Производство чугуна и стали
Развитие металлургической отрасли и ее высокий технический потенциал. Железные руды, их составляющие и применение в производстве. Процесс выплавки чугуна в доменной печи. Плавка стали в мартеновских и доменных печах, принцип работы, интенсификация.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 19.12.2013 |
Размер файла | 43,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
План
Введение
1. Производство чугуна и стали
1.1 Производство чугуна
1.2 Производство чугуна в доменной печи
1.3 Производство стали
1.4 Производство стали в конверторах
1.5 Производство стали в мартеновских печах
1.6 Производство стали в электрических печах
1.7 Новые методы производства и обработки стали
2. Легированные стали и чугуны
2.1 Легированные стали
2.2 Влияние легирующих элементов на полиморфизм железа
2.3 Влияние содержания углерода на свойства стали
2.4 Карбиды в легированных сталях
2.5 Классификация легированных сталей
2.6 Легированный чугун
3. Защита металлов от коррозии
3.1 Обработка внешней среды, в которой протекает коррозия
3.2 Защитные покрытия
3.3 Электрохимическая защита
Заключение
Список используемой литературы
Введение
Чёрная металлургия - основа развития большинства отраслей народного хозяйства. Несмотря на бурный рост продукции химической промышленности, цветной металлургии, промышленности стройматериалов, чёрные металлы остаются главным конструкционным материалом в машиностроении и строительстве.
Современная чёрная металлургия имеет высокий технический потенциал. Значительный прогресс достигнут в технологии производства в отдельных под отраслях и переделах чёрной металлургии. Так, добыча железной руды в основном ведётся прогрессивным открытым способом; в коксовом производстве внедрены бездымная загрузка шихты и сухое тушение кокса; в доменном производстве в печах с повышенным давлением газа под колошником выплавляется 97%, а с вдуванием природного газа - 84% всего чугуна; в сталеплавильном производстве растет выплавка стали в кислородных конвертерах и электропечах, внедрены внепечная обработка стали под вакуумом, синтетическими шлаками, инертными газами, переплавные процессы; увеличивается доля непрерывной разливки стали; в прокатном производстве эффективно применяются термическая обработка металлопродукции, средства неразрушающего автоматического контроля; в трубном - совершенствуется технология производства сварных труб большого диаметра, бесшовных труб; в метизном производстве внедряются автоматизированное поточные линии. Осуществляется разработка промышленных способов прямого получения железа. Ведутся работы по созданию автоматизированной системы управления чёрной металлургии.
1. Производство чугуна и стали
1.1 Производство чугуна
Главный исходный материал для производства чугуна в доменных печах - железные руды. К ним относят горные породы, содержащие железо в таком количестве, при котором выплавка становится экономически выгодной.
Железная руда состоит из рудного вещества и пустой породы. Рудным веществом чаще всего являются окислы, силикаты и карбонаты железа. А пустая порода обычно состоит из кварцита или песчаника с примесью глинистых веществ и реже - из доломита или известняка.
В зависимости от рудного вещества железные руды бывают богатыми, которые непосредственно используют, и бедными, которых подвергают обогащению. В доменном производстве применяют разные железные руды.
Красный железняк (гематит) содержит железо в виде безводной окиси железа. Она имеет разную окраску (от темно-красной до темно-серой). Руда содержит много железа(45-65 %) и мало вредных примесей.
Бурый железняк содержит железо в виде водных окислов. В нем содержится 25- 50% железа. Окраска меняется от желтой до буро-желтой. Пустая порода железняка глинистая иногда кремнисто-глиноземистая.
Магнитный железняк содержит 40-70% железа в виде закиси-окиси железа. Руда обладает хорошо выраженными магнитными свойствами, имеет темно-серый или черный с различными оттенками цвет. Пустая порода руды кремнеземистая с примесями других окислов. Железо из магнитного железняка восстанавливается труднее, чем из других руд.
Шпатовый железняк (сидерит) содержит железо в виде углекислой соли. В этом железняке содержится 30-37 % железа. Сидерит имеет желтовато-белый и грязно-серый цвет. Он легко окисляется и переходит в бурый железняк. Из всех железных руд- он обладает наиболее высокой восстанавливаемостью.
Марганцевые руды содержат 25-45% марганца в виде различных окислов марганца. Их добавляют в шихту для повышения в чугуне количества марганца.
1.2 Производство чугуна в доменной печи
Выплавка чугуна производится в огромных доменных печах, выложенных из огнеупорных кирпичей достигающих 30 м высоты при внутреннем диаметре около 12 м.
Верхняя ее половина носит название шахты и заканчивается наверху отверстием - калашником, которая закрывается подвижной колонкой - калашниковым затвором. Самая широкая часть печи называется распаром, а нижняя часть - горном. Через специальные отверстия в горне(фурмы) в печать вдувается горячий воздух или кислород.
Доменную печь загружают сначала коксом, а затем послойно агломератом и коксом. Агломерат - это определенным образом подготовленная руда, спеченная с флюсом. Горение и необходимая для выплавки чугуна температура поддерживаются вдуванием в горн подогретого воздуха или кислорода. Последний поступает в кольцевую трубу, расположенную вокруг нижней части печи, а из нее по изогнутым трубкам через фурмы вгорн. В горне кокс сгорает, образуя СО 2, который, поднимаясь вверх и проходя сквозь слои наколенного кокса, взаимодействует с ним и образует СО. Образовавшийся оксид углерода и восстанавливает большую часть руды, переходя снова в СО 2.
Процесс восстановления руды происходит главным образом в верхней части шахты. Его можно выразить суммарным уравнением:
Fe2O3 + 3CO = 2Fe + 3CO2
Пустую породу в руде образуют, главным образом диоксид кремния SiO2.
Это - тугоплавкое вещество. Для превращения тугоплавких примесей в более легкоплавкие соединения к руде добавляются флюс. Обычно в качестве флюса используют CaCo3. При взаимодействии его с SiO2 образуется CaSiO2, легко отделяющийся в виде шлака.
При восстановлении руды железо получается в твердом состоянии. Постепенно оно опускается в более горячую часть печи - распар - и растворяет в себе углерод; образуется чугун. Последний плавится и стекает в нижнюю часть горна, а жидкие шлаки собираются на поверхности чугуна, предохраняя его от окисления. Чугун и шлаки выпускают по мере накопления через особые отверстия, забитые в остальное время глиной.
Выходящие из отверстия печи газы содержат до 25% СО. Их сжигают в особых аппаратах-кауперах, предназначенных для предварительного нагревания, вдуваемого в печь воздуха. Доменная печь работает непрерывно. По мере того как верхние слои руды и кокса опускаются, в печь добавляют новые их порции. Смесь руды и кокса доставляется подъемниками на верхнюю площадку печи и загружается в чугунную воронку, закрытую снизу колошниковым затвором. При опускании затвора смесь попадает в печь. Работа печи продолжается в течение нескольких лет, пока печь не потребует капитального ремонта.
Процесс выплавки может быть ускорен путем применения в доменных печах кислорода. При вдувании в доменную печь обогащенного кислородом воздуха предварительный подогрев его становится излишним, а значит, отпадает необходимость в громоздких и сложных кауперах и весь процесс упрощается. Вместе с тем производительность печи повышается и уменьшается расход топлива. Такая доменная печь дает в 1,5 раза больше железа и требует кокса меньше чем обычная.
1.3 Производство стали
В стали по сравнению с чугуном содержится меньше углерода, кремния, серы и фосфора. Для получения стали из чугуна необходимо снизить концентрацию веществ путем окислительной плавки.
В современной металлургической промышленности сталь выплавляют в основном в трех агрегатах: конвекторах, мартеновских и электрических печах.
1.4 Производство стали в конверторах
Конвертор представляет собой сосуд грушевидной формы. Верхнюю часть называют козырьком или шлемом. Она имеет горловину, через которую сливают жидкий чугун сталь и шлак. Средняя часть имеет цилиндрическую форму.
В нижней части есть приставное днище, которое по мере износа заменяют новым. К днищу присоединена воздушная коробка, в которую поступает сжатый воздух.
Емкость современных конвекторов равна 60 - 100 т. и более, а давление воздушного дутья 0,3-1,35 Мн/м. Количество воздуха необходимого для переработки 1 т чугуна, составляет 350 кубометров.
Перед заливкой чугуна конвектор поворачивают до горизонтального положения, при котором отверстия фурм оказываются выше уровня залитого чугуна. Затем его медленно возвращают в вертикальное положение и одновременно подают дутье, не позволяющее металлу проникать через отверстия фурм в воздушную коробку. В процессе продувки воздухом жидкого чугуна выгорают кремний, марганец, углерод и частично железо.
При достижении необходимой концентрации углерода конвектор возвращают в горизонтальное положение и прекращают подачу воздуха. Готовый металл раскисляют и выливают в ковш.
Бессемеровский процесс. В конвертор заливают жидкий чугун с достаточно высоким содержанием кремния (до 2,25% и выше), марганца (0,6-0,9%), и минимальным количеством серы и фосфора.
По характеру происходящей реакции бессемеровский процесс можно разбить на три периода. Первый период начинается после пуска дутья в конвертор и продолжается 3-6 мин. Из горловины конвертора вместе с газами вылетают мелкие капли жидкого чугуна с образованием искр. В этот период окисляются кремний, марганец и частично железа по реакциям:
Si + O2 = SiO2,
2Mn + O2 = 2MnO,
2Fe + O2 = 2FeO.
Образующаяся закись железа частично растворяется в жидком металле, способствуя дальнейшему окислению кремния и марганца. Эти реакции протекают с выделением большого количества тепла, что вызывает разогрев металла. Шлак получается кислым (40-50% SiO2).
Второй период начинается после почти полного выгорания кремния и марганца. Жидкий металл достаточно хорошо разогрет, что создаются благоприятные условия для окисления углерода по реакции
C + FeO = Fe + CO,
которая протекает с поглощением тепла. Горение углерода продолжается 8-10 мин и сопровождается некоторым понижением температуры жидкого металла. Образующаяся окись углерода сгорает на воздухе. Над горловиной конвектора появляется яркое пламя.
По мере снижения содержания углерода в металле пламя над горловиной уменьшается и начинается третий период. Он отличается от предыдущих периодов появлением над горловиной конвертора бурого дыма. Это показывает, что из чугуна почти полностью выгорели кремний, марганец и углерод и началось очень сильное окисление железа. Третий период продолжается не более 2 - 3 мин, после чего конвектор переворачивают в горизонтальное положение и в ванну вводят раскислители (ферромарганец, ферросилиций или алюминий) для понижения содержания кислорода в металле. В металле происходят реакции:
FeO + Mn = MnO + Fe,
2FeO + Si = SiO2 + Fe,
3FeO + 2Al = Al2O3 + 3Fe.
Готовую сталь выливают из конвектора в ковш, а затем направляют на разливку.
Чтобы получить сталь с заранее заданным количеством углерода (например, 0,4 - 0,7% С), продувку металла прекращают в тот момент, когда из него углерод еще не выгорел, или можно допустить полное выгорание углерода, а затем добавить определенное количество чугуна или содержащих углерод определенное количество ферросплавов.
Томасовский процесс. В конвертор с основной футеровкой сначала загружают свежеобожженную известь, а затем заливают чугун, содержащий 1,6-2,0% Р, до 0,6%Si и до 0,8% S. В томасовском конвекторе образуется известковый шлак, необходимый для извлечения и связывания фосфора. Заполнение конвектора жидким чугуном, подъем конвертора, и пуск дутья происходят также как и в бессемеровском процессе.
В первый период продувки в конвекторе окисляется железо, кремний, марганец и формируется известковый шлак. В этот период температура металла несколько повышается.
Во второй период продувки выгорает углерод, что сопровождается некоторым понижением температуры металла. Когда содержание углерода в металле достигнет менее 0,1%, пламя уменьшится и исчезнет. Наступает третий период, вовремя которого интенсивно окисляется фосфор:
2P + 5FeO + 4CaO = (CaO)4*P2O5 + 5Fe.
В результате окисления фосфор переходит из металла в шлак, поскольку тетрафосфат кальция может раствориться только в нем. Томасовские шлаки содержат 16 - 24% Р 2О 5.
Данная реакция сопровождается выделением значительного количества тепла, за счет которого происходит более резкое повышение температуры металла.
Перед раскислением металла из конвертора необходимо удалить шлак, т.к. содержащиеся в раскислителях углерод, кремний, марганец будут восстанавливать фосфор из шлака, и переводить его в металл. Томасовскую сталь применяют для изготовления кровельного железа, проволоки и сортового проката.
Кислородно-конверторный процесс. Для интенсификации бессемеровского и томасовского процессов в последние годы начали применять обогащенное кислородом дутье.
При бессемеровском процессе обогащения дутья кислородом позволяет сократить продолжительность продувки и увеличить производительность конвертора и долю стального скрапа, подаваемого в металлическую ванну в процессе плавки. Главным достоинством кислородного дутья является снижение содержания азота в стали с 0,012-0,025(при воздушном дутье) до 0,008-0,004%(при кислородном дутье). Введение в состав дутья смеси кислорода с водяным паром или углекислым газом позволяет повысить качество бессемеровской стали, до качества стали, выплавляемой в мартеновских и электрических печах. Большой интерес представляет использование чистого кислорода для выплавки чугуна в глуходонных конверторах сверху с помощью водоохлаждаемых фурм. Производство стали конверторным способом с каждым годом увеличивается.
1.5 Производство стали в мартеновских печах
В мартеновских печах сжигают мазут или предварительно подогретые газы с использованием горячего дутья.
Печь имеет рабочее (плавильное) пространство и две пары регенераторов (воздушный и газовый) для подогрева воздуха и газа. Газы и воздух проходят через нагретую до 1200єС огнеупорную насадку соответствующих регенераторов и нагреваются до 1000-12000С. Затем по вертикальным каналам направляются в головку печи, где смешиваются и сгорают, в результате чего температура под сводом достигает 1680-1750єС. Продукты горения направляются из рабочего пространства печи в левую пару регенераторов и нагревают их огнеупорную насадку, затем поступают в котлы - утилизаторы и дымовую трубу.
Когда огнеупорная насадка правой пары регенераторов остынет, остынет так, что не сможет нагревать проходящие через них газы и воздух до 1100єС, левая пара регенераторов нагревается примерно до 1200-1300єС. В этот момент переключают направление движения газов и воздуха. Это обеспечивает непрерывное поступление в печь подогретых газов и воздуха.
Большинство мартеновских печей отапливают смесью доменного, коксовального и генераторного газов. Также применяют и природный газ. Мартеновская печь, работающая на мазуте, имеет генераторы только для нагрева воздуха.
Шихтовые материалы (скрапы, чугун, флюсы) загружают в печь наполненной машиной через завалочные окна.
Разогрев шихты, рас плавление металла и шлака в печи происходит в плавильном пространстве при контакте материалов с факелом раскаленных газов.
Готовый металл выпускают из печи через отверстия, расположенные в самой низкой части подины. На время плавки выпускное отверстие забивают огнеупорной глиной.
Процесс плавки в мартеновских печах может быть кислым или основным.
При кислом процессе огнеупорная кладка печи выполнена из динасового кирпича. Верхние части подины наваривают кварцевым песком и ремонтируют после каждой плавки. В процессе плавке получают кислый шлак с большим содержанием кремнезема (42-58%).
При основном процессе плавки подину и стенки печи выкладывают из магнезитового кирпича, а свод - из динасового или хромомагнезитового кирпича. Верхние слои подины наваривают магнезитовым или доломитовым порошком и ремонтируют после каждой плавки. В процессе плавки получают кислый шлак с большим содержанием 54 - 56% СаО.
Основной мартеновский процесс. Перед началом плавки определяют количество исходных материалов (чушковый чугун, стальной скрап, известняк, железная руда) и последовательность их загрузки в печь. При помощи заливочной машины мульда (специальная коробка) с шахтой вводится в плавильное пространство печи и переворачивается, в результате чего шихта высыпается на подину печи. Сначала загружают мелкий скрап, затем более крупный и на него кусковую известь (3 - 5 % массы металла). После прогрева загруженных материалов подают оставшийся стальной лом и предельный чугун двумя тремя порциями.
Этот порядок загрузки материалов позволяет их быстро прогреть и расплавить. Продолжительность загрузки шихты зависит от емкости печи, характера шихты, тепловой мощности печи и составляет 1,5 - 3 ч.
В период загрузки и плавления шихты происходит частичная окисление железа и фосфора почти полное окисление кремния и марганца и образования первичного шлака. Указанные элементы окисляются сначала за счет кислорода печных газов и руды, а затем за счет закиси железа растворенной в шлаке. Первичный шлак формируется при расплавлении и окислении металла и содержит 10 -15% FeO, 35 -45% CaO, 13 - 17% MnO. После образования шлака жидкий металл оказывается изолированным от прямого контакта с газами, и окисление примесей происходит под слоем шлака. Кислород в этих условиях переносится закисью железа, которая растворяется в металле и шлаке. Увеличение концентрации закиси железа в шлаке приводит к возрастанию ее концентрации в металле.
Для более интенсивного питания металлической ванны кислородом в шлак вводят железную руду. Кислород, растворенный в металле, окисляет кремний, марганец, фосфор и углерод по реакциям, рассмотренным выше.
К моменту рас плавления всей шихты значительная часть фосфора переходит в шлак, так как последний содержит достаточное количество закиси железа и извести. Во избежание обратного перехода фосфора в металл перед началом кипения ванны 40 - 50% первичного шлака из печи.
После скачивания первичного шлака в печь загружают известь для образования нового и более основного шлака. Тепловая нагрузка печи увеличивается, для того чтобы тугоплавкая известь быстрее перешла в шлак, а температура металлической ванны повысилась. Через некоторое время 15 - 20 мин в печь загружают железную руду, которая увеличивает содержание окислов железа в шлаке, и вызывает в металле реакцию окисления углерода:
[C] + (FeO) = Coгаз.
Образуемая окись углерода выделяется из металла в виде пузырьков, создавая впечатление его кипения, что способствует перемешиванию металла, выделение металлических включений и растворенных газов, а также равномерному распределению температуры по глубине ванны. Для хорошего кипения ванны необходимо подводить тепло, так как данная реакция сопровождается поглощением тепла. Продолжительность периода кипения ванны зависит от емкости печи и марки стали, и находится 1,25 - 2,5 ч и более.
Обычно железную руду добавляют в печь в первую периода кипения, называемого полировкой металла. Скорость окисления углерода в этот период в современных мартеновских печах большой емкости равна 0,3 - 0,4% в час.
В течение второй половины периода кипения железную руду в ванну не подают. Металл кипит мелкими пузырьками за счет накопленных в шлаке окислов железа. Скорость выгорания углерода в этот период равна 0,15 - 0,25% в час. В период кипения, следя за основой и жидкотекучестью шлака.
Когда содержание углерода в металле окажется несколько ниже, чем требуется для готовой стали, начинается последняя стадия плавки - период доводки и раскисления металла. В печь вводят определенное количество кускового ферромарганца (12% Mn), а затем через 10 - 15 мин ферросилиций (12-16% Si). Марганец и кремний взаимодействуют с растворенным в металле кислородом, в результате чего реакция окисления углерода приостанавливается. Внешним признаком освобождения металла от кислорода является прекращение выделения пузырьков окиси углерода на поверхности шлака.
При основном процессе плавки происходит частичное удаление серы из металла по реакции:
[FeS] + (CaO) = (CaO) + (FeO).
Для этого, необходимы высокая температура и достаточная основность шлака.
Кислый мартеновский процесс. Этот процесс состоит из тех же периодов, что и основной. Шихту применяют очень чистую по фосфору и сере. Объясняется это тем, что образующийся кислый шлак не может задерживать указанные вредные примеси.
Печи обычно работают на твердой шихте. Количество скрапа равно 30 - 50% массы металлической шихты. В шихте допускается не более 0,5% Si. Железную руду в печь подавать нельзя, так как она может взаимодействовать с кремнеземом подины и разрушать ее в результате образования легкоплавкого соединения 2FeO*SiO2. Для получения первичного шлака в печь загружают некоторое количество кварцита или мартеновского шлака. После этого шихта нагревается печными газами; железо, кремний, марганец окисляются, их окислы сплавляются с флюсами и образуют кислый шлак, содержащий до 40 -50 % SiO2. В этом шлаке большая часть закиси железа находится в силикатной форме, что затрудняет его переход из шлака в металл. Кипение ванной при кислом процессе начинается позже, чем при основном, и происходит медленнее даже при хорошем нагреве металла. Кроме того, кислые шлаки имеют повышенную вязкость, что отрицательно сказывается на выгорании углерода.
Так как сталь выплавляется под слоем кислого шлака с низким содержанием свободной закиси железа, этот шлак защищает металл от насыщения кислородом. Перед выпуском из печи в стали содержится меньше растворенного кислорода, чем в стали, выплавленной при основном процессе. чугун сталь мартеновский выплавка
Для интенсификации мартеновского процесса воздух обогащают кислородом, который подается в факел пламени. Это позволяет получать более высокие температуры в факеле пламени, увеличивать ее лучеиспускательную способность, уменьшать количество продуктов горения и благодаря этому увеличивать тепловую мощность печи.
Кислород можно вводить и в ванну печи. Введение кислорода в факел и в ванну печи сокращает периоды плавки и увеличивает производительность печи на 25-30%. Изготовление хромомагнезитовых сводов вместо динасовых позволяет увеличивать тепловую мощность печей, увеличить межремонтный период в 2-3 раза и повысить производительность на 6-10%.
1.6 Производство стали в электрических печах
Для выплавки стали используют электрические печи двух типов: дуговые и индукционные (высокочастотные). Первые из них получили более широкое применение в металлургической промышленности.
Дуговые печи имеют емкость 3 - 80 т и более. На металлургических заводах устанавливают печи емкостью 30 -80 тонн. В электрических печах можно получать очень высокие температуры (до 2000єС), расплавлять металл с высокой концентрацией тугоплавких компонентов иметь, иметь основной шлак, хорошо очищать металл от вредных примесей, создавать восстановительную атмосферу или вакуум (индукционные печи) и достигать высокого раскисления и дегазации металла.
Нагревание и расплавление шихты осуществляется за счет тепла, излучаемого тремя электрическими дугами. Электрические дуги образуются в плавильном пространстве печи между вертикально подвешенными электродами и металлической шихтой.
Дуговая печь имеет следующие основные части: сварной или клепанный кожух цилиндрической формы, со сфероидальным днищем; подины и стенок; съемный арочный свод с отверстиями для электродов; механизм для закрепления вертикального перемещения электродов; две опорные станины; механизм наклона печи, позволяющий поворачивать печь при выпуске стали по желобу и в сторону загрузочного окна для скачивания шлака.
В сталеплавильных печах применяют угольный и графитированные электроды. Диаметр электродов определяется мощностью потребляемого тока и составляет 350 - 550 мм. В процессе плавки нижние концы электродов сгорают. Поэтому электроды постепенно опускают и в необходимых случаях наращивают сверху.
Технология выплавки стали в дуговых печах. В электрических дуговых печах высококачественную углеродистую или легированную сталь. Обычно для выплавки стали, применяют шихту в твердом состоянии. Твердую шихту в дуговых печах с основной футеровкой используют при плавке стали с окислением шихты и при переплавке металла без окисления шихты.
Технология плавки с окислением шихты в основной дуговой печи подобна технологии плавки стали в основных мартеновских печах (скрап-процессам). После заправки падины в печь загружают шихту. Среднее содержание углерода в шихте на 0,5 -0,6% выше, чем в готовой стали. Углерод выгорает и обеспечивает хорошее кипение ванны. На подину печи загружают мелкий стальной лом, затем более крупный. Укладывать шихту в печи надо плотно. Особенно важно хорошо уложить куски шихты в месте нахождения электродов.
Шихту в дуговые печи малой и средней емкости загружают мульдами или лотками через завалочное окно, а в печи большой емкости через свод, который отводят в сторону вместе с электродами. После загрузки шихты электроды опускают до легкого соприкосновения с шихтой. Подложив под нижние концы электродов кусочки кокса, включают ток, и начинают плавку стали.
При плавки стали в дуговых печах различают окислительный и восстановительный периоды.
Во время окислительного периода расплавляется шихта, окисляется кремний, марганец, фосфор, избыточный углерод, частично железо и другие элементы, например хром, титан, и образуется первичный шлак. Реакция окисления такие же, как и при основном мартеновском процессе. Фосфор из металла удаляется в течение первой половины окислительного периода, пока металл в ванне сильно не разогрелся. Образовавшийся при этом первичный фосфористый шлак в количестве 60 - 70% удаляют из печи.
Для получения нового шлака в основную дуговую печь подают обожженную известь и другие необходимые материалы. После удаления фосфора и скачивания первичного шлака металл хорошо прогревается и начинается горение углерода.
Для интенсивного кипения ванны в печь забрасывают необходимое количество железной руды или окалины и шлакообразующих веществ.
Во время кипения ванны в течение 45-60 мин избыточный углерод сгорает, растворенные газы и неметаллические включения удаляются. При этом отбирают пробы металла для быстрого определения в нем содержания углерода и марганца и пробы шлака для определения его состава. Основность шлака поддерживается равной 2-2,5, что необходимо для задержания в нем фосфора.
После удаления углерода скачивают весь шлак. Если в металле в период окисления углерода содержится меньше, чем требуется по химическому анализу, то в печь вводят куски графитовых электродов или кокс.
В восстановительный период плавки раскисляют металл, переводят максимально возможное количество серы в шлак, доводят химический состав металла до заданного и подготовляют его к выпуску из печи.
Восстановительный период плавки в основных дуговых печах при выплавке сталей с низким содержанием углерода проводится под белым (известковым) слоем шлаком, а при выплавке высокоуглеродистых сталей - под карбидным шлаком.
Для получения белого шлака в печь загружают шлаковую смесь, состоящую из извести и плавикового шпата. Через некоторое время на поверхности образуется слой шлака с достаточно высокой концентрацией FeO и MnO. Пробы шлака имеют темный цвет.
Перед раскислением металла в печь двумя-тремя порциями забрасывают второю шлаковую смесь, состоящей из кусковой извести, плапикового шпата, молотого древесного угля и кокса. Через некоторое время содержание Feo и MnO понижается. Пробы шлака становятся светлее, закись железа из металла начинает переходить в шлак. Для усиления раскисляющего действия к концу восстановительного периода в печь забрасывают порошок ферросилиция, под влиянием которого содержание FeO в шлаке понижается. В белом шлаке содержится до 50 - 60% СаО, а на поверхности его плавает древесный уголь, что позволяет эффективно удалять серу из металла.
Во время восстановительного периода плавки в металл вводят необходимые добавки, в том числе и легирующие. Окончательно металл раскисляют в печи алюминием.
Выплавка стали под карбидным шлаком на первой стадии восстановительного процесса происходит так же, как и под белым шлаком. Затем на поверхность шлака загружают карбидообразующую смесь, состоящую из кокса, извести и плавикого шпата. При высоких температурах протекает реакция:
CaO + 3C = CaC2 + CO.
Образующийся карбид кальция увеличивает раскислительную и обессеривающую способность карбидного шлака. Для ускорения образования карбидного шлака печь хорошо герметизируют. Карбидный шлак содержит 55 -65% СаО и 0,3 - 0,5% FeO; он обладает науглероживающей способностью.
При выплавке стали методом переплава, в печь не загружают железную руду; условия для кипения ванны отсутствуют. Шихта состоит из легированных отходов с низким содержанием фосфора, поскольку его нельзя будет удалить в шлак. Для понижения содержания углерода в шихту добавляют 10 - 15% мягкого железа. Образующийся при расплавлении шихты первичный шлак из печи не удаляют. Это сохраняет легирующие элементы (Cr, Ti, V), которые переходят из шлака в металл.
Устройство и работа индукционных печей. Индукционные печи отличаются от дуговых способом подвода энергии к расплавленному металлу. Индукционная печь примерно работает так же как обычный трансформатор: имеется первичная катушка, вокруг которой при пропускании переменного тока создается переменное магнитное поле. Магнитный поток наводит во вторичной печи переменный ток, под влиянием которого нагревается и расплавляется металл. Индукционные печи имеют емкость от 50 кг до 100 т и более.
В немагнитном каркасе имеются индуктор и огнеупорный плавильный двигатель. Индуктор печи выполнен в виде катушки с определенным числом витков медной трубки, внутри которой циркулирует охлаждающая вода. Металл загружают в тигель, который является вторичной обмоткой. Переменный ток вырабатывается в машинных или ламповых генераторах. Подвод тока от генератора к индуктору осуществляется посредством гибкого кабеля или медных шин. Мощность и частота тока определяются емкостью плавильного тигля и состава шихты. Обычно в индукционных печах используется ток частотой 500 - 2500 Гц. Крупные печи работают на меньших частотах. Мощность генератора выбирают из расчета 1,0 - 1,4 квт/кг шихты. Плавильные тигли печей изготавливают из кислых или основных огнеупорных материалов.
В индукционных печах сталь выплавляют методом переплава шихты. Угар легирующих, при этом получается очень небольшим. Шлак образуется при загрузке шлакообразующих компонентов на поверхность расплавленного металла. Температура шлака во всех случаях меньше температуры металла, так как шлак не обладает магнитной проницаемости и в нем не индуцируется ток. Для выпуска стали из печи, тигель наклоняют в сторону сливного носка.
В индукционных печах нет углерода, поэтому металл не науглероживается. Под действием электромагнитных сил металл циркулирует, что ускоряет химические реакции и способствует получению однородного металла.
Индукционные печи применяют для выплавки высоколегированных сталей и сплавов особого назначения, имеющих низкое содержание углерода и кремния.
1.7 Новые методы производства и обработки стали
Электроннолучевая плавка металлов. Для получения особо чистых металлов и сплавов используют электроннолучевую плавку. Плавка основана на использовании кинетической энергии свободных электронов, получивших ускорение в электрическом поле высокого напряжения. На металл направляется поток электронов, в результате чего он нагревается и плавится.
Электроннолучевая плавка имеет ряд преимуществ: электронные лучи позволяют получить высокую плотность энергии нагрева, регулировать скорость плавки в больших пределах, исключить загрязнение расплава материалом тигля и применять шихту в любом виде. Перегрев расплавленного металла в сочетании с малыми скоростями плавки и глубоким вакуумом создают эффективные условия для очистки металла от различных примесей.
Электрошлаковый переплав. Очень перспективным способом получения высококачественного металла является электрошлаковый переплав. Капли металла, образующиеся при переплаве заготовки, проходят через слой жидкого металла и рафинируются. При обработке металла шлаком и направленной кристаллизации слитка снизу вверх содержание серы в заготовке снижается на 30 - 50%, а содержание неметаллических включений - в два-три раза.
Вакуумирование стали. Для получения высококачественной стали, широко применяется вакуумная плавка. В слитке содержатся газы и некоторое количество неметаллических включений. Их можно значительно уменьшить, если воспользоваться вакуумированием стали при ее выплавке и разливке. При этом способе жидкий металл подвергается выдержке в закрытой камере, из которой удаляют воздух и другие газы. Вакуумирование стали производится в ковше перед заливкой по изложницам. Лучшие результаты получаются тогда, когда сталь после вакуумирования в ковше разливают по изложницам так же в вакууме. Выплавка металла в вакууме осуществляется в закрытых индукционных печах.
Рафирование стали в ковше жидкими синтетическими шлаками. Сущность этого метода состоит в том, что очистка стали от серы, кислорода и неметаллических включений производится при интенсивном перемешивании стали в ковше с предварительно слитым в него шлаком, приготовленном в специальной шлакоплавильной печи. Сталь после обработки жидкими шлаками обладает высокими механическими свойствами. За счет сокращения периода рафинирования в дуговых печах, производительность которых может быть увеличена на 10 - 15%. Мартеновская печь, обработанная синтетическими шлаками, по качеству близка к качеству стали, выплавляемой в электрических печах.
2. Легированные стали и чугуны
2.1 Легированные стали
Легирующими называют элементы, специально вводимые в сталь для изменения ее строения и свойств. Соответственно стали называются легированными. При этом если содержание кремния более 0,4 % или марганца более 0,8 %, то они также относятся к легирующим элементам.
Концентрация некоторых легирующих элементов может быть очень малой. В количестве до 0,1 % вводят Nb, Тi, а содержание бора обычно не превышает 0,005 %. Легирование стали, когда концентрация элемента составляет около 0,1 % и менее, принято называть микролегированием.
Легирование производится с целью изменения механических свойств (прочности, пластичности, вязкости), физических свойств (электропроводности, магнитных характеристик, радиационной стойкости) и химических свойств (коррозионной стойкости в разных средах). Необходимый комплекс свойств обычно обеспечивается не только легированием, но и термической обработкой, позволяющей получать наиболее оптимальную структуру металла. Легированные стали дороже углеродистых и поэтому применять их без термообработки нерационально.
Применение легирующих элементов существенно влияет на себестоимость сталей. При использовании тех или иных легирующих элементов руководствуются не только их влиянием на свойства стали, но и экономическими соображениями, в частности распространенностью в земной коре, стоимостью добычи и получения, а также дефицитностью.
Основными легирующими элементами являются Сr, Ni, Мn, Si, Мо, V, Тi, Аl, Сu, Nb, В. Часто сталь легируют не одним, а несколькими легирующими элементами, например Сr и Ni, получая хромоникелевую сталь, Сr и Мn - хромомарганцевую сталь, Сr, Ni, Мо, V - хромоникельмолибденованадиевую сталь. Легирующие элементы оказывают существенное влияние на полиморфизм железа. Легирующие элементы по их влиянию на устойчивость феррита или аустенита делятся на две группы.
К первой группе относят Ni, Мn, Сu, Со, которые образуют расширенную g - область и увеличивают устойчивость аустенита. Стали, в которых под влиянием легирования g - область сохраняет стабильность от температуры плавления до комнатной температуры, называют аустенитными сталями.
2.2 Влияние легирующих элементов на полиморфизм железа
Ко второй группе относят Сr, Si, V, Мо, W, Аl, Тi и др., т. е. большинство легирующих элементов, которые в двойных диаграммах с железом образуют замкнутую g - область увеличивая устойчивость феррита. Стали, в которых под влиянием легирования a -область сохраняет стабильность от комнатной температуры до температуры плавления, называют ферритными сталями.
В отличие от других сплавов на основе железа, аустенитные и ферритные стали не испытывают превращений при нагреве и охлаждении.
Легирующие элементы, вступая во взаимодействие с железом и углеродом, могут участвовать в образовании различных фаз в легированных сталях: легированного феррита - твердого раствора легирующего элемента в Fе-a ; легированного аустенита - твердого раствора легирующего элемента в Fе-g ; легированного цементита - твердого раствора легирующего элемента в цементите, или при увеличении содержания легирующего элемента сверх определенного предела специальных карбидов.
2.3 Влияние содержания углерода на свойства стали
Рост прочности происходит до 0,8-1,0% углерода. При увеличении содержания углерода более 0,8% уменьшается и пластичность, и прочность. Это связано с образованием сетки хрупкого цементита вокруг перлитных зерен. Поэтому заэвтектоидные стали подвергают специальному отжигу на зернистый перлит.
Углерод оказывает существенное влияние на технологические свойства стали: свариваемость, обрабатываемость давлением и резанием. С увеличением содержания углерода ухудшается свариваемость, а также способность деформироваться в горячем, и особенно в холодном состоянии.
В углеродистой стали содержится до 0,8 % Мn и до 0,4% Si. Марганец и кремний, помимо раскисления, в этих количествах полностью растворяются в феррите и упрочняют его, увеличивают прокаливаемость стали, а также уменьшают вредное влияние серы.
Вредными примесями в стали являются сера и фосфор. Основным источником серы в стали является исходное сырье - чугун.
Сера снижает пластичность и вязкость стали, а также придает стали красноломкость при прокатке и ковке. Сера нерастворима в стали. Она образует с железом соединение FeS - сульфид железа, хорошо растворимый в металле. При малом содержании марганца, благодаря высокой ликвации серы в стали может образовываться легкоплавкая эвтектика Fe-FeS (TПЛ = 988оС). Эвтектика располагается по границам зерен. При нагреве стали до температур горячей деформации включения эвтектики охрупчивают сталь, а при некоторых условиях могут даже плавиться и при деформировании образовывать надрывы и трещины. Марганец устраняет красноломкость
FeS+Mn=MnS+Fe,
так как сульфиды марганца не образуют сетки по границам зерен и имеют температуру плавления около 1620°С, что значительно выше температуры горячей деформации. Вместе с тем сульфиды марганца, как и другие неметаллические включения, также снижают вязкость и пластичность, уменьшают усталостную прочность стали. Поэтому содержание серы в стали должно быть как можно меньше.
Основной источник фосфора - руды, из которых выплавляется исходный чугун. Фосфор - вредная примесь. Растворяясь в феррите, фосфор уменьшает его пластичность. Фосфор резко отличается от железа по типу кристаллической решетки, диаметру атомов и их строению. Поэтому фосфор сильно искажает решетку феррита, делая феррит хладноломким и хрупким. Обычно фосфор располагается вблизи границ зерен и способствует охрупчиванию, повышая температурный порог хладноломкости.
Скрытые примеси - кислород, азот, водород находятся в стали либо в виде твердого раствора в феррите, либо образуют химические соединения (нитриды, оксиды), либо присутствуют в свободном состоянии в порах металла. Кислород и азот мало растворимы в феррите. Они загрязняют сталь хрупкими неметаллическими включениями, способствуя снижению вязкости и пластичности стали. Водород находится в твердом растворе и особенно сильно охрупчивает сталь. Повышенное содержание водорода, приводит к образованию внутренних трещин - флокенов.
Даже небольшие концентрации газов оказывают резко отрицательное влияние на свойства, ухудшая пластические и вязкие характеристики стали. Поэтому ваккуумирование является важной операцией для улучшения свойств стали.
2.4 Карбиды в легированных сталях
Карбидообразующими легирующими элементами называют элементы, обладающие большим, чем железо, сродством к углероду. По возрастанию сродства к углероду и устойчивости карбидных фаз карбидообразующие элементы располагаются в следующий ряд: Fе-Мn-Сг-Мо-W-Nb-V-Zr-Ti. Чем устойчивее карбид, тем труднее он растворяется в аустените и выделяется при отпуске.
При введении сравнительно небольших количеств легирующего карбидообразующего элемента в сталь он сначала растворяется в цементите, замещая часть атомов железа, например (Fе, Мn)3С. При этом образуется легированный цементит. С увеличением содержания легирующего элемента сверх предела растворимости образуются специальные карбиды типа Сr7С 3, Мn3С и др.
По строению кристаллической решетки карбиды бывают двух типов. К карбидам первой группы относятся поликарбиды Fe3C, Мn3С, Сr7Сз, Сr23С 6, имеющие сложные кристаллические решетки. Такие карбиды недостаточно прочны и при нагреве до высоких температур распадаются с образованием твердого раствора легирующих элементов в аустените.
Карбиды второй группы Мо 3С, WС, VС, TiС - монокарбиды - имеют простые кристаллические решетки, которые отличаются большой прочностью и не распадаются при нагреве. Все карбиды обладают высокой твердостью, но твердость карбидов второй группы несколько выше. С повышением дисперсности карбидов растет твердость и прочность стали.
2.5 Классификация легированных сталей
Легированные стали классифицируют:
· по структуре в равновесном состоянии,
· по структуре после охлаждения на воздухе,
· по количеству легирующих элементов и
· по назначению.
2.6 Легированный чугун
Химический состав, механические свойства при нормальных температурах и рекомендуемые виды термической обработки легированных чугунов регламентируются ГОСТ 7769-82. В обозначении марок легированных чугунов буквы и цифры, соответствующие содержанию легирующих элементов, те же, что и в марках стали.
Износостойкие чугуны, легированные никелем (до 5 %) и хромом (0,8 %), применяют для изготовления деталей, работающих в абразивных средах. Чугуны (до 0,6 % Сг и 2,5 % Ni) с добавлением титана, меди, ванадия, молибдена обладают повышенной износостойкостью в условиях трения без смазочного материала. Их используют для изготовления тормозных барабанов автомобилей, дисков сцепления, гильз цилиндров и др.
Жаростойкие легированные чугуны ЧХ 2, ЧХ 3 применяют для изготовления деталей контактных аппаратов химического оборудования, турбокомпрессоров, эксплуатируемых при температуре 600°С (ЧХ 2) и 700°С (ЧХ 3).
Жаропрочные легированные чугуны ЧНМШ, ЧНИГ 7Х 2Ш с шаровидным графитом работоспособны при температурах 500--600°С и применяются для изготовления деталей дизелей, компрессоров и др.
Коррозионно-стойкие легированные чугуны марок ЧХ 1, ЧНХТ, ЧНХМД, ЧН 2Х (низколегированные) обладают повышенной коррозионной стойкостью в газовой, воздушной и щелочной средах. Их применяют для изготовления деталей узлов трения, работающих при повышенных температурах (поршневых колец, блоков и головок цилиндров двигателей внутреннего сгорания, деталей дизелей, компрессоров и т. д.).
Антифрикционные чугуны используются в качестве подшипниковых сплавов, так как представляют группу специальных сплавов, структура которых удовлетворяет правилу Шарпи (включения твердой фазы в мягкой основе), способных работать в условиях трения как подшипники скольжения.
3. Защита металлов от коррозии
Применение различных методов защиты металлов от коррозии позволяет в какой-то степени свести к минимуму потери металла от коррозии. В зависимости от причин, вызывающих коррозию, различают следующие методы защиты.
3.1 Обработка внешней среды, в которой протекает коррозия
Сущность метода заключается либо в удалении из окружающей среды тех веществ, которые выполняют роль, деполяризатора, либо в изоляции металла от деполяризатора. Например, для удаления из воды кислорода используют специальные вещества или кипячение. Удаление кислорода из коррозионной среды называется деаэрацией. Максимально замедлить процесс коррозии можно путем введения в окружающую среду специальных веществ - ингибиторов. Широкое распространение получили летучие и парофазные ингибиторы, которые защищают от атмосферной коррозии изделия из черных и цветных металлов при хранении, транспортировке и т.д. Механизм действия ингибиторов заключается в том, что их молекулы адсорбируются на поверхности металла, препятствуя протеканию электродных процессов.
3.2 Защитные покрытия
Для изоляции металла от окружающей среды на него наносят различного рода покрытия: лаки, краски, металлические покрытия. Наиболее распространенными являются лакокрасочные покрытия, однако их механические свойства значительно ниже, чем у металлических. Последние по характеру защитного действия можно разделить на анодные и катодные.
Анодные покрытия. Если на металл нанести покрытие из другого, более электроотрицательного металла, то в случае возникновения условий для электрохимической коррозии разрушаться будет покрытие, т.к. оно будет выполнять роль анода. В этом случае покрытие называется анодным. Примером анодного покрытия может служить хром, нанесенный на железо. В случае нарушения целостности покрытия при контакте с влажным воздухом будет работать гальванический элемент:
А (-) Cr | H2O, O2 | Fe (+) К
на аноде: Cr - 2e > Cr2+
на катоде: 2 H2O + O2 + 4e > 4 OH-
Cr2+ + 2 OH- > Cr(OH)2
Гидроксид хрома (II) окисляется кислородом воздуха до Cr(OH)3:
4 Cr(OH)2 + 2H2O + O2 > 4 Cr(OH)3
Таким образом, в результате электрохимической коррозии разрушается анодное покрытие.
Катодные покрытия. У катодного покрытия стандартный электродный потенциал * более положителен, чем у защищаемого металла. Пока слой покрытия изолирует металл от окружающей среды, электрохимическая коррозия не протекает. При нарушении сплошности катодного покрытия оно перестает защищать металл от коррозии. Более того, оно даже интенсифицирует коррозию основного металла, т.к. в возникающей гальванопаре анодом служит основной металл, который будет разрушаться. В качестве примера можно привести оловянное покрытие на железе (луженое железо). Рассмотрим работу гальванического элемента, возникающего в этом случае.
А (-) Fe | H2O, O2 | Sn (+) К
на аноде: Fe - 2e > Fe2+
на катоде: 2 H2O + O2 + 4e > 4 OH-
Fe2+ + 2 OH- > Fe(OH)2
Разрушается защищаемый металл. Таким образом, при сравнении свойств анодных и катодных покрытий можно сделать вывод, что наиболее эффективными являются анодные покрытия. Они защищают основной металл даже в случае нарушения целостности покрытия, тогда как катодные покрытия защищают металл лишь механически.
3.3 Электрохимическая защита
Различают два вида электрохимической защиты: катодная и протекторная. В обоих случаях создаются условия для возникновения на защищаемом металле высокого электроотрицательного потенциала.
Протекторная защита. Защищаемое от коррозии изделие соединяют с металлическим ломом из более электроотрицательного металла (протектора). Это равносильно созданию гальванического элемента, в котором протектор является анодом и будет разрушаться. Например, для защиты подземных сооружений (трубопроводов) на некотором расстоянии от них закапывают металлолом (протектор), присоединив его к сооружению.
Катодная защита отличается от протекторной тем, что защищаемая конструкция, находящаяся в электролите (почвенная вода), присоединяется к катоду внешнего источника тока. В ту же среду помещают кусок металлолома, который соединяют с анодом внешнего источника тока.
Металлический лом подвергается разрушению, предохраняя тем самым от разрушения защищаемую конструкцию.
Во многих случаях металл предохраняет от коррозии образующаяся на его поверхности стойкая оксидная пленка (так, на поверхности алюминия образуется Al2O3, препятствующий дальнейшему окислению металла). Однако некоторые ионы, например Cl-, разрушают такие пленки и тем самым усиливают коррозию.
Заключение
В результате проделанной работы были рассмотрены характеристики чугуна и стали, их физико-химические, механические и специфические свойства. При сравнении свойств оказалось, что:
* Физико-химические свойства чугуна и стали различны по:
- содержанию углерода;
- свариваемости;
- цвету;
- температуре плавления;
- влиянию фосфора.
* Физико-химические свойства чугуна и стали сходны по влиянию марганца и серы.
* Механические свойства чугуна зависят от металлической основы и включению графита, а стали - от включений цементита и повышения содержания углерода.
* Специфические свойства стали:
- содержит углерода до 2%;
- обладает свойствами раскисления;
- для улучшения свойств стали легируют.
* Специфические свойства чугуна:
- содержание углерода более 2%;
- высокая жидкотекучесть;
- пропитывается маслом и керосином;
- высокая износостойкость и антифрикционные свойства;
- обладает литейными свойствами.
Хоть сталь и производится из чугуна, они имеют различные физико-химические, механические и специфические свойства.
Список используемой литературы
1. "Технология металлов и других конструкционных материалов" В.Т. Жадан, Б.Г. Гринберг, В.Я. Никонов Издание второе.
2. "Общая химия" Н.Л. Глинка Издание двадцать третье.
3. "Металлургия" А.П. Гуляев 1966 год.
4. Антропов Л.И., Макушин Е.М., Панасенко В.Ф. Ингибиторы коррозии металлов. Киев: Техника, 1981. 183 с.
5. Розенфельд И.Л. Ингибиторы коррозии. М.: Химия, 1977. 350 с.
6. Григорьев В.П., Экилик В.В. Химическая структура и защитное действие ингибиторов коррозии. Ростов н/Д: Изд-во Ростов. гос. ун-та, 1978. 184 с.
7. Улиг Г.Г., Реви Р.У. Коррозия и борьба с ней. Л.: Химия, 1989. 456 с.
8. Колотыркин Я.М. Металл и коррозия. М.: Металлургия, 1985. 88 с.
9. Томашов Н.Д. Теория коррозии и защита металлов. М.: Изд-во АН СССР, 1959. 591 с.
Размещено на Allbest.ru
...Подобные документы
Особенности технологии выплавки стали. Разработка способов получения стали из чугуна. Кислородно-конвертерный процесс выплавки стали. Технологические операции кислородно-конверторной плавки. Производство стали в мартеновских и электрических печах.
лекция [605,2 K], добавлен 06.12.2008Исходные материалы для выплавки чугуна. Устройство доменной печи. Выплавка стали в кислородных конвертерах, мартеновских, электрических печах. Продукты доменного производства. Производство меди, алюминия. Термическая и химико-термическая обработка стали.
учебное пособие [7,6 M], добавлен 11.04.2010Производство чугуна и стали. Конверторные и мартеновские способы получения стали, сущность доменной плавки. Получение стали в электрических печах. Технико-экономические показатели и сравнительная характеристика современных способов получения стали.
реферат [2,7 M], добавлен 22.02.2009Качественный и количественный состав чугуна. Схема доменного процесса как совокупности механических, физических и физико-химических явлений в работающей доменной печи. Продукты доменной плавки. Основные отличия чугуна от стали. Схемы микроструктур чугуна.
реферат [768,1 K], добавлен 26.11.2012Характеристика металлургической ценности руды. Обоснование технологической схемы подготовки руды к доменной плавке. Расчет массы и состава шлака, образующегося в доменной печи при выплавке чугуна. Определение состава и количества конвертерного шлака.
курсовая работа [1,7 M], добавлен 06.12.2010Расчёт технологии выплавки стали ёмкостью 80 тонн, химический состав металла по периодам плавки. Соотношения в составе шихты: лома и чугуна, газообразного кислорода и твердого окислителя, в виде железной руды. Количество и состав шлака, расход извести.
курсовая работа [222,0 K], добавлен 08.06.2016Классификация и маркировка стали. Характеристика способов производства стали. Основы технологии выплавки стали в мартеновских, дуговых и индукционных печах. Универсальный агрегат "Conarc". Отечественные агрегаты ковш-печь для внепечной обработки стали.
курсовая работа [2,1 M], добавлен 11.08.2012Продукт доменной плавки. Выплавка чугуна из железных руд. Доменная печь. Качественный уровень работы. Профиль рабочего пространства печи. Футеровка колошника. Теплообмен и показатели работы доменных печей. Технико-экономическая оценка доменных печей.
курсовая работа [30,1 K], добавлен 04.12.2008Строение и свойства стали, исходные материалы. Производство стали в конвертерах, в мартеновских печах, в дуговых электропечах. Выплавка стали в индукционных печах. Внепечное рафинирование стали. Разливка стали. Специальные виды электрометаллургии стали.
реферат [121,3 K], добавлен 22.05.2008Сравнительная характеристика физико-химических, механических и специфических свойств продуктов черной металлургии - чугуна и стали. Виды чугуна, их классификация по структуре и маркировка. Производство стали из чугуна, ее виды, структура и свойства.
реферат [36,1 K], добавлен 16.02.2011Устройство доменной сталеплавильной печи. Подача и нагрев дутья. Продукты доменной плавки. Технология выплавки стали в электродуговых печах. Внепечная обработка металла на участке ковш-печь. Непрерывная разливка стали для отливки блюмов и слябов.
отчет по практике [3,1 M], добавлен 12.10.2016Промышленная классификация металлов. Исходные материалы для доменной плавки. Производство стали в кислородных конвертерах, в мартеновских и двухванных печах. Продукты доменного производства. Пирометаллургические и гидрометаллургические процессы.
реферат [1,8 M], добавлен 22.10.2013Вычисление профиля доменной печи, графическое изображение разреза по технологической оси. Расчет доменной шихты на получение чугуна с содержанием марганца. Виды огнеупоров: шамотный, высокоглиноземистый, карбидокремниевый кирпич, углеродистые блоки.
курсовая работа [865,1 K], добавлен 12.04.2012Электрические печи, применяемые для выплавки стали, их строение и принцип действия. Понятие дислокаций в кристаллических веществах, оценка влияния их количества на механические свойства металлов, способы увеличения. Азотирование стали, преимущества.
контрольная работа [26,8 K], добавлен 06.09.2014Затратность процесса получения в доменной печи чистых по сере чугунов и разработка методов внедоменной десульфурации чугуна. Снижение затрат в сталеплавильном цехе в результате изменений технологии организации внепечной обработки стали магнием и содой.
реферат [19,6 K], добавлен 06.09.2010Механические свойства стали при повышенных температурах. Технология плавки стали в дуговой печи. Очистка металла от примесей. Интенсификация окислительных процессов. Подготовка печи к плавке, загрузка шихты, разливка стали. Расчет составляющих завалки.
курсовая работа [123,5 K], добавлен 06.04.2015Металлургия стали как производство. Виды стали. Неметаллические включения в стали. Раскисление и легирование стали. Шихтовые материалы сталеплавильного производства. Конвертерное, мартеновское производство стали. Выплавка стали в электрических печах.
контрольная работа [37,5 K], добавлен 24.05.2008Свойства термообработки металла. Подготовка шихтовых материалов к плавке, заправка печи, загрузка шихты в печь. Восстановительный период плавки. Расчёты угара и необходимого количества ферросплавов. Выбор источника питания печи. Расчёт тепловых потерь.
курсовая работа [1,6 M], добавлен 18.07.2014Технология получения чугуна из железных руд путем их переработки в доменных печах. Расчет состава и количества колошникового газа и количества дутья. Материальный баланс доменной плавки, приход и расход тепла горения углерода кокса и природного газа.
курсовая работа [303,9 K], добавлен 30.12.2014Плавка стали в электрических печах. Очистка отходящих газов. Устройство для электромагнитного перемешивания металла. Плавка стали в основной дуговой электропечи. Методы интенсификации электросталеплавильного процесса. Применение синтетического шлака.
курсовая работа [74,8 K], добавлен 07.06.2009