сочетания высокой производительности и одновременно гибкости технико-технологической среды за счет возможности ее реконфигурации, что позволит обеспечить конкурентоспособность и высокое качество выпускаемой продукции на рынках XXI века.
4. Современные тенденции развития мехатронных систем
Объемы мирового производства мехатронных устройств ежегодно увеличиваются, охватывая все новые сферы. Сегодня мехатронные модули и системы находят широкое применение в следующих областях:
* станкостроение и оборудование для автоматизации технологических процессов;
* робототехника( промышленная и специальная);
* авиационная, космическая и военная техника;
* автомобилестроение( например, антиблокировочные системы тормозов, системы стабилизации движения автомобиля и автоматической парковки);
* нетрадиционные транспортные средства( электровелосипеды, грузовые тележки, электророллеры, инвалидные коляски);
* офисная техника( например, копировальные и факсимильные аппараты);
* элементы вычислительной техники( например, принтеры, плоттеры, дисководы);
* медицинское оборудование (реабилитационное, клиническое, сервисное);
* бытовая техника( стиральные, швейные, посудомоечные и другие машины);
* микромашины (для медицины, биотехнологии, средств телекоммуникации);
* контрольно-измерительные устройства и машины;
* фото- и видеотехника;
* тренажеры для подготовки пилотов и операторов;
* шоу-индустрия (системы звукового и светового оформления).
Список литературы
1. Ю. В. Подураев «Основы мехатроники» Учебное пособие. Москва.- 2000г. 104 с.
2. http://ru.wikipedia.org/wiki/Мехатроника
3. http://mau.ejournal.ru/
4. http://mechatronica-journal.stankin.ru/
Размещено на Allbest.ru
...Подобные документы
Обоснованная модернизация какого-либо движения в металлорежущем станке посредством конструирования мехатронных модулей (ММ). Выбор группы, типа и модели металлорежущего станка. Обзор существующих ММ. Структурная схема ММ, конструктивные параметры.
методичка [2,9 M], добавлен 25.06.2013Классификация поворотных столов, применяемых в мехатронных станках. Описание конструкций поворотных столов. Анализ жесткости конструкций поворотных столов: двухосевого поворотного стола RTL500, базовой и новой конструкции поворотного стола CNC200R.
дипломная работа [1,8 M], добавлен 30.04.2011Виды и основные компоненты робототехнических систем. Принцип работы ультразвуковых двигателей. Изобретение мехатронных систем для современной медицины. Влияние робототехники на прогресс в хирургии. Создание искусственного вестибулярного аппарата.
презентация [4,7 M], добавлен 02.11.2015Характеристика мехатронных систем позиционирования ленточных пилорам и конструкция механической части. Постановка задачи автоматизации управления приводом и выбор электротехнических элементов. Анализ опасных и вредных производственных факторов.
дипломная работа [1,1 M], добавлен 14.08.2011Описание токарных станков, назначение и область их применения. Технические характеристики станка модели 163. Описание кинематической схемы. Классификация мехатронных модулей движения. Расчёт шарико-винтовой передачи, геометрических параметров винта.
курсовая работа [1,2 M], добавлен 25.06.2013Ознакомление с обзором существующих мехатронных модулей. Расчет шарико-винтовой передачи. Определение минимального радиуса инерции поперечного сечения винта, кинематической погрешности и значения мёртвого хода и условия мощности двигателя модуля.
курсовая работа [1,4 M], добавлен 03.11.2021Задачи использования адаптивных систем автоматического управления, их классификация. Принципы построения поисковых и беспоисковых самонастраивающихся систем. Параметры работы релейных автоколебательных систем и адаптивных систем с переменной структурой.
курсовая работа [1,2 M], добавлен 07.05.2013Взаимосвязь технологических и организационно-управленческих структур. Понятие о химико-технологических процессах, принципы классификации. Перспективы развития и особенности экономической оценки химико-технологических процессов. Специальные методы литья.
контрольная работа [50,0 K], добавлен 10.07.2010Особенности применения САПР "Comtence" и "Еleandr"с целью построения базовых основ деталей швейных изделий с использованием методик конструирования. Сравнение программных компонентов изучаемых промышленных систем автоматизированного проектирования.
контрольная работа [1,3 M], добавлен 08.12.2011Определение надежности линейной (трубопроводной) части газораспределительных систем, их основных элементов и узлов. Проектирование распределительных газовых сетей. Построение кольцевых, тупиковых и смешанных газопроводов, принципы их расположения.
контрольная работа [232,9 K], добавлен 24.09.2015Понятие и виды технологических процессов обработки изделий в машиностроении. Признаки классификации методов изготовления деталей машин. Классификация по природе и характеру воздействия. Виды методов изготовления деталей по схемам формообразования.
контрольная работа [19,0 K], добавлен 05.11.2008Разработка технологических процессов изготовления деталей с помощью систем автоматизированного проектирования технологических процессов. Описание конструкции, назначения и условий работы детали в узле. Материал детали и его химико-механические свойства.
курсовая работа [978,3 K], добавлен 20.09.2014Принципы функционирования и схемы систем автоматического управления по отклонению и возмущению, их достоинства и недостатки. Построение статистической характеристики газового регулятора давления, влияние его конструктивных параметров на точность работы.
контрольная работа [526,3 K], добавлен 16.04.2012Изучение закономерностей развития и основ стандартизации технологии. Рассмотрение особенностей технологических процессов в химической, металлургической сферах, машиностроении и строительстве. Анализ прогрессивных технологий информатизации производства.
курс лекций [936,9 K], добавлен 17.03.2010Место вопросов надежности изделий в системе управления качеством. Структура системы обеспечения надежности на базе стандартизации. Методы оценки и повышения надежности технологических систем. Предпосылки современного развития работ по теории надежности.
реферат [29,8 K], добавлен 31.05.2010Структура технологических систем; их свойства, признаки функционирования, производственные ресурсы. Факторы, определяющие производственную мощность. Естественные процессы как основа технологических систем. Технический контроль качества продукции.
контрольная работа [89,6 K], добавлен 18.02.2014Построение современных систем автоматизации технологических процессов. Перечень контролируемых и регулируемых параметров установки приготовления сиропа. Разработка функциональной схемы автоматизации. Технические характеристики объекта автоматизации.
курсовая работа [836,2 K], добавлен 23.09.2014История развития автоматических систем регулирования. Сравнительный анализ ручного и машинного управления. Характеристика видов (стабилизирующих, программных, следящих и оптимизирующих) систем управления и типов защиты установок от опасных режимов.
реферат [85,3 K], добавлен 18.01.2010Закономерности существования и развития технических систем. Основные принципы использования аналогии. Теория решения изобретательских задач. Нахождение идеального решения технической задачи, правила идеальности систем. Принципы вепольного анализа.
курсовая работа [3,3 M], добавлен 01.12.2015Методика создания металлоконструкции каркаса контейнера. Анализ методов и систем автоматизированного проектирования металлоконструкций. Создание узлов в Advance Steel. Определение параметров, построение конструкции. Набор элементов для построения фасонок.
диссертация [3,7 M], добавлен 09.11.2016