Цикл теплового насоса
Использование тепловым насосом в качестве источника тепла энергию из скалистых пород. Устройство и принцип действия осевых компрессоров калибров. Поршневинтовой поворотный пневмодвигатель. Регулирующая пневмоаппаратура, классификация соединения.
Рубрика | Производство и технологии |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 20.01.2014 |
Размер файла | 463,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ФГБОУ ВПО Новосибирский государственный аграрный университет
Инженерный институт
Кафедра механизации животноводства и переработки с/х продукции
Контрольная работа
по дисциплине "Тепловые насосы и пневмопривод"
Выполнил: студент гр. 3305
Ильин Сергей Анатольевич
Новосибирск 2013
Содержание
насос компрессор пневмодвигатель поршневинтовой
1. Цикл теплового насоса
2. Использование тепловым насосом в качестве источника тепла энергию из скалистых пород
3. Применение тепловых насосов в пищевой промышленности
4. Устройство и принцип действия осевых компрессоров калибров
5. Поршневинтовой поворотный пневмодвигатель
6. Регулирующая пневмоаппаратура. Классификация соединения
1. Цикл теплового насоса
В 1824 году Карно впервые использовал термодинамический цикл для описания процесса, и этот цикл остается фундаментальной основой для сравнения с ним и оценки эффективности тепловых насосов.
Тепловой насос можно рассматривать как обращенную тепловую машину. Тепловая машина получает тепло от высокотемпературного источника и сбрасывает его при низкой температуре, отдавая полезную работу. Тепловой насос требует затраты работы для получения тепла при низкой температуре и отдачи его при более высокой.
Можно легко показать, что если эти обе машины обратимы (то есть термодинамические процессы не содержат потерь тепла или работы), то существует конечный предел эффективности каждой из них, для теплового насоса оно остается в виде:
Qн/W и называется коэффициентом преобразования (КОП).
Рассмотрим на рисунке термодинамический цикл Карно,
Рис. 1 Термодинамическая схема теплового насоса и теплового двигатель
где 1 - тепловой насос; 2 - тепловой двигатель; TH - высокая температура; TL - низкая температура.
Цикл Карно на рисунке изображает рабочий процесс идеальной машины, работающей в заданном интервале температур. Стрелки показываеют направление процесса для теплового насоса. Тепло изотермически подводится при температуре TL и изотермически отводится при температуре TН. Сжатие и расширение производятся при постоянной энтропии, а работа подводится от внешнего двигателя. Используя определение энтропии и законы термодинамики, можно показать, что коэффициент преобразования для цикла Карно имеет вид:
КОП = TL/(TН -- TL) + 1 = TН/(TН -- TL).
где TH - высокая температура; TL - низкая температура.
2. Использование тепловым насосом в качестве источника тепла энергию из скалистых пород
Если в качестве источника тепла используют скалистую породу, тогда трубопровод опускают в пробуренную скважину глубиной до 200 метров. Глубина скважины зависит от потребностей дома в тепле и размеров теплового насоса. По принципу работы тепловой насос, устанавливаемый в скалистых породах, практически не отличается от того, который используется для получения тепла из грунта. В буровую скважину диаметром 10-15 см устанавливается "U"-образный трубопровод.
Рис. 2 Установление теплового насоса в скалистых породах
На 1 метр скважины приходится порядка 50-60 Вт тепловой энергии.
3. Применение тепловых насосов в пищевой промышленности
На предприятиях пищевой промышленности для реализации технологических процессов весьма часто требуется использование холодильных машин. Так, например, на многих пивоваренных заводах, мясомолочных комбинатах и заводах колбасных изделий работают весьма крупные централизованные холодильные установки. С другой стороны, в течении всего года существует большая потребность в горячей воде, применяемой для различных видов очистки. Необходимо обеспечить также и отопление помещений.
Таким образом, имеются все условия для выгодного применения тепловых насосов. Однако нам известны лишь немногие случаи их использования в этой области.
Примером может служить возможность применения тепловых насосов при одновременном использовании теплоты и холода при пастеризации жидкостей с последующим их охлаждением.
С помощью теплового насоса в водонагревателе осуществляется приготовление перегретой воды с температурой 85°С за счёт использования теплоты, выделяемой парами холодильного агента после сжатия в компрессоре; теплота, выделяющаяся при конденсации пара в конденсаторе, используется для приготовления горячей воды с температурой 45-50 °С, а за счет испарения в испарителе жидкого холодильного агента, прошедшего через дроссельный вентиль, можно получить ледяную воду (воду, охлажденную до нулевой температуры). Перегретая вода направляется для пастеризации молока в секциях 1-4 секционного пластинчатого теплообменника. Необходимый дополнительный нагрев в водонагревателе при приготовлении перегретой воды осуществляется электричеством.
С помощью этой установки можно обрабатывать 1 м3 молока в час при исходной его температуре 32,5 °С или 0,87 м3 молока в час при исходной температуре-10°С. Для пастеризации 1 т молока с исходной температурой 32,5 гр.С расходуется 28 кВт.ч электроэнергии, из них примерно 15 кВт.ч приходится на дополнительный электрический нагрев. При исходной температуре молока 10 °С удельный расход электроэнергии увеличивается до 2 кВт.ч/т. Поэтому с энергетической точки зрения целесообразно подвергать обработке молоко сразу после доения (парное молоко), т. е. монтировать установки прямо на крупных молочных фермах. Кроме того, тепловой насос обеспечивает приготовление горячей воды для хозяйственных нужд с температурой 45-50 °С при расходе 0,5 м3/ч. Если же парное молоко не подвергается пастеризации, а только охлаждается, то схему установки можно упростить. По сравнению с предыдущей схемой в этом случае не нужны пластинчатые теплообменники и водонагреватель для приготовления перегретой воды. Такие установки вполне пригодны для молочных ферм.
4. Устройство и принцип действия осевых компрессоров калибров
Осевой компрессор состоит из чередующихся подвижных лопаточных решёток ротора, состоящих из лопаток закреплённых на валу и именуемых рабочими колёсами (РК), и неподвижных лопаточных решёток статора и именуемых направляющими аппаратами (НА).
Рис. 3 Оссевой компрессор
Совокупность, состоящая из одного рабочего колеса и одного направляющего аппарата именуется ступенью. Пространство между соседними лопатками как в рабочем колесе, так и в направляющем аппарате именуется межлопаточным каналом. Межлопаточный канал в как в рабочем колесе, так и в направляющем аппарате диффузорный, то есть расширяющийся. Межлопаточный канал является расширяющимся, когда диаметр окружностей, вписанных в этот канал увеличивается при вписывании этих окружностей от передней кромки к задней. Рассмотрим на рисунке треугольники скоростей рабочего колеса иллюстрирующие сложное движение частиц воздуха. Видна диффузорность межлопаточного канала.
Рис. 4 Треугольники скоростей рабочего колеса, иллюстрирующие сложное движение частиц воздуха.
При прохождении через рабочее колесо воздух участвует в сложном движении.
Где абсолютное движение -- движение частиц воздуха относительно оси двигателя. (На рисунке обозначено буквой u).
Относительное движение -- движение частиц воздуха относительно лопаток рабочего колеса. (На рисунке обозначено буквой w).
Переносное движение -- вращение рабочего колеса относительно оси двигателя. (На рисунке обозначено буквой U).
Таким образом, когда частицы воздуха попадают в рабочее колесо со скоростью, обозначенной на рисунке вектором w1, лопатки воздействуют на частицы воздуха придавая им переносную скорость, обозначенную на рисунке вектором U. По правилу сложения векторов абсолютная скорость частиц воздуха в этот момент обозначена вектором u1.
При прохождении через рабочее колесо, за счёт диффузорности межлопаточного канала, происходит уменьшение модуля переносной скорости на выходе из рабочего колеса w2, за счёт кривизны межлопаточного канала происходит изменение направления вектора переносной скорости на выходе из рабочего колеса w2. На выходе из рабочего колеса на частицы воздуха продолжают действовать лопатки, придавая им переносную скорость, обозначенную на рисунке вектором U. По правилу сложения векторов абсолютная скорость частиц воздуха, в этот момент обозначена вектором u2, который изменяет направление и увеличивается по модулю. Таким образом в рабочем колесе происходит рост полного давления воздуха.
После рабочего колеса воздух попадает в направляющий аппарат. За счёт диффузорности межлопаточного канала происходит торможение потока, что приводит к росту статического давления. Кривизна межлопаточного канала приводит к повороту потока для получения более эффективного угла входа потока воздуха в следующее рабочее колесо.
Таким образом, ступень за ступенью, происходит повышение давления воздуха. Скорость потока в рабочем колесе растёт, в направляющем аппарате -- падает. При прохождении воздуха через компрессор растёт и его температура, что является не задачей компрессора, а отрицательным побочным эффектом. Перед входом в первое рабочее колесо может быть установлен входной направляющий аппарат (ВНА) который производит предварительный поворот потока воздуха на входе в компрессор.
5. Поршневинтовой поворотный пневмодвигатель
В конструкциях путевых и некоторых других мобильных машин существует круг задач, в которых требуется не линейное перемещение выходного звена исполнительного механизма, а поворот его на заданный угол в диапазоне от 0 до 360 градусов. Для этого применяют поворотные пневматические двигатели (пневмодвигатели), чаще всего поршневые или шиберные -- пластинчатые
Рис. 5 Поворотные пневмодвигатели
Поршневой поворотный пневмодвигатель с реечной передачей (рис. 5, а) выполняют на базе передачи "шестерня -- рейка". Шестерня 3 устанавливается на выходном валу 4, входит в зацепление со штоком-рейкой 2, который жестко связан с поршнями 1 двух разнонаправленных цилиндров одностороннего действия.
При подаче сжатого воздуха в рабочую полость одного из пневмоцилиндров поршни вместе со штоком-рейкой совершают прямолинейное движение, которое посредством реечной передачи преобразуется во вращательное (в пределах одного оборота) движение вала. Вал связан с объектом, который необходимо повернуть на некоторый угол (например, с захватным устройством промышленного робота).
Очевидно, что поршневые пневмодвигатели можно выполнить таким образом, чтобы в конце рабочего хода происходило демпфирование, а поршни были снабжены магнитными вставками с целью обеспечения возможности бесконтактного опроса их положения. В некоторых конструкциях предусматривается также регулирование угла поворота.
Максимальный крутящий момент, развиваемый поршневыми поворотными пневмодвигателями, кака правило не превышает 150 Н-м (при диаметре поршней 100 мм).
Пластинчатый (шиберный) поворотный пневмодвигатель (рис. 5, б) устроен таким образом, что сжатый воздух воздействует на жестко закрепленную на выходном валу 2 пластину 1 (шибер), расположенную внутри цилиндрической расточки 3 в корпусе 4. Чтобы предотвратить перетекание воздуха из одной рабочей полости двигателя в другую пластину выполняют с резиновым либо пластмассовым покрытием. Угол поворота шибера зависит от размеров корпусного ограничителя 5 и в стандартных конструкциях составляет 90, 180 или 270 градусов. Для установки произвольного угла поворота такие пневмодвигатели снабжают внешними передвижными упорами. Они развивают крутящий момент до 250 Н-м.
На принципиальных пневматических схемах поршневые и пластинчатые (шиберные) пневмодвигатели обозначаются одинаковыми символами (рис. 5).
Рис. 6 Условное графическое обозначение поворотных пневмодвигателей:
где а -- общее; б -- с демпфированием в конце хода
Поскольку остановка вращающейся массы без демпфирования или при наличии перегрузок создает опасность повреждения шестерни или лопасти, то, выбирая подходящий поворотный двигатель, очень важно правильно учесть моменты инерции приводимых во вращательное движение технологических объектов.
6. Регулирующая пневмоаппаратура. Классификация соединения
Регулирующая пневмоаппаратура предназначена для изменения давления и расхода сжатого воздуха путем регулирования величины открытия проходного сечения. К этой группе пневмоаппаратуры относятся: пневмодроссели, редукционные и предохранительные пневмоклапаны.
Пневмодроссели предназначены для изменения расхода путем создания местного гидравлического сопротивления потоку сжатого воздуха.
Регулируемые пневмодроссели применяют с ручным и механическим управлением. В пневмодросселях с ручным управлением расход воздуха (сопротивление пневмодросселя) устанавливают в период наладки оборудования, и он остается неизменным при рабочем цикле.
В пневмодросселях с механическим управлением (называемых также тормозными пневмодросселями) расход воздуха зависит от величины перемещения управляющего элемента (штока, ролика), определяемого обычно профилем копира или кулачка, установленного на выходном звене пневмодвигателя, или на подвижной части автоматизируемого объекта.
Нерегулируемые пневмодроссели, как правило, являются частью других устройств. Когда необходимо точно обеспечить заданную величину сопротивления, пневмодроссели выполняют в виде калиброванных отверстий в деталях простой формы типа втулок или шайб, которые при необходимости можно легко заменить.
В пневмоавтоматике, использующей устройства чалых проходных сечений ( Dу< 2 мм), широко применяют цилиндрические и щелевые пневмодроссели.
Рис. 7 Конструкция пневмодросселя
На рис.7 представлена типичная конструкция пневмодросселя. Для обеспечения плавности и точности регулирования игла пневмодросселя имеет угол конуса 10--15°, резьбу выполняют с мелким шагом и совместно с дросселирующим отверстием.
Рис. 8 Конструкция тормозного пневмодросселя.
Принцип работы пневмодросселя при торможении пневмоцилиндра заключается в следующем. Отверстия А и Б сообщаются соответственно с полостью пневмоцилиндра и с пневмораспределителем. При ненажатом ролике (как показано на рисунке) воздух из выхлопной полости цилиндра свободно проходит через зазор между проточкой золотника 1 и втулкой 4. При нажатии на ролик этот путь перекрывается, и воздух проходит к пневмораспределителю через дроссель 3. При противоположном направлении потока воздуха открывается обратный клапан 2. Основными параметрами пневмодросселя являются расходная и настроечная характеристики. Расходной характеристикой пневмодросселя называют зависимость между расходом сжатого воздуха через пневмодроссель и соотношением давлений до дросселя и после него. Переменные дроссели могут иметь каналы меньших поперечных размеров, так как их можно поднастраивать и прочищать перемещением подвижного элемента без разборки. Особенностью щелевых пневмодросселей является более высокий, чем у цилиндрических пневмодросселей, граничный перепад давления ДPгр, при котором в пневмодросселе происходит переход ламинарного режима течения в турбулентный. В этом состоит одно из преимуществ щелевых пневмодросселей, когда требуется получить ламинарный режим при сравнительно высоком значении ДP.
Список используемой литературы
1. Земсков В. И. Нетрадиционные источники энергии в агропромышленном комплексе : учеб. пособие / В. И. Земсков ; Алт. гос. аграр. ун-т. - Барнаул : Изд-во АГАУ, 2007. - 279
2. Рей Д., Макмайкл Д. Тепловые насосы. М, Энергоиздат.-1982 г., 224с.
3. Дан П. Д., Рей Д. А. Тепловые трубы: Пер. с англ. М.: Энергия, 1979.
4. Гидравлика, гидромашины и гидропнемоприводы:учеб. пособие для студ. вузов по инженерн. спец./ Т.В. Артемьева, Т.М. Лысенко, А.Н. Румянцева, С.П. Стесин; под ред. С.П. Стесина. - 2-е изд., стереотип. - М.:ACADEMIA, 2006. - 336с
Размещено на Allbest.ru
...Подобные документы
Характеристика компрессоров: одноступенчатые и многоступенчатые, стационарные и передвижные типы. Принцип работы винтового компрессора. Схема и идеальный цикл компрессора простого действия. Коэффициенты полезного действия и затрата мощности на привод.
реферат [565,5 K], добавлен 30.01.2012Особенности структуры и назначение поршневых компрессоров, их распространение и многообразие по конструктивному выполнению, схемам и компоновкам. Принцип действия бескрейцкопфного компрессора простого действия, монтаж и разборка поршневых компрессоров.
курсовая работа [1,5 M], добавлен 15.09.2008Устройство, преимущества и особенности применения поршневых насосов в промышленности. Теоретическая секундная подача объемного насоса. Определение высоты всасывания поршневого насоса. Мероприятия по технике безопасности при использовании насоса.
курсовая работа [374,6 K], добавлен 09.03.2018Основные типы насосов и гидродвигателей, их назначение, классификация и область применения. Параметры гидромашин. Устройство, принцип действия шестеренного насоса. Классификация гидродвигателей. Пластинчатые насосы однократного и двукратного действия.
презентация [344,2 K], добавлен 22.09.2009Классификация и особенности конструкций холодильных компрессоров. Процесс сжатия в поршневом компрессоре. Объемные потери компрессора и их учет. Влияние различных факторов на коэффициент подачи. Принцип действия и области применения винтовых компрессоров.
контрольная работа [41,4 K], добавлен 26.05.2014Классификация насосов по принципу действия. Устройство и принцип действия возвратно-поступательных насосов (поршневые, плунжерные, диафрагмовые, винтовые, шестеренные). Электроприводной поршневой насос, вычисление рабочего объема пластинчатого насоса.
реферат [1,1 M], добавлен 07.06.2010Основные принципы и методы диагностики. Особенности метода вибрационного контроля и акустической эмиссии. Осевые компрессоры: основные элементы, принцип действия. Краткая характеристика программы диагностики неисправностей агрегата ГПА-Ц-6,3 и ГТК-10-4.
курсовая работа [3,1 M], добавлен 02.03.2015Конструкция осевого насоса. Устройство осевого насоса и вентилятора. Рабочее колесо осевого насоса и вентилятора. Распределение параметров потока по высоте лопастей. Максимальное давление, развиваемое вентилятором. Влияние конечной высоты лопастей.
реферат [437,2 K], добавлен 15.09.2008Характеристика поршневых компрессоров: устройство, принцип действия, недостатки. Схема и действительная производительность одноступенчатого компрессора двойного действия. Строение горизонтального двухступенчатого компрессора с дифференциальным поршнем.
презентация [114,4 K], добавлен 07.08.2013Принцип работы поршневого насоса, его устройство и назначение. Технические характеристики насосов типа Д, 1Д, 2Д. Недостатки ротационных насосов. Конструкция химических однопоточных центробежных насосов со спиральным корпусом. Особенности осевых насосов.
контрольная работа [4,1 M], добавлен 20.10.2011Виды и периодичность технического обслуживания и ремонта оборудования. Расчет нужного количества смазочных материалов на год. Описание возможных дефектов. Выбор рациональной технологии восстановления трансмиссионного вала бурового насоса УНБ–600.
курсовая работа [580,1 K], добавлен 15.01.2015Принцип действия, устройство, схема вихревого насоса, его характеристики. Рабочее колесо вихревого насоса. Движение жидкости в проточных каналах. Способность к сухому всасыванию. Напор и характеристики вихревых насосов. Гидравлическая радиальная сила.
презентация [168,5 K], добавлен 14.10.2013Виды систем центрального отопления и принципы их действия. Сравнение современных систем теплоснабжения теплового гидродинамического насоса типа ТС1 и классического теплового насоса. Современные системы отопления и горячего водоснабжения в России.
реферат [353,4 K], добавлен 30.03.2011Условия работы холодильных компрессоров, их типы, принцип работы. Функции компрессора в холодильном цикле. Сравнительная характеристика компрессоров. Правила технического обслуживания и эксплуатации компрессоров, устранение характерных неисправностей.
презентация [8,4 M], добавлен 30.04.2014Назначение, основные данные, требования и характеристика бурового насоса. Устройство и принцип действия установки, правила монтажа и эксплуатации. Расчет буровых насосов и их элементов. Определение запаса прочности гидравлической части установки.
курсовая работа [6,7 M], добавлен 26.01.2013Распространение тепла от мгновенных сосредоточенных источников. Распространение тепла мгновенного линейного источника. Распространение тепла мгновенного плоского источника. Непрерывно действующие неподвижные источники теплоты. Выравнивание температур.
учебное пособие [1,0 M], добавлен 05.02.2009Классификация, устройство и принцип работы направляющей аппаратуры гидроприводов: логических клапанов, выдержки времени. Назначение и элементы уплотнительных устройств гидроприводов. Закон Архимеда. Расчет аксиально-поршневого насоса с наклонным блоком.
контрольная работа [932,3 K], добавлен 17.03.2016Понятие, классификация и область применения холодильной машины и теплового насоса - термодинамической установки, в которой теплота от низкопотенциального источника передается потребителю при более высокой температуре. Примерная схема теплоснабжения.
реферат [41,8 K], добавлен 15.03.2011Применение газов в технике: в качестве топлива; теплоносителей; рабочего тела для выполнения механической работы; среды для газового разряда. Регенераторы и рекуператоры для нагрева воздуха и газа. Использование тепла дымовых газов в котлах-утилизаторах.
контрольная работа [431,9 K], добавлен 26.03.2015Параметры воды и пара в характерных точках цикла. Количество отведенного тепла, подведенного в цикле. Расчет работы, затраченной на привод питательного насоса. Теоретические удельные расходы пара и тепла на выработку электроэнергии. Термический КПД цикла.
курсовая работа [642,1 K], добавлен 10.06.2014