Обоснование оптимальных параметров основных технологических процессов

Основные производители азотной кислоты. Оптимальные условия окисления аммиака. Верхний предел повышения температуры контактного окисления аммиака. Суммарная реакция, определяющая потребность в кислороде при переработке аммиака в азотную кислоту.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 17.01.2014
Размер файла 16,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Украины

Украинский Государственный Химико-Технологический Университет

Реферат

ОБОСНОВАНИЕ ОПТИМАЛЬНЫХ ПАРАМЕТРОВ ОСНОВНЫХ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

Сделала: Живыло А.М

Проверила: Савченко М.О

Днепропетровск

2013

ВВЕДЕНИЕ

Азотная кислота по объему производства занимает среди других кислот второе место после серной кислоты. Все возрастающий объем производства HNO3 объясняется огромным значением азотной кислоты и ее солей для народного хозяйства.

Азотная кислота является одним из исходных продуктов для получения большинства азотсодержащих веществ. До 70-80% ее количества расходуется на получение минеральных удобрений. Одновременно азотная кислота применяется при получении взрывчатых веществ почти всех видов, нитратов и ряда других технических солей; в промышленности органического синтеза; в ракетной технике, как окислитель в различных процессах и во многих других отраслях народного хозяйства.

Промышленностью вырабатывается некоцентрированная (до 60-62% HNO3) и концентрированная (98-99% HNO3) кислота. В небольших объемах выпускается реактивная и азотная кислота особой чистоты. В производстве взрывчатых веществ нитрованием толуола, уротропина, ксилола, нафталина и других органических продуктов применяют концентрированную азотную кислоту. Для получения удобрений потребляется как правило разбавленная азотная кислота.

Основными производителями азотной кислоты являются США, Франция, ФРГ, Италия, Испания, и Англия. На долю этих стран в 70-х годах приходилось свыше 75% всей выработанной тогда кислоты. К 80 годам производство азотной кислоты в капиталистических странах стабилизировалось. Сейчас рост производства происходит за счет совершенствования и обновления технологии, а также организации выпуска азотной кислоты в развивающихся странах.

ОБОСНОВАНИЕ ОПТИМАЛЬНЫХ ПАРАМЕТРОВ ОСНОВНЫХ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

Все промышленные способы получения азотной кислоты основаны на контактном окислении аммиака кислородом воздуха с последующей переработкой оксидов азота в кислоту путем поглощения их водой. Главными стадиями производства неконцентрированной азотной кислоты являются очистка сырья, каталитическое окисление аммиака, утилизация тепла, вывод из нитрозного газа реакционной воды, доокисление окиси азота в высшие окислы , абсорбция их водой или разбавленной азотной кислотой, очистка газовых выбросов.

Оптимальные условия окисления аммиака:

1. Температура. Реакция аммиака на платине начинается при 1450С, но протекает с малым выходом NO и образованием преимущественно элементарного азота. Повышение температуры приводит к увеличению выхода окиси азота и росту скорости реакции. В интервале 700-10000С выход NO может быть доведен до 95-98%. Время контактирования при повышении температуры от 650-до 9000С сокращается примерно в пять раз (от 5*10-4 до 1,1*10-4сек).

Необходимый температурный режим процесса может поддерживаться за счет тепла реакций окисления. Для сухой аммиачно-воздушной смеси, содержащей 10% NH3, при степени конверсии 96% теоретическое повышение температуры газа составляет примерно 7050С или около 700С на каждый процент аммиака в исходной смеси. Применяя аммиачно-воздушную смесь, содержащую 9,5% аммиака, можно за счет теплового эффекта реакции достигнуть температуры порядка 6000С, для еще большего повышения температуры конверсии необходим предварительный подогрев воздуха или аммиачно-воздушной смеси. Следует учитывать, что подогревать аммиачно-воздушную смесь можно только до температуры не выше 150-2000С при температуре греющего газа не более 4000С. В противном случае возможна диссоциация аммиака или его гомогенное окисление с образованием элементарного азота.

Верхний предел повышения температуры контактного окисления аммиака определяется потерями платинового катализатора. Если до 9200С потери платины в какой-то мере компенсируются ростом активности катализатора, то выше этой температуры рост потерь катализатора значительно опережает увеличение скорости реакции.

Согласно заводским данным, оптимальная температура конверсии аммиака под атмосферным давлением составляет около 8000С; на установках, работающих под давлением 9 ат, она равна 870-9000С.

2. Давление. Применение повышенного давления при получении разбавленной азотной кислоты в основном связано со стремлением увеличить скорость окисления окиси азота и переработки образующейся двуокиси азота в азотную кислоту.

Термодинамические расчеты показывают, что и при повышенном давлении равновесный выход NO близок к 100%. Однако высокая степень контактирования в этом случае достигается лишь при большом количестве катализаторных сеток и более высокой температуре.

За последнее время в промышленных условиях на многослойных катализаторах при тщательной очистке газов и температуре 9000С удалось довести степень конверсии аммиака до 96%. При выборе оптимального давления следует иметь в виду, что повышение давления приводит к росту потерь платины. Это объясняется увеличением температуры катализа, применением многослойных сеток и усилением их механического разрушения под действием большой скорости газа.

3. Содержание аммиака в смеси. Для окисления аммиака обычно применяют воздух, поэтому содержание аммиака в смеси определяется содержанием кислорода в воздухе. При стехиометрическом отношении О2:NH3=1,25 (содержание аммиака в смеси с воздухом составляет 14,4%) выход окиси азота не значителен. Для увеличения выхода NO требуется некоторый избыток кислорода, следовательно содержание аммиака в смеси должно быть меньше 14,4%. В заводской практике содержание аммиака в смеси поддерживают в пределах 9,5-11,5%, что соответствует отношению O2:NH3=2ё1,7.

Суммарная реакция, определяющая потребность в кислороде при переработке аммиака в азотную кислоту

NH3+2O2=HNO3+H2O

азотный кислота аммиак реакция

дает отношение O2:NH3=2, что соответствует содержанию аммиака в исходной смеси, равному 9,5%. Это говорит о том, что увеличение концентрации аммиака в смеси выше 9,5% в конечном итоге в конечном итоге не приведет к росту концентрации NO, так как в этом случае в адсорбционную систему придется вводить дополнительный воздух.

Если в качестве исходных реагентов применять аммиачно-кислородную смесь, то в соответствии с уравнением суммарной реакции можно было бы увеличить концентрацию в ней аммиака до 33,3%. Однако применение высоких концентраций аммиака затруднено тем, что подобные смеси взрывчаты.

4. Влияние примесей. Платиновые сплавы чувствительны к примесям, содержащимся в аммиачно воздушной смеси. В присутствии 0,0002% фосфористого водорода в газовой смеси степень конверсии аммиака снижается до 80%. Менее сильными контактными ядами являются сероводород, ацетилен, хлор, пары смазочных масел,. пыль, содержащая окислы железа, окись кальция, песок и др.

Предварительная очистка газов увеличивает продолжительность работы катализатора. Однако со временем катализатор постепенно отравляется и выход NO снижается. Для удаления ядов и загрязнений сетки периодически регенерируют посредством обработки их 10-15% раствором соляной кислоты.

5. Время контактирования. Оптимальное время контактирования определяется скоростью окисления аммиака. Чаще всего скорость окисления определяют как количество окисленного аммиака (кг) на единицу поверхности (м2) в сутки (напряженность катализатора). Продолжительность соприкосновения газа с катализатором, или время контактирования определяют по уравнению

t=Vсв/W

где t - время пребывания газа в катализаторной зоне, сек;

Vсв - свободный объем катализатора, м3;

W - объемная скорость в условиях контактирования м3*сек-1.

Максимальная степень превращения аммиака в окись азота достигается при вполне определенном времени контакта газа с катализатором. Оптимальным временем контактирования следует считать не то, при котором достигается максимальный выход NO, а несколько меньшее, так как экономически выгодно работать при большей производительности даже за счет снижения выхода продукта. В практических условиях время контакта аммиака с катализатором колеблется в пределах 1-2*10-4сек.

6. Смешение аммиака с воздухом. Полная однородность аммиачно-воздушной смеси, поступающей в зону контактирования, является одним из основных условий получения высокого выхода окиси азота. Хорошее смешение газов имеет большое значение не только для обеспечения высокой степени контактирования, но и предохраняет от опасности взрыва. Конструкция и объем смесителя должны в полной мере обеспечивать хорошее перемешивание газа и исключать проскок аммиака отдельными струями на катализатор.

Оптимальные условия окисления окиси азота:

Зависимость константы равновесия реакции 2NO+O2=2NO2 (+26,92 ккал) от температуры выражается уравнением: lgK= lg((PNO2*PO2)/PNO2)=-5749/T+1,751lgT-0,0005T+2,839. При понижении температуры и повышении давления газа равновесие реакции смещается вправо. При температурах ниже 2000С и давлении 1 ат окисление окиси азота может осуществляться почти на 100%, так что в этих условиях реакцию можно рассматривать как необратимую, протекающую в сторону образования азота. При температурах выше 7000С происходит почти полная диссоциация NO2 на окись азота и кислород.

Оптимальные условия абсорбции окислов азота при получении разбавленной азотной кислоты:

1. Температура. Все реакции, протекающие в абсорбционной системе, за исключением разложения азотистой кислоты, сопровождаются выделением тепла, поэтому их равновесие смещается вправо при понижении температуры. Благодаря этому понижение температуры способствует увеличению концентрации продукционной кислоты. Кроме того, понижение температуры благоприятно сказывается и на производительности системы, так как при этом увеличивается скорость окисления NO. Снижение температуры с 40 до 00С позволяет увеличить производительность установки в два раза.

На практике температуру абсорбции поддерживают в пределах 20-400С. Дальнейшее понижение температуры хотя и благоприятно сказывается на процесс, но в то же время приводит к повышению энергетических затрат и увеличению количества растворенных в азотной кислоте окислов азота, которые с водой не взаимодействуют, и в конечном итоге, теряются.

2. Давление. Повышение давления даже в небольшой мере позволяет значительно ускорить процесс образования HNO3 и сократить реакционный объем. Также повышение давления позволяет увеличить степень поглощения окислов азота. Для систем, работающих под атмосферным давлением, она составляет 93-97%, при давлении 8 ат -96-99%. В промышленности нашли применение установки, в которых абсорбция окислов азота проводится под различными давлениями: 1; 1,2; 1,7; 3,5; 4; 5; 7; 9 ат.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ.

1. Атрощенко В.И., Каргин С.И. Технология азотной кислоты. М.: Химия, 1970. 496с.

2. Софронов А.Л. Технология связанного азота. Пермь.1973.

Размещено на Allbest.ru

...

Подобные документы

  • Промышленные способы получения разбавленной азотной кислоты. Катализаторы окисления аммиака. Состав газовой смеси. Оптимальное содержание аммиака в аммиачно-воздушной смеси. Типы азотнокислотных систем. Расчет материального и теплового баланса реактора.

    курсовая работа [1,9 M], добавлен 14.03.2015

  • Характеристика исходного сырья, вспомогательных материалов для получения азотной кислоты. Выбор и обоснование принятой схемы производства. Описание технологической схемы. Расчеты материальных балансов процессов. Автоматизация технологического процесса.

    дипломная работа [1,9 M], добавлен 24.10.2011

  • Производство и применение катализаторов синтеза аммиака. Строение оксидного катализатора, влияние на активность условий его восстановления. Механизм и кинетика восстановления. Термогравиметрическая установка восстановления катализаторов синтеза аммиака.

    дипломная работа [822,5 K], добавлен 16.05.2011

  • Технология и химические реакции стадии производства аммиака. Исходное сырье, продукт синтеза. Анализ технологии очистки конвертированного газа от диоксида углерода, существующие проблемы и разработка способов решения выявленных проблем производства.

    курсовая работа [539,8 K], добавлен 23.12.2013

  • Роль систем автоматизированного производства в проектировании. Аммиак и его свойства, способы хранения. Расчёт химических параметров реакции образования аммиака. Создание модели теплообменного аппарата. Проектирование базы данных процесса ректификации.

    курсовая работа [1,6 M], добавлен 08.02.2016

  • Общая характеристика проблемы очистки воздуха от аммиака. Использование воды в качестве поглотителя. Описание схемы абсорбционной установки. Рассмотрение основных типов насосов для перемещения капельных жидкостей. Расчет теплообменного аппарата.

    курсовая работа [1,1 M], добавлен 27.12.2015

  • Физико-химические свойства аммиачной селитры. Основные стадии производства аммиачной селитры из аммиака и азотной кислоты. Установки нейтрализации, работающие при атмосферном давлении и работающие при разрежении. Утилизация и обезвреживание отходов.

    курсовая работа [605,6 K], добавлен 31.03.2014

  • Физико-химические основы синтеза карбамида из аммиака и двуокиси углерода. Равновесие жидкость – газ при синтезе. Тепловой баланс процесса. Предельно допустимые концентрации аммиака, двуокиси углерода, карбамида и солей аммония в атмосфере и водоемах.

    курсовая работа [2,2 M], добавлен 19.11.2014

  • Технологический процесс производства аммиака, разработанный американской фирмой "Келлог". Структурная схема процесса парообразования. Разработка функциональной схемы и выбор оборудования. Алгоритм управления отсекателями. Добавление ключей сигнализации.

    дипломная работа [1,6 M], добавлен 19.01.2017

  • Разработка технологической схемы производства аммиака из азотоводородной смеси и рассмотрение процесса автоматизации этого производства. Описание контрольно-измерительных приборов, позволяющих контролировать и регулировать технологические параметры.

    курсовая работа [319,5 K], добавлен 11.06.2011

  • Направления развития технологий производства аммиака. Характеристика сырья и готовой продукции. Материальный баланс абсорбера. Совершенствование отделения очистки производства аммиака третьей очереди. Правила обслуживания, пуска и остановки производства.

    курсовая работа [1,4 M], добавлен 06.12.2014

  • Назначение, функции и параметры агрегата, его разновидности и функциональные особенности, статические и динамические характеристики. Контроль и регулирование температуры, расхода и соотношения. Спецификация, принципы и направления ее составления.

    курсовая работа [1,2 M], добавлен 23.12.2011

  • Оборудование для термического окисления: модель Дила-Гроува, зависимость толщины окисла от времени окисления, особенности роста тонких и толстых плёнок двуокиси кремния, их свойства и применение в микроэлектронике. Реакторы биполярного окисления.

    реферат [106,3 K], добавлен 10.06.2009

  • Характеристика производимой продукции предприятия. Характеристика сырья для получения серной кислоты. Материально-тепловой расчет контактного аппарата. Увеличение температуры при окислении двуокиси серы. Расчет контактного аппарата на ветровую нагрузку.

    курсовая работа [114,2 K], добавлен 21.10.2013

  • Обоснование и расчет аппарата, применяемого для абсорбции аммиака - насадочного абсорбера с насадкой (керамические кольца Рашига). Осуществление подбора вспомогательного оборудования: теплообменника-рекуператора, центробежных насосов и вентилятора.

    курсовая работа [1,5 M], добавлен 09.03.2015

  • Обоснование технологических процессов проектируемого предприятия по переработке молока. Операции технохимического и микробиологического контроля сырья. Технологические процессы первичной переработки зерна в крупу и муку. Расчет выхода готовой продукции.

    курсовая работа [786,9 K], добавлен 24.03.2013

  • Окисление этилена с целью производства этиленоксида как одно из крупнотоннажных производств нефтехимической промышленности. Кинетические уравнения процесса окисления этилена. Зависимость основных показателей процесса окисления от времени реакции.

    лабораторная работа [442,8 K], добавлен 19.10.2015

  • Требования, предъявляемые к защитным диэлектрическим пленкам. Кинетика термического окисления кремния: в сухом и влажном кислороде, в парах воды. Особенности методов осаждения оксидных пленок кремния. Оценка толщины и пористости осаждаемых пленок.

    реферат [1,2 M], добавлен 24.09.2009

  • Обзор современных методов производства азотной кислоты. Описание технологической схемы установки, конструкция основного аппарата и вспомогательного оборудования. Характеристика исходного сырья и готовой продукции, побочные продукты и отходы производства.

    дипломная работа [652,9 K], добавлен 01.11.2013

  • Физическая абсорбция газа. Абсорбция жидкого аммиака в воде. Принцип действия абсорбционных холодильных установок. Процесс дефлегмации и ректификации. Энтальпия крепкого раствора на входе в генератор. Удельная холодопроизводительность установки.

    курсовая работа [1,0 M], добавлен 02.07.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.