Аппараты и установки для очистки газов в коксохимическом производстве
Предназначение коксохимического производства. Подавление образования вредных веществ техническими и технологическими способами. Снижение потерь и расходов сырья и топлива. Очистка газов цеха углеподготовки. Рекомендации по сокращению атмосферных выбросов.
Рубрика | Производство и технологии |
Вид | лекция |
Язык | русский |
Дата добавления | 24.01.2014 |
Размер файла | 126,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Аппараты и установки для очистки газов в
коксохимическом производстве
Содержание
Введение
1. Очистка газов цеха углеподготовки
2. Очистка газов коксового цеха
3 . Рекомендации по сокращению выбросов
Список литературы
Введение
Коксохимическое производство является источником образования вредных газообразных, жидких и твердых отходов и выбросов. Поэтому в первую очередь следует направить усилия на сокращение или подавление образования вредных веществ техническими и технологическими способами, снижать потери и расход сырья и топлива, широко практиковать повторное использование отходов производства взамен минерального сырья, использовать вторичное тепло и т. п. Это обеспечивается при строительстве коксохимических заводов вблизи шахт, когда основное количество отходов обогащения углей можно закладывать в подземные выработки. Кроме того, при кооперировании производств, например строительстве коксохимических заводов в черте металлургических предприятий, не только сокращаются пути перевозки продукции, но и появляется возможность использовать коксовый газ в доменном и других производствах, а доменный - в коксовом. Кооперирование коксохимического производства с азотно-туковым позволяет полностью использовать ценные компоненты коксового газа: водород для синтеза аммиака, этилен для получения этилбензола, дихлорэтана и др.
1. Очистка газов цеха углеподготовки
В цехе углеподготовки осуществляют такие операции, как прием и хранение угля, обогащение, шихтовка (дозирование и смешивание), окончательное измельчение; до заданной крупности, транспортировка и хранение шихты. В этом цехе в процессе подготовки угля образуется; угольная пыль, количество которой зависит от влажности и степени измельчения угля. коксохимический топливо газ углеподготовка
Значительное количество вредных газов и пыли образуется при сушке шихты. Уголь в сушильных барабанах сушат продуктами сгорания топлива, разбавленными воздухом. Температура дымовых газов при входе в сушильный барабан составляет 800°С, при входе в дымовую трубу 60--70°С. Ниже приведены величины вредных выбросов из агрегатов сушильного отделения при сушке флотоконцентратов:
Выбросы СО S02 N0x
Удельный объем газов после сушильных барабанов, м 3/т сухого концентрата 2700.
Концентрация вредных веществ в газах после сушильных барабанов, г/м 3:
-максимальная 0,25 0,55 0,07
-минимальная 0,08 0,017 0,00
-средняя 0,10 0,07 0,02
Средние удельные выбросы, г/т сухого концентрата 270 190 55.
Угли, измельченные до 3 мм, целесообразно сушить в кипящем слое топочными газами с температурой до 900° С. Удельный расход тепла при этом составляет примерно 3500 кДж/кг испаренной влаги. Температура сухой шихты около 100° С.
Рекомендуется шихту в печь загружать пневмотранспортом (по трубам с помощью пара или инертного газа). Отсос пылегазовых выбросов необходимо осуществлять дымососами, размещенными на углезагрузочных вагонах через кольцевые зазоры газораспределительных устройств с подачей их в орошаемые водой абсорберы. Для очистки выбросов от СО и органических примесей их дожигают с помощью горелочного устройства. Обеспыленные газы можно также направлять в газосборники. В табл. 13 приведены состав и количество выбросов, которые могут наблюдаться при термической подготовке шихты без использования газоочистки. Глубокая сушка шихты до влажности 1--2% обеспечивает также сокращение выхода надсмольных вод на 0,08 мэ/т кокса.
Таблица 1. Выбросы в атмосферу при загрузке коксовых печей термически подготовленной шихтой
Термоподготовка |
Удельный объем газов, выбрасываемых в атмосферу, м 3/т кокса |
Средние удельные выбросы, г/т кокса |
||||
СО |
SО 2 |
N02 |
пыль |
|||
Глубокая сушка до влажности 2 % |
1300 |
130 |
380 |
26 |
60 |
|
Термоподготовка до 250 °С С |
2500 |
250 |
750 |
50 |
90 |
Источником загрязнения окружающей среды могут быть и углеобогатительные фабрики. Обогащение углей чаще осуществляется на месте их добычи и входит в комплекс угледобывающих предприятий. В ряде случаев эту операцию выполняют на коксохимических заводах.
Обогащение углей заключается в удалении части золы, количество которой до обогащения составляет от 18 до 14%, а также серы и влаги. Содержание серы в углях для коксования не должно превышать 2%, влаги 7--9%. Сера в угле находится в виде пиритной Ре 8, сульфатной Са 8Од и связанной с органическими веществами угля связями типа К--8Н. Пиритная сера при обогащении удаляется сравнительно легко, сульфатная и органическая переходят в кокс и коксовый газ в среднем на 30-- 50%. Степень обессеривания угля, например донецкого, составляет только 15--25%. В результате обогащения получают продукты с различным составом минеральных примесей: концентрат, промежуточный продукт (сростки угля с породой) и хвосты (пустая порода).
Обогащение крупного угля на обогатительных фабриках проводят или в отсадочных машинах, или в магнетитовой суспензии, мелкого - отсадкой, а шламов - флотацией. Такие вредные примеси, как фосфор, количество которого в угле составляет 0,01--0,16%, и незначительные количества ртути, обогащением не отделяются
В доменном процессе при переводе сернистых соединений в шлак на каждые 0,1% серы затрачивается до 1,5% флюсов и кокса, что наряду с увеличением расхода сырья и топлива повышает загрязнение среды продуктами переработки этих материалов. Поэтому повышение степени удаления серы из углей для коксования является хотя и трудной, но весьма важной задачей. Этого можно достигнуть применением усовершенствованных концентрационных столов типа СКГТУ, а также СКПМб. До 35% серы можно перевести из угля в шлам при обогащении угля в тяжелых средах (растворах неорганических солей, тонких взвесях минеральных суспензий и др.). Разделение в гидроциклонах-сепараторах проходит при этом за счет плотности жидкости, большей плотности угля и меньшей, чем порода. Частицы угля всплывают, порода тонет. Схема обогащения угля типовая.
Рис.1. Схема обогащения угля
При термической подготовке шихту нагревают, до 150--250°С. Схема установки приведена на рис.1. Влажная шихта ленточным транспортером 1 и дозатором 2 подается в бункера-хранилища 3, откуда дозаторами 4 по ленточному конвейеру 5 поступает на цепной забрасыватель 6, с помощью которого шихта загружается в вертикальный сушильный агрегат - трубу 7. Сыпучий продукт подхватывается потоком восходящих газов, поступающих из топки 18, и выносится в зону отделения 8. Здесь шихта отделяется от газа-теплоносителя и выгружается через питатели 9 на скребковые конвейеры 13, которые распределяют шихту по бункерам 14. В бункера подают также азот от кислородной станции для предотвращения самовозгорания угля. Отработанный теплоноситель из отделителя вентилятором рециркуляции 19 отсасывается и подается в топку для явления горячих газов и снижения их температуры до 800--900° С. Теплоноситель получают путем сжигания коксового газа. Отработанный теплоноситель подают на двухступенчатую газоочистку, где он орошается водой в абсорберах 20 и 21. Затем обеспыленные газы через дымовую трубу поступают в атмосферу.
Для уменьшения каплеуноса скорость газов в последнем абсорбере необходимо; поддерживать на уровне 1-1,5 м/с или устанавливать каплеотделитель для дополнительной очистки газов от пыли. Шламовая вода и абсорберов стекает в сборник 22 и насосом 23 подается на разделение 25. Осветленную воду возвращают в цикл на орошение газов. Угольный шлам фильтрации и сушки используют в производстве.
Для очистки газов от пыли и химических примесей необходимо применять электрические и тканевые фильтры мокрое пылепоглощение и щелочно-абсорбционные методы очистки газов от SO2, NОx, каталитические методы дожигания СО и органических примесей.
2. Очистка газов коксового цеха
Основное количество пылегазовых выбросов в коксохимическом производстве образуется коксовыми печами. При загрузке холодной шихты в нагретую до высокой температуры печь интенсивно выделяются влага, угольная пыль и газообразные продукты. По мере повышения температуры из угля выделяются пирогенетическая влага и летучие вещества. При завершении коксования образуется примерно 73--75% твердого остатка (кокса) и до 25% летучих веществ, в том числе сернистые и азотистые соединения, непредельные и ароматические углеводороды, аммиак, цианистый водород и другие химические вещества.
Количество серы, содержащейся в идущих на коксование углях, колеблется от 0,5 до 4%.
Содержание серы в коксе в определенной мере влияет на загрязнение окружающей среды, так как при выплавке чугуна часть ее переходит из кокса в доменный газ, используемый в качестве энергетического топлива. Поэтому обогащение углей в значительной степени способствует снижению сернистости шихты, а ограничение содержания серы в коксе имеет не только технологическое значение, но и способствует уменьшению загрязнения окружающей среды. В настоящее время установлены ограничения по содержанию серы в коксе: для донецких углей 1,7--2, кузнецких 0,5, карагандинских 0,8%.
При коксовании азотсодержащие соединения из угля переходят в газ и образуют ряд химических продуктов: аммиак, синильную кислоту, МОХ, пиридин, хинолин и другие соединения, которые также загрязняют окружающую среду.
К вредным химическим примесям коксохимического производства, обладающим канцерогенными свойствами, относятся ароматические полициклические углеводороды типа бенз[а]пирена (БП), бенз[а]антрацена, дибенз[а]антрацена и др. Например, в каменноугольной смоле содержится канцерогенных углеводородов от 0,16 до 1%, а в пековых дистиллятах от 0.14 до 0,84 и достигает иногда 2,2%. Приведенные в литературных источниках данные о содержании канцерогенных полициклических ароматических углеводородов (ПАУ) в продуктах пиролиза углей изменяются в зависимости от технологических и других факторов.
Бенз[а]пирен хорошо адсорбируется на поверхности твердых частиц золы, сажи, графита, на пылинках соединений кальция и кремния, с которыми из воздуха попадает в водные бассейны и почву. Для сокращения количества канцерогенных углеводородов в первую очередь необходимо обеспечить режим полного сгорания топлива, организовать эффективный локальный отсос газов как организованных, так и неорганизованных (особенно выбросов коксовых и пекококсовых печей) с последующей их химической очисткой. При абсорбционных процессах очистки газов канцерогенные вещества практически не обезвреживаются, а лишь переводятся из газовой в жидкую фазу. При этом следует также учесть, что БП обладает высокой химической, биологической и термической устойчивостью, из-за чего его обезвреживание затруднено. Тем не менее, при воздействии ультрафиолетовых лучей БП подвергается окислительной фотодеградации в атмосферном воздухе, т. е. происходит самоочищение атмосферы.
Выбросы химических примесей дымовых газов отопительных систем коксовых батарей приведены в табл.2.
Таблица 2. Выбросы химических примесей дымовых газов отопительной системы коксовых батарей
Топливо |
Объем дымовых газов, м 3/т кокса |
Выбросы, г/т кокса |
|||
СО |
SO2 |
NOx |
|||
Коксовый газ |
1400 |
420--2240 |
840--2940 |
280-560 |
|
Доменный газ |
1750 |
875--5250 |
1 350--875 |
175-- "75 |
Таким образом, защита окружающей среды при производстве кокса является весьма сложной задачей как в техническом, так и в технологическом отношении. Данные о количественно-качественном составе вредных пылегазовых выбросов при загрузке угольной шихты и выдаче кокса приведены в табл.3. Для сокращения вредных выбросов можно рекомендовать, например, строительство коксовых батарей большой единичной мощности объемом камер 50 м 3 и более, с бездымной загрузкой шихты, беспылевой выдачей и сухим тушением кокса.
Таблица 3. Удельные выбросы вредных веществ в период загрузки коксовых печей углем и при выдаче кокса
Объем |
Удельные выбросы, г/т кокса |
|||||||||
Точки выбросов |
выбросов.з/_. |
угле- |
||||||||
м /т |
Н 2S |
NН 3 |
HCN |
С 2Н 5ОН |
водо- |
SO2 |
СО |
NOx |
||
кокса |
роды |
|||||||||
Стояки коксовой |
15 |
0,2 |
5,2 |
0,075 |
0,09 |
19 |
2,5 |
3,7 |
7,2 |
|
печи |
||||||||||
Загрузочные люки |
4,7 |
0,61 |
1,6 |
0,24 |
0,03 |
6 |
0,8 |
1,3 |
2,3 |
|
Бункера угля |
165 |
21,5 |
57 |
0,85 |
0,99 |
214 |
28 |
41 |
79 |
|
загрузочных вагонов |
||||||||||
Тушильный вагон в |
190 |
7,6 |
51 |
0,5 |
36 |
32 |
3,4 |
|||
период выдачи кокса |
||||||||||
Всего |
375 |
30 |
115 |
1,16 |
1,6 |
275 |
63 |
46 |
92 |
Пылегазовые выделения можно также уменьшить, закрыв тракты транспортирования угля и кокса кожухами, загерметизировав пылящее оборудование или организовав локальные отсосы пыли и ее очистку сухими или мокрыми методами. Уменьшить загрязнение воздуха пылью на рабочих местах, площадках и в производственных помещениях коксовых цехов можно своевременной уборкой. В настоящее время разработаны пневматический и роторный механизмы для уборки площадок коксовой батареи. Верх печи, пути коксовоза и помещения под коксосортировкой можно убирать с помощью самоходной пневмомашины. Другие помещения целесообразно убирать гидросмывом, при этом необходимо иметь отдельные лотки и шламопроводы для удаления водных суспензий с мелким шламом и крупными частицами во избежание забивания канализационной сети. Отстойники и хранилища нужно очищать от осадков механизированным способом с применением гидравлической размывки отложений.
Зачистка отложений на дверях и рамах коксовых печей обеспечивает снижение выделений газа и пыли в процессе коксования. Основным источником пылегазовых выбросов является загрузка коксовых печей угольной шихтой. Бездымная загрузка шихты с отсосом пылегазовых выбросов, например, паровой инжекцией (давление пара в форсунках 0,7--0,8 МПа и более) в газосборники резко сокращает загрязнение воздуха коксовыми батареями. Применением гидроинжекции (распылением в стояках фенольной воды под давлением 3--4 МПа) наряду с уменьшением выбросов в атмосферу можно снизить объем сточных фенольных вод. Гидроинжекция улучшает очистку газосборников от отложений, снижает температуру газов, но требует дополнительных агрегатов для отстаивания и осветления оборотной воды. При отсосе пылегазовых выбросов в газосборники смола загрязняется шламом, что требует дополнительных мер для их удаления из сборников смолы. Рекомендуется отстойники смолы оснащать механическими устройствами для уборки фусов и перерабатывать их с целью обеспечения безотходного использования.
Более перспективной может быть система отдельного отвода и очистки пылегазовых выбросов от коксовых печей. Она осуществляется посредством компактных устройств,
На рис.2 приведена схема бездымной загрузки угольной шихты с отсосом газов в газосборники. В коксовую камеру 1 при закрытых дверях 2 через загрузочные люки 3 из бункеров 4 углезагрузочного вагона 5 поочередно загружают угольную шихту. Пылегазовые выбросы отсасывают через стояки 6 паровым инжектированием (или гидроинжекцией) через сопла 7 в газосборник 8. Шихта в коксовой камере разравнивается планировочной штангой 9, оснащенной уплотняющим устройством 10. На коксовыталкивателе 11 установлена штанга 12 для выдачи кокса из печи через нжсонаправляющую 14 двересъемной машины 13 в тушильный вагон. 15. Охлажденный кокс выгружают на коксовую рампу 16 и конвейером подают на коксосортировку. Кроме передвижных газоочистных устройств, можно применять газопровод-коллектор, устанавливаемый рядом с газосборником.
Рис.2 Бездымная загрузка угольной шихты с отсосом газа в газосборники
В отдельных случаях к газосборникам можно подсоединять штуцеры-отводы для индивидуальной системы отсоса газов в газосборники, минуя стояки. Однако излишнее усложнение системы соединения газопроводов затрудняет доступ к ним, механизацию и автоматизацию процесса.
Можно применять также и другие методы и аппараты по отводу и очистке газов. Например, бездымная загрузка угольной шихты на одном из коксохимических заводов Японии совмещена с инжектированием газов в газосборник с помощью аммиачной воды. На многих коксохимических заводах ФРГ применяют бездымную загрузку с помощью \глезагрузочных вагонов с отсасыванием и очисткой пылегазовых выбросов трубами Вентури или центробежными промывателями с дожиганием газов на свече или в специальных печах перед выбросом их в атмосферу.
При применении для коксования термоподготовленной угольной шихты сокращаются время коксования и количество вредных выделений в атмосферу. Поэтому система загрузки печей угольной шихтой при 150-- 250°С, содержащей не более 2% влаги, является более перспективной. Сухая шихта хорошо растекается по печи и не требует планирования, образует меньше пылегазовых выделений. Загружать печь можно с помощью специального углезагрузочного вагона через средний люк и одновременно отсасывать газы через оба крайних люка с последующей подачей газа на индивидуальную систему очистки и дожигания горючих компонентов. Локальная аспирационно-очистительная система состоит из двухступенчатой сухой и мокрой газоочистки от пыли, вентилятора и устройства, дожигающего СО и другие органические вещества.
Система загрузки угольной шихты, отсоса и очистки газов (рис. 3) работает следующим образом. Из бункера 2 углезагрузочного вагона / уголь стекает через центральный люк 3 в печь 4. Пиролизные и дымовые газы вместе с пылью через боковые люки 5 отсасываются дымососом 6 и очищаются в сухом -7 и мокром 8 пылеуловителях. В печи-смесителе 9 дожигаются органические примеси подогревом газов до температуры не ниже 700° С путем сжигания коксового газа в горелке 10. Дымовые газы через трубу 11 выбрасывают в атмосферу. Сухие пылеуловители (циклоны) соединены общим газоходом 12. В дымосос б для коагуляции пыли подают воду из бака 13 насосом 14 в форсунки 75. Шламовую воду собирают в гидрозатворах 16 и периодически отправляет на переработку по трубопроводам. По окончании загрузки шихты отключают локальную систему отсоса, а газы через стояки 17 направляют в газосборники 18. Система несколько сложна в эксплуатации.
Рис. 3. Локальное аспирационное устройство для очистки от газов пыли и дожигания горючих компонентов при загрузке шихты
Не менее важны для защиты среды от загрязнения разработка и промышленное применение системы беспылевой выдачи кокса из коксовых печей, например, с помощью стационарных укрытий коксонаправляющей и тушильного вагона. Известна система с применением передвижных вытяжных зонтов (колпаков) и общего газохода-коллектора для отсоса газов, смонтированного вдоль коксовой батареи. Отсос и очистка газов осуществляются стационарной установкой мокрого типа.
Можно применять также системы беспылевой выдачи кокса с мокрым или сухим тушением его на передвижных устройствах, находящихся рядом с тушильным вагоном и перемещающихся вместе. За рубежом делали попытки полного укрытия коксовой стороны батареи. При этом длинная галерея оснащена мощными дымососами и газоочистками мокрого типа.
Большие количества вредных выбросов образуются при мокром тушении кокса фенольной водой. Количество канцерогенных веществ в воде составляет примерно 0,1% от наличия в воде смолистых соединений. Основная часть летучих соединений не сгорает, а с парами воды поступает в атмосферу, причем в течение 1,5-- 2,5 мин упаривается 0,4--0,5 м 3 воды на 1 т кокса. Поэтому для тушения кокса рекомендуется применять техническую или оборотную воду, очищенную от фенолов, цианидов и других веществ. Состав вредных выделений при тушении кокса приведен в табл. 4.
После кратковременного отстаивания кокс выдают на рампу, где он находится 10--20 мин. При этом вода с кокса и с рампы стекает в дренажный колодец, который периодически очищают от шлама. Затем кокс перегружают на транспортер и через перегрузочную станцию на валковый грохот коксосортировки.
При сухом тушении кокса на установках сухого тушения (УСТК) системы кокса вредные пылегазовые выбросы минимальны благодаря герметичности системы. Для получения пара используют тепло раскаленного кокса, которое можно также использовать для конверсии коксового газа с получением восстановительного газа. В этом случае CO2, С>2 и CH4 можно превратить в СО и Н 2.
Процесс сухого, тушения кокса (рис. 4) проводят по следующей схеме. Раскаленный кокс при 950--1050 °С в специальном тушильном вагоне со съемным кузовом и направляющими стойками 2 подают в шахту подъемника УСТК. Из вагона через загрузочное устройство 3 кокс выгружают в форкамеру 4, из которой он поступает в камеру тушения 5. Камера оснащена периферийными дутьевыми решетками 6, а форкамера, служащая для накопления горячего кокса, имеет кольцевой отвод 7 для циркулирующих инертных газов (продуктов сгорания кокса или коксового газа). Горячий инертный газ из камеры тушения отсасывают в пылеосадительную камеру 8 с перегородкой 9, в которой оседает крупная фракция пыли. Система утилизации тепла состоит из водотрубного котла-утилизатора 12 с водонагревателем и пароперегревателем.
Рис.4. Установка сухого сушения кокса на коксосортировку.
В котле-утилизаторе газы охлаждаются до 150--200 °С, а в циклоне 10 очищаются от мелкой пыли. Уловленную пыль через герметичный бункер 11 выгружают в контейнеры и отправляют на брикетирование. Охлажденный и обеспыленный газ газодувкой 13 подают в камеру тушения кокса. Кокс при 200-- 250° С через двойной затвор и разгрузочное устройство 14 выгружается автоматически на коксовую рампу 75 и по ленточному конвейеру 16 отправляется на коксосортировку.
Несмотря на герметичность УСТК, в нее попадает некоторое количество воздуха, что приводит к сгоранию части кокса и дополнительному образованию теплоносителя. Избыточное количество газов периодически сбрасывают в атмосферу. В этих газах обычно содержится около 20 % СО и более, поэтому их обезвреживают сжиганием на свече, оснащенной автоматическим зажигающим устройством, сблокированным с механизмом сброса избытка газов на УСТК. Производительность УСТК до 1200-т кокса в сутки. Конечная температура кокса перед выдачей на рампу не должна превышать 250° С во избежание самовозгорания. Коксовая рампа должна быть механизирована и работать в непрерывном режиме приема и выгрузки кокса на конвейеры, подающие кокс.
Применение сухого тушения кокса позволяет не только резко сократить пыле-гжэовые выбросы, но и уменьшить тепловые выбросы в атмосферу. При сухом тушении 6. т кокса с использованием тепла можно сэкономить тепло, эквивалентное более 200т. угля, и получить пар давлением 2,2 МПа с температурой перегрева 450° С. Затраты производстве такого пара в два раза ниже, чем на ТЭЦ. На 1 т кокса можно около 0,5 т пара выше приведенных параметров.
Завершающей стадией производства кокса является его разделение на классы. При этом вместе с парами воды может выделяться определенная часть пылевидных частиц кокса. Для предотвращения этого на всем пути транспортирования кокса, особенно в местах перевалок, создают специальные укрытия. Конвейеры оснащают виброжелобами для отделения пыли, грохоты укрывают кожухами и оснащают локальными вытяжными устройствами с очисткой выбрасываемого воздуха от пыли. При хорошем техническом состоянии транспортного хозяйства и герметичности систем, удовлетворительной работе вентиляционных установок и циклонов-пылеуловителей унос пыли в атмосферу незначителен. Другие вредные примеси в атмосферу на коксосортировках и при транспортировании кокса, как правило, не выделяются. Так же загрязнение окружающей среды предотвращается при производстве литейного кокса.
Особое место как источник загрязнения окружающей среды в коксохимии занимает пекококсовое производство. Пылегазовые выбросы пекококсового производства обладают высокой токсичностью. Подготовка пековой смолы к коксованию и производство пекового кокса являются основными источниками выбросов веществ с канцерогенными свойствами. Уменьшить эти выбросы можно герметизацией аппаратов и газопроводов, устройством локальных систем отсоса газовых выбросов и их очисткой от химических примесей, разработкой непрерывных процессов окисления и коксования пековой смолы и др. В существующих камерных пекококсовых печах целесообразно внедрить системы отсоса и очистки выбросов, загрузки смолы и выдачи кокса, аналогичные системам, разрабатываемым и применяемым на коксовых печах. Обезвредить выбросы можно, установив системы термокаталитического дожигания с использованием тепла. Выбросы пекококсовых печей необходимо также направлять в газопровод прямого коксового газа. Выбросы из воздушников хранилищ, сборников и других емкостей, содержащих жидкие продукты и выделяющие в атмосферу летучие углеводороды, необходимо направлять в общий газоход с поглощением их, например, поглотительным маслом или обезвреживать термокаталитическим дожиганием, а также направлять в топки котлов.
В настоящее время отсутствует достаточно полная и точная характеристика пылегазовых выбросов коксохимического производства, а имеющиеся сведения требуют уточнения и дополнения. Это обусловлено наличием, большого числа мелких источников выбросов, в том числе неорганизованных, необходимостью определения состава сложных смесей газов, периодичностью и непостоянством концентрации примесей выбросов и др.
3. Рекомендации по сокращению выбросов
Основное количество вредных веществ в коксохимическом производстве выделяется при загрузке камер коксования угольной шихты при выдаче и тушении кокса, при переработке химических продуктов сгорания. Для уменьшения загрязнения воздушного бассейна выбросами коксохимического производства необходимо:
осуществлять бездымную загрузку коксовых печей с применением пароинжекции или гидроинжекции, или оборудовать углезагрукзочные вагоны локальным отсосом и системой очистки газов;
совершенствовать методы беспылевой выдачи кокса;
внедрять термическую подготовку шихты с эффективным пылеулавливанием;
своевременно ремонтировать коксовые батареи;
устранять неорганизованные выбросы газов через неплотности загрузочных люков, крышек стояков и дверей коксовых печей;
по возможности осуществлять сухое тушение кокса;
внедрить технологию производства кокса непрерывным методом;
объединить по группам в коллекторы воздушки от аппаратов и хранилищ с одинаковыми продуктами с последующей очисткой выделяющихся газов,
использовать резервуары с плавающими крышками, экранами, мембранами, микрошариками, пеной, эмульсиями и т.д.;
исключать выбросы из градирни конечного охлаждения коксового газа;
полностью утилизировать, образующиеся твердые и жидкие отходы производства;
оборудовать места погрузочно-разгрузочных работ площадками с бортами и отводами жидкостей в емкости, а ливневых вод - в фенольную канализацию через контрольные сборники.
Список литературы
1. Старк С.Б. Газоочистные аппараты и установки в металлургическом производстве. М.: Металлургия, 1990. - 400 с.
2. Очистка технологических газов в черной металлургии. Толочко А.И., Филиппов В.И., Филипьев О.В. М.: Металлургия, 1982. -280 с.
З. Пылегазовые выбросы предприятий черной металлургии. Андоньев С.М., Зайцев Ю.С., Филипьев О.В. Харьков, 1998. - 320 с.
4. 3ащита окружающей среды в коксохимической промышленности, сборник статей под ред. Соколова В.З. М.: Металлургия, 1983. - 72 с.
5. Юдашкин М.Я. Пылеулавливание и очистка газов в черной металлургии. М.: Металлургия, 1984. - 320 с.
6. Осипенко В.Д., Васильченко Н.М. Наладка и эксплуатация газоочистного оборудования в черной металлургии. М.: Металлургия, 1983. - 144 с.
Размещено на Allbest.ru
...Подобные документы
Классификация методов и аппаратов для обезвреживания газовых выбросов. Каталитическая очистка газов: суть метода. Конструкция каталитических реакторов. Технологическая схема установки каталитического обезвреживания отходящих газов в производстве клеенки.
курсовая работа [1,7 M], добавлен 12.06.2011Расчет необходимой степени очистки промышленных газов и массы веществ. Разработка вариантов схемы и выбор наиболее рациональной. Выбор пылегазоочистного оборудования и сущность механизмов очистки газов. Расчет платы за выбросы загрязняющих веществ.
курсовая работа [965,7 K], добавлен 10.12.2010Теоретические основы абсорбции. Растворы газов в жидкостях. Обзор и характеристика абсорбционных методов очистки отходящих газов от примесей кислого характера, оценка их преимуществ и недостатков. Технологический расчет аппаратов по очистке газов.
курсовая работа [834,6 K], добавлен 02.04.2015Гравитационная очистка газов, пылеосадительные камеры. Очистка газов под действием инерционных и центробежных сил. Очистка газов фильтрованием, мокрая и электрическая. Основные размеры и схема пенного газопромывателя, предназначенного для очистки от пыли.
курсовая работа [1,8 M], добавлен 02.12.2010Состояние экологической безопасности мартеновского производства, источники образования и выход отходов производства. Технология управления, обеспыливание отходящих мартеновских газов, аппараты и схемы очистки газов. Организация и технология производства.
дипломная работа [180,5 K], добавлен 30.05.2010Суть технологических процессов газоочистки, виды и свойства катализаторов. Принцип действия каталитической очистки промышленных выбросов электронной промышленности. Способ каталитической очистки высокотемпературных отходящих газов от смолистых веществ.
курсовая работа [522,2 K], добавлен 29.09.2011Организация машинного производства. Методы очистки технологических и вентиляционных выбросов от взвешенных частиц пыли или тумана. Расчет аппаратов очистки газов. Аэродинамический расчет газового тракта. Подбор дымососа и рассеивание холодного выброса.
курсовая работа [1,5 M], добавлен 07.09.2012Методы очистки промышленных газов от сероводорода: технологические схемы и аппаратура, преимущества и недостатки. Поверхностные и пленочные, насадочные, барботажные, распыливающие абсорберы. Технологическая схема очистки коксового газа от сероводорода.
курсовая работа [108,5 K], добавлен 11.01.2011Подготовка газов к переработке, очистка их от механических смесей. Разделение газовых смесей, низкотемпературная их ректификация и конденсация. Технологическая схема газофракционной установки. Специфика переработки газов газоконденсатных месторождений.
дипломная работа [628,4 K], добавлен 06.02.2014Система менеджмента качества Новокузнецкого алюминиевого завода. Образование газов при электролитическом производстве алюминия. Особенности технологии сухой очистки отходящих газов, типы реакторов, устройства для улавливания фторированного глинозема.
отчет по практике [523,3 K], добавлен 19.07.2015Классификация углеводородных газов. Процесс очистки газов от механических примесей. Осушка газа от воды гликолями. Технология удаление сероводорода и углекислого газа. Физико-химические свойства абсорбентов. Процесс извлечения тяжелых углеводородов.
презентация [3,6 M], добавлен 26.06.2014Расчет горения топлива и температуры газов после воздухоподогревателя. Определение теплоемкости компонентов уходящих газов. Нахождение кинематической вязкости и коэффициента теплоотдачи внутри труб. Подсчет потерь давления при движении дымовых газов.
курсовая работа [2,5 M], добавлен 21.12.2021Источники образования газообразных радиоактивных отходов, их характеристика. Технологии очистки ГРО: рассеивание радиоактивных загрязнений в атмосфере, очистка воздушных выбросов фильтрационным и осадительными методами. Промышленные системы газоочистки.
курсовая работа [1,2 M], добавлен 29.05.2014Система термической очистки газовых выбросов при использовании в качестве топлива природного газа. Обоснование и выбор системы очистки с энергосберегающим эффектом. Разработка и расчет традиционной системы каталитической очистки от горючих выбросов.
курсовая работа [852,0 K], добавлен 23.06.2015Осветление и охлаждение охмеленного сусла. Определение потенциального содержания алкоголя в пиве. Рассмотрение основного химического состава пива. Полное и неполное сжигание топлива. Основные методы очистки отходящих газов от газообразных компонентов.
курсовая работа [2,0 M], добавлен 22.06.2022Описание абсорбционных, каталитических, термических методов очистки отходящих газов. Физико-химические свойства Н-бутанола и бензола. Расчет адсорбера системы ВТР периодического действия с неподвижным слоем адсорбента для улавливания паров н-бутанола.
курсовая работа [174,5 K], добавлен 16.12.2012Описание процесса подготовки твердого топлива для камерного сжигания. Создание технологической схемы производства энергии и тепла. Проведение расчетов материального и теплового баланса котлоагрегата. Методы очистки дымовых газов от оксидов серы и азота.
курсовая работа [871,2 K], добавлен 16.04.2014Описание технологической схемы установки утилизации теплоты отходящих газов технологической печи. Расчет процесса горения, состав топлива и средние удельные теплоемкости газов. Расчет теплового баланса печи и ее КПД. Оборудование котла-утилизатора.
курсовая работа [160,1 K], добавлен 07.10.2010Характеристика и назначение аммиачной селитры. Технологическая схема производства аммиачной селитры. Параметры топочных газов, подаваемых в сушильную установку. Расчет параметров отработанных газов, расхода сушильного агента, тепла и топлива на сушку.
курсовая работа [1,6 M], добавлен 19.02.2023Требования и основные характеристики сжиженных газов. Характеристика исходного сырья, реагентов и продуктов. Описание технологического процесса и технологической схемы ректификации сжиженных углеводородных газов. Определение температуры ввода сырья.
курсовая работа [125,3 K], добавлен 19.02.2014