Проектирование токарного станка с числовым программным управлением

Область применения и технологическая характеристика токарного станка с числовым программным управлением. Назначение и принцип действия узлов и механизмов станка. Обоснование выбора конструкции. Расчет режимов резания, привода, поликлинового редуктора.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 31.01.2014
Размер файла 497,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Введение

Важнейшим достижением научно-технического прогресса является комплексная автоматизация промышленного производства. В своей высшей форме - гибком автоматизированном производстве - автоматизация предполагает функционирование многочисленных взаимосвязанных технических средств на основе программного управления и групповой автоматизации производства. В связи с созданием и использованием гибких производственных комплексов механической обработки резанием особое значение приобретают станки с числовым программным управлением (ЧПУ).

В результате замены универсального неавтоматизированного оборудования станками с ЧПУ трудоемкость изготовления деталей оказалось возможным сократить в несколько раз (до 5 - в зависимости от вида обработки и конструктивных особенностей обрабатываемых заготовок).

В условиях мелкосерийного производства обычно применяются заготовки низкой точности, получаемые литьем в землю, свободной ковкой, из проката. Для эффективного использования станков с ЧПУ при получении деталей с высокими требованиями к их точности и шероховатости необходимо создавать станки высокой точности и шероховатости.

При проектировании станков с ЧПУ конструкторы решают задачи достижения максимальной производительности, высокой точности и надежности. Наибольшее влияние на особенности конструктивного исполнения станков оказывают те решения, которые направлены на повышение производительности за счет сокращения всех составляющих затрат рабочего времени: вспомогательного, основного, подготовительно-заключительного и времени обслуживания рабочего места.

Сокращение времени, которое затрачивается на установку, закрепление заготовки, снятие обработанной детали может быть достигнуто тремя способами:

- использованием быстродействующей оснастки;

- созданием удобных условий загрузки станка;

- совмещением времени обработки со временем загрузки-разгрузки.

Сокращение времени холостых действий явилось следствием решения многих сложных конструктивных задач. В современных танках скорость перемещения рабочих органов доведена до 10-12 м/мин. Одновременно в приводах подач расширен диапазон регулирования, возросла способность работать с перегрузками, сокращено время разгона и торможения.

Основное (машинное) время может быть сокращено, если на станке выполняют резание высоким и оптимальным режимами (скоростью резания, глубиной, подачей).

Станок для реализации такого резания должен иметь высокие силовые и скоростные характеристики привода главного движения; высокие жесткость и виброустойчивость; способность изменять по программе в широких пределах, лучше всего бесступенчато, скорость шпинделя и подачу. Точность станков повышают в результате специальных конструктивных решений и более точного исполнения механической части станка. В наивысшей степени достижению точности способствует оснащение станков устройствами обратной связи.

Ряд характерных черт в конструкции станков с ЧПУ (повышенная жесткость, отсутствие зазоров в кинематических цепях, трогание рабочих узлов с места, равномерность медленных перемещений) достигается благодаря особому исполнению шпиндельных узлов, направляющих исполнительных устройств, приводов подач, соединительных муфт. Широко применяются такие механизмы как гидростатические узлы: гидростатические направляющие, гидростатические опоры шпинделя, гидростатические пары винт-гайка.

Применение данных узлов позволяет существенно повысить точность станка, его долговечность и надежность. Это происходит за счет того, что в гидростатических узлах практически отсутствует трение, а значит и износ. Плавность перемещения узлов существенно повышается за счет отсутствия в гидростатических узлах трения покоя. Гидростатические опоры шпинделя позволяют снизить отклонения поверхностей изготавливаемых деталей от круглости, прямолинейности, соосности и т.д.

Данный дипломный проект ставит своей целью проектирование токарного станка с ЧПУ повышенной точности с гидростатическими опорами шпинделя.

1. Технологическая часть

1.1 Характеристика заготовки

Рис. 1. Заготовка

Заготовкой для муфты является трубный прокат. Материал заготовки - Сталь 30ХГСА - легированная хромомартанцовистокремнивая. Ее характеристики:

Обрабатываемая деталь относится к телам вращения. Поверхность резьбы должна быть гладкой без заусенцев, рванин и других дефектов, нарушающих непрерывность резьбы и прочность соединения.

Эти требования обеспечиваются применением качественного инструмента, оптимальных режимов обработки и охлаждающей жидкости, а так же качественной заготовкой.

1.2 Характеристика детали

Обрабатываемая на данном станке деталь достаточно технологична:

1. обеспечена возможность нормального входа и выхода режущего инструмента из зоны резания, что предохраняет инструмент от поломки и 2. повышает производительность;

3. возможность хорошего визуального контроля и технических измерений в процессе обработки;

4. резьба выполняется на внутренней поверхности;

5. все обрабатываемые поверхности находятся в легкодоступных местах.

Расчет режимов резания

При назначении элементов режимов резания учитывают характер обработки, тип и размеры инструмента, материал его режущей части, материал и состояние заготовки, тип и состояние оборудования.

Элементы режима резания обычно устанавливают в порядке, указанном ниже:

1) Глубина резания t: при черновой (предварительной) обработке назначают по возможности максимальную глубину, равную всему припуску на обработку или большей его части; при чистовой (окончательной) обработке - в зависимости от требований точности размеров и шероховатости обработанной поверхности;

2) Подача S: при черновой обработке выбирают максимально возможную подачу, исходя из жесткости системы СПИД, мощности привода станка, прочности твердосплавной пластинки и других ограничивающих факторов; при чистовой обработке - в зависимости от требуемой степени точности и шероховатости обработанной поверхности;

3) Скорость резания V рассчитывают по эмпирическим формулам, параметры которых устанавливаются в зависимости от конкретного вида обработки;

4) Под силой резания пронимают ее составляющие Pz, Px, Py.

Расчет

Расчет ведем по [20, стр246].

Определяем скорость резания

, [м/мин],

где

- коэффициент обрабатываемости стали, МПа,

nм, Kпv - коэффициент учитывающий влияние материала заготовки;

Kиv - коэффициент учитывающий влияние материала инструмента;

Kv - коэффициент учитывающий влияние углов в плане;

Krv - коэффициент учитывающий влияние радиуса при вершине;

Cv - постоянная;

m; x; y - показатели степени.

Определяем силы резания

, [Н],

где ,

, МПа,

n - показатель степени, Kмp;

Кр; Кр; Кр; Кrp - коэффициенты, учитывающие влияние геометрических параметров режущей части инструмента на составляющие силы резания;

Cp - постоянная;

x; y; n - показатели степени.

, [Н],

, [Н],

Определяем мощность резания

, [кВт].

Основное (технологическое) время обработки детали

;

где L= - расчетная длина рабочего хода инструмента, мм;

l - длина обрабатываемой поверхности, мм;

- величина врезания инструмента, мм;

- величина перебега инструмента, мм; n - частота вращения шпинделя, об/мин;

- подача на оборот шпинделя, мм/об;

I - число проходов инструмента.

Для расчета была написана программа в Microsoft Excel. Результаты сведены в таблицы.

2 переход: подрезка торца в размер 218 мм.

Исходные данные:

Обрабатываемый материал: Сталь 30ХГСА.

Вид обработки: подрезка торца.

Материал режущей части: Т15К6.

Стойкость инструмента: Т=90 мин.

Таблица 1

Режимы резания (2 переход)

840

Мпа

Ср

300

L=

31

мм

Сv

476

t

1

мм

I=

2

T

90

мин

s

0,6

мм/об

To=

0,33

мин

t

1

мм

v

216,1

м/мин

S

0,6

мм/об

кp

1,3

m

0,2

x

1

x

0,15

y

0,75

y

0,45

n

-0,15

кmv

0,71

кmp

1,09

кnv

0,9

1,10

киv

1,15

1,25

1,2

1,00

кv

0,89

0,87

кr

0,8

Pz

1189,3

Н

nv

1

Px

356,8

H

V

216,1

м/мин

Py

594,6

H

D

221,3

мм

N

4,2

кВт

n

311

об/мин

3 переход: черновое растачивание отверстия до 215 мм.

Исходные данные:

Обрабатываемый материал: Сталь 30ХГСА.

Вид обработки: растачивание отверстия.

Материал режущей части: Т15К6.

Стойкость инструмента: Т=90 мин.

Таблица 2

Режимы резания (3 переход)

840

Мпа

Ср

300

L=

111

мм

Сv

476

t

2

мм

I=

6

T

90

Мин

s

0,5

мм/об

To=

4,38

мин

t

2

Мм

v

211,4

м/мин

S

0,5

мм/об

кp

1,3

m

0,2

x

1

x

0,15

y

0,75

y

0,45

n

-0,15

кmv

0,71

кmp

1,09

кnv

0,9

1,10

киv

1,15

1,25

1,2

1,00

кv

0,89

0,87

кr

0,8

Pz

2081,4

Н

nv

1

Px

624,4

H

V

211,4

м/мин

Py

1040,7

H

D

221,3

Мм

N

7,2

кВт

n

304

об/мин

4 переход: чистовое растачивание отверстия до 217 мм.

Исходные данные:

Обрабатываемый материал: Сталь 30ХГСА.

Вид обработки: растачивание отверстия.

Материал режущей части: Т15К6.

Стойкость инструмента: Т=90 мин.

Таблица 3

Режимы резания (4 переход)

840

Мпа

Ср

300

L=

111

мм

Сv

476

t

0,5

мм

I=

7

T

90

Мин

s

0,8

мм/об

To=

3,21

мин

t

0,5

Мм

v

210,6

м/мин

S

0,8

мм/об

кp

1,3

m

0,2

x

1

x

0,15

y

0,75

y

0,45

n

-0,15

кmv

0,71

кmp

1,09

кnv

0,9

1,10

киv

1,15

1,25

1,2

1,00

кv

0,89

0,87

кr

0,8

Pz

740,7

Н

nv

1

Px

222,2

H

V

210,6

м/мин

Py

370,3

H

D

221,3

Мм

N

2,5

кВт

n

303

об/мин

5 переход: черновое нарезание резьбы.

Исходные данные:

Обрабатываемый материал: Сталь 30ХГСА.

Вид обработки: нарезание резьбы.

Материал режущей части: Т15К6.

Стойкость инструмента: Т=90 мин.

Таблица 4

Режимы резания (5 переход)

840

Мпа

Ср

300

L=

111

мм

Сv

476

t

0,5

мм

I=

3

T

90

Мин

s

5,08

мм/об

To=

0,85

мин

t

0,5

Мм

v

53,5

м/мин

S

5,08

мм/об

кp

1,1

m

0,2

x

1

x

0,15

y

0,75

y

0,45

n

-0,15

кmv

0,71

кmp

1,09

кnv

0,9

0,89

киv

1,15

1,25

0,7

1,00

кv

0,52

0,87

кr

0,8

Pz

2944,4

Н

nv

1

Px

883,3

H

V

53,5

м/мин

Py

1472,2

H

D

221,3

Мм

N

2,6

кВт

n

77

об/мин

6 переход: чистовое нарезание резьбы.

Обрабатываемый материал: Сталь 30ХГСА.

Вид обработки: нарезание резьбы.

Материал режущей части: Т15К6.

Стойкость инструмента: Т=90 мин.

Таблица 5

Режимы резания (6 переход)

840

Мпа

Ср

300

L=

111

мм

Сv

476

t

0,1

мм

I=

1

T

90

мин

s

5,08

мм/об

To=

0,22

мин

t

0,1

Мм

v

68,1

м/мин

S

5,08

мм/об

кp

1,1

m

0,2

x

1

x

0,15

y

0,75

y

0,45

n

-0,15

кmv

0,71

кmp

1,09

кnv

0,9

0,89

киv

1,15

1,25

0,7

1,00

кv

0,52

0,87

кr

0,8

Pz

5670,9

Н

nv

1

Px

1701,3

H

V

68,1

м/мин

Py

2835,5

H

D

221

Мм

N

6,3

кВт

n

98

об/мин

Затем производится второй установ, и переходы повторяются.

2. Конструкторская часть

2.1 Назначение и область применения, технологические возможности проектируемого оборудования

Специальный токарный станок с ЧПУ, спроектированный на базе станка модели РТ735Ф3 предназначен для обработки деталей трубных соединений, муфт, ниппелей, переходников и переводников. Он может быть использован в серийном производстве в цехах машиностроительных заводов и других отраслях промышленности.

На станке возможны следующие виды обработки: наружное точение, расточка, торцовка, нарезка конической резьбы внутренней и наружной по ГОСТ 631-63; 632-64; 633-63. На станке можно обрабатывать заготовки из проката и штамповки.

Марка материала инструмента Т15К6 (станок предназначен для обработки инструментом фирмы «Coramant»), виды инструмента: пластины, гребенки.

Таблица 6

Режимы резания

Вид обработки

Наружное точение

Расточка

Нарезка резьбы

Диаметр обработки

D, мм

350

120

320

90

320

120

Ширина резания (шаг резьбы)

T, мм

4

4

4

4

6,35; 5,08; 3,175

Подача

S, мм/об

0,2

0,2

0,2

0,2

0,1-толщина слоя

Скорость резания

V, м/мин

80/200

80/200

80/200

Частота вращения

N, об/мин

72/181

212/531

79,6/199

283/707

79,6/199

212/398

Класс точности станка - П по ГОСТ 8-77

2.2 Описание, назначение и принцип действия основных узлов и механизмов станка

Вращение изделия

От электродвигателя постоянного тока, расположенного с задней стороны бабки изделия, через клиновые ремни и приводной шкив, передающий движение первому валу бабки изделия шпиндель получает вращение.

Станина

Станина станка изготовлена из двух частей. Каждая часть имеет продольные и поперечные ребра, обеспечивающие станине необходимую жесткость.

Верхняя часть крепится к нижней болтами и фиксируется штифтами.

Станина имеет две плоские накладные направляющие прямоугольной формы, между которыми расположен ходовой винт, осуществляющий подачи каретки.

Накладные направляющие изготовлены стальными и закалены.

В нижнем корпусе станины имеется внутренняя емкость, служащая резервуаром для сбора и размещения СОЖ.

С правого торца станины установлен выдвижной транспортер стружки и смонтирована станция подачи охлаждающей жидкости.

Электродвигатель главного привода с подмоторной плитой установлен на фундамент с задней стороны станины. Натяжение ремней осуществляется с помощью специального винта.

Ограждение

Ограждение предназначено для защиты работающих от стружки, брызг охлаждающей жидкости и закрывает вращающиеся части главного привода.

Зона обработки защищена двумя подвижными кожухами, в которых имеются специальные окна для наблюдения за процессом обработки и освещения зоны резания.

На правом подвижном щитке расположен пульт управления, а также имеется специальное окно для механизма загрузки.

Пара винтовая продольных подач

Пара винтовая продольных подач предназначена для продольного перемещения каретки станка и включает в себя шариковую винтовую пару и две опоры. Обе подобны по конструкции и включают в себя корпус, два упорных подшипника, радиальный подшипник, комплект тарельчатых пружин и устройства регулировки натяга тарельчатых пружин.

Применение упорных подшипников в сочетании с устройством предварительной их затяжки обеспечивает получение высокой жесткости опор и винтовой пары в целом.

Левая пара используется для крепления привода продольной передачи.

Конструкция гайки винтовой пары позволяет производить регулировку зазора.

Бабка передняя

Механизм бабки передней предназначен для передачи вращения от двигателя к шпинделю, а также для крепления изделия в патроне.

Корпус бабки установлен на левой головной части станины.

Поворот корпуса осуществляется при помощи установочных распорных винтов, которые установлены в кронштейне, закрепленном на левом торце станины станка.

Выбор необходимых оборотов шпинделя осуществляется автоматически по программе.

Смазка механизмов бабки передней осуществляется от централизованной системы смазки. Масло по трубопроводу поступает к маслораспределителю в корпусе бабки, и далее к точкам смазки и маслоуказателю.

Упоры управления

Упоры управления предназначены для подачи сигналов по пути от подвижных органов станка - каретки и ползушки по координатам Z и X.

В комплект упоров по каждой координате входит планка с пазами, упоры и электропереключатели. По координате Z на станине установлена метрическая линейка, а на каретке - указатель.

По координате X планка с пазами крепится к ползушке, электроконтактный переключатель установлен неподвижно на каретке.

По координате Z линейка с пазами закреплена к станине неподвижно, электороконтактный переключатель перемещается вместе с кареткой.

Для определения положения каретки относительно нулевой точки на планке по координате Z установлен флажок, который замыкает бесконтактный выключатель при переходе нулевой точки вправо. Замкнутый конечный выключатель блокирует кнопку возврата каретки в нулевую точку по оси Z. Для возврата каретки в нулевую точку по оси Z необходимо возвратить ее в ручном режиме в левую зону от упора нулевого положения. После этого можно нажатием кнопки переместить каретку в нулевую точку по оси Z.

Привод поперечных подач

Привод поперечных подач располагается на верхней стенке каретки и включает в себя переходной фланец, соединительную предохранительную муфту и электродвигатель.

Пара винтовая поперечных подач

Пара винтовая поперечных подач (63*10) предназначена для перемещения поперечного верхнего суппорта и базируется в корпусе каретки.

Верхняя опора включает в себя два упорных подшипника, игольчатый подшипник, тарельчатую пружину и устройство регулировки натяга тарельчатой пружины.

Нижняя опора включает один радиальный шарикоподшипник.

Конструкция гайки позволяет производить регулировку зазора в винтовой паре.

На нижнем конце винта имеется квадрат под ключ для вращения винта вручную.

Смазка винтовой пары и ее опор централизованная от станции смазки.

Центратор

Центратор предназначен для центрирования заготовки относительно оси шпинделя и подачи ее в патрон. По окончании обработки центратор захватывает деталь в патроне и подает ее в разгрузочный лоток механизма загрузки.

Центратор содержит корпус, в котором расположен механизм центрирования заготовки.

Центрирование (зажим) производится по внутреннему диаметру заготовки перемещением плунжеров от тарельчатых пружин. Разжим заготовки осуществляется пневмоцилиндром.

Центратор расположен на резцовой головке и работает в автоматическом цикле.

Головка резцовая

На станке установлена 6-и позиционная резцовая головка с осью, перпендикулярной оси шпинделя.

Резцовая головка предназначена для закрепления инструментальных оправок и центратора.

Головка содержит корпус, выполненный в виде полого стакана и промежуточного основания, на котором крепятся и устанавливаются сменные инструментальные оправки, центратор, фиксирующее устройство, механизм поворота и зажимы резцов головки, командоаппарат, электрически связанный с системой управления. Для гашения ударов при повороте и фиксации в головке предусмотрено демпфирующее устройство.

Фиксирующее устройство резцовой головки содержит две полумуфты с круговым зубом.

Одна из полумуфт жестко закреплена на основании, а другая прикреплена к корпусу.

Для предварительной фиксации головка снабжена шестью упорами одностороннего действия.

Механизм поворота смонтирован на центральном валу, жестко связанном со стаканом и основанием. Поворот резцовой головки осуществляется от встроенного электродвигателя через дифференциальный механизм. Зажим головки осуществляется через трапециидальный 3-х заходный винт.

Камандоаппарат головки содержит семь микропереключателей, из которых шесть служат для подачи команды электродвигателю на реверс, а седьмой для контроля зажима головки в необходимый позиции.

Поворот головки из исходного положения в заданное осуществляется посредством включения электродвигателя по программе или переключателем на пульте управления (при настройке).

Движение от электродвигателя через дифференциальный механизм и промежуточные передачи передается винтовой паре механизма зажима. При вращении винтовой пары корпус головки поднимается и расцепляется с полумуфтой сцепления, закрепленной на основании. После расцепления головка поворачивается до заданного положения, контролируемого одним из шести микропереключателей. При срабатывании одного из микропереключателей дается команда на реверс электродвигателя и соответственно корпуса резцовой головки.

Корпус головки поворачивается до жесткого упора и затем зажимается в заданном положении, что контролируется микропереключателем.

Конструкция резцовой головки предусматривает производить настройку, поворот и зажим ее вручную. Для этого на валу дифференциального механизма предусмотрен квадрат под ключ.

В основании головки подается СОЖ, которая через каналы корпус подается в инструментальные блоки и далее на резец в зону резания.

Смазка трущихся поверхностей головки осуществляется консистентной смазкой.

Блоки инструментальные

В комплект инструментальных блоков входят оправки трех наименований:

1. оправки расточные;

2. оправки резьбовые;

3. оправки торцовые.

Оправки расточные и резьбовые рассчитаны для обработки изделий трех типоразмеров.

Приспособление для выставки инструмента

Приспособление для выставки инструмента выполнено на базе прибора БВ-2010 и предназначено для размерной настройки вне станка режущего инструмента в оправках по заданным размерам в двух горизонтальных координатах.

Выставка режущей кромки инструмента по вертикали осуществляется за счет смещения объектива до резного изображения в приборе.

Приспособление поставляется с подставками для крепления и выставки режущего инструмента.

Каретка

Каретка предназначена для обеспечения перемещения режущего инструмента в продольном и поперечном направлениях. Устанавливается на направляющих станины. Удерживается каретка относительно направляющих планками, прикрепленными к плоскости корпуса каретки.

На верхней части плоскости каретки выполнены две вертикальные направляющие качения под верхний суппорт, которые выполнены в виде накладных стальных закаленных пластинок, жестко прикрепленных к корпусу каретки.

В качестве элементов качения приняты танкетки, две из которых жестко прикреплены к верхнему суппорту, а две другие выполнены подпружинными. Верхний суппорт относительно направляющих удерживается привертными планками.

Защита от попадания стружки и охлаждающей жидкости на направляющие верхнего суппорта обеспечивается щитками, прикрепленными к верхнему торцу верхнего суппорта. Дополнительно на торцах верхнего суппорта установлены войлочные и резиновые уплотнения.

Защита направляющих станины под каретку осуществляется посредством скребков, войлочных и резиновых уплотнений.

Для защиты винта продольной подачи к торцам корпуса каретки прикреплены щитки. Левый щиток заходит под шпиндельную бабку и закрывает винт на всей длине хода каретки.

Смазка направляющих станины под каретку, направляющих под верхний суппорт осуществляется от станции централизованной дозаторной смазки. Для этой цели в корпусе каретки и верхнем суппорте выполнены маслопроводы, соединенные между собой и станцией централизованной смазки гибкими шлангами через дозаторы.

Каретка является несущим узлом для ряда узлов и деталей.

На верхней части каретки смонтированы: коробка конечных переключателей, направляющие под верхний суппорт, винт поперечной подачи, верхний суппорт. На верхнем торце корпуса каретки прикреплен кронштейн электропроводки, механизм поперечной подачи и др.

Нижняя плоскость корпуса каретки слева используется для крепления гайки винта продольной подачи.

Для монтажа электропроводки в корпусе каретки предусмотрены отверстия, пазы и выемки.

На верхнем суппорте смонтированы резцовая головка и поперечные упоры, а так же трубопровод подачи охлаждающей жидкости, смазки, подвод электрики и пневматики.

Привод продольных подач

Привод продольных подач располагается с левого торца станины и крепится к передней опоре винта продольной подачи. Привод включает в себя переходный фланец, соединительную предохранительную муфту и электродвигатель.

Соединительная предохранительная муфта включает в себя две втулки, жестко соединенные соответственно с валом электродвигателя и концом винта, направляющую втулку, два стянутых болтами диска и срезной штифт. Наличие фрикционной связи в сочетании со срезным штифтом, обеспечивает беззазорное сочленение втулок при работе с номинальными нагрузками и отключение привода при больших нагрузках.

Охлаждение

Охлаждение предназначено для подачи охлаждающей жидкости на режущий инструмент в зоне резания и включает в себя гидробак с насосом, механизм подводки к верхнему суппорту каретки и подвижную систему трубопроводов на верхнем суппорте.

Гидробак с насосом располагаются с правого торца станины. Подводка охлаждающей жидкости к каретке и верхнему суппорту осуществляется посредством гибких шлангов, расположенных в защитных кожухах. Подача СОЖ производится к шестипозиционной резцовой головке, и через распределитель в шпиндель передней бабки.

Патрон поворотный

Патрон поворотный предназначен для закрепления заготовки и ее поворота после обработки одного из концов без раскрепления.

По своей конструкции патрон представляет собой стальной цилиндрический корпус с ребрами жесткости и окнами, в котором смонтирована поворотная часть с клиновым механизмом зажима.

Поворотная часть от гидравлических цилиндров при помощи реечного зацепления поворачивается на 180о.

Механизм зажима заготовки выполнен двухрядным с шестью кулачками в каждом ряду с гидравлическим приводом.

Для зажима заготовок различных диаметров в кулачки патрона устанавливаются сменные вставки.

Работа патрона осуществляется как в автоматическом цикле по заданной программе, так и в ручном с пульта управления.

Электротрубомонтаж

Электротрубомонтаж по станку ведется в нише станины. Электропроводка к каретке осуществляется посредством гибких шлангов.

Пульт ЧПУ устанавливается спереди станка в левой стороне и соединяется со станком гибкими связями, что позволяет устанавливать пульт ЧПУ в зависимости от конкретных условий.

2.3 Техническая характеристика гидрооборудования и системы смазки

Таблица 7

Техническая характеристика

Наименование параметров

Данные

Марка масла, заливаемого в станцию гидропривода и станцию механизма уравновешивания

Масло турбинное - 22 ГОСТ 32-74

Марка масла, заливаемого в централизованную циркуляционную станцию смазки

Марка масла, заливаемого в централизованную импульсную станцию смазки

Масло ВНИИ НП-401 ГОСТ 11058-64

Тип станции гидропривода и станции механизма уравновешивания

- рабочее давление станции гидропривода, кгс/см2

- рабочее давление станции механизма уравновешивания, кг/см2

- максимальная производительность станции гидропривода и станции механизма уравновешивания, л/мин

Г48-83

10…45

10…30

26

2.4 Техническое описание УЧПУ 2Р22

Назначение

Устройство числового программного управления 2Р22 предназначено для управления металлообрабатывающими станками.

По защищенности от воздействия окружающей среды, устройство предназначено для работы в механических цехах машиностроительных заводов в стационарных условиях.

Технические данные

По виду обработки геометрической информации устройство является контурно-позиционным с жёстким заданием алгоритмов управления на базе микро-ЭВМ «Электроника МС 1201.02».

Устройство обеспечивает одновременное управление с круговой и линейной интерполяцией по двум координатам,

Устройство обеспечивает одновременное управление по трём координатам (тип формообразования определяется программным обеспечением).

Устройство обеспечивает нарезание резьбы на конических и цилиндрических поверхностях.

Устройство обеспечивает задание следующих режимов работы с клавиатуры пульта управления:

- автоматический ввод;

- покадровый ввод;

- ввод констант;

- ввод внешних носителей информации;

- поиск кадра;

- ручное управление;

- фиксированное положение;

- выход в исходное положение;

- вывод на внешний носитель информации.

Устройство обеспечивает ввод информации:

- с пульта устройства управления;

- с фотосчитывающего устройства;

- с кассетного накопителя на магнитной ленте «Искра 005-33» (в дальнейшем КНМЛ);

- с ЭВМ высшего ранга.

Устройство обеспечивает вывод информации:

- на блок отображения символьной информации (БОСИ);

- на перфоратор ПЛ-150М;

- на КНМЛ «Искра 005-33»;

- на ЭВМ высшего ранга.

Устройство обеспечивает выдачу сигналов аналоговых напряжений 10 вольт постоянного тока для управления приводами подачи.

Параметры ЦАП:

- диапазон преобразований - 10000;

- погрешности преобразования в диапазоне от 0 до 1 мВ не более 50%;

- погрешности преобразования в диапазоне от 1 до 5 мВ не более 10%;

- погрешности преобразования в диапазоне от 5 до 10 мВ не более 3%.

Устройство в зависимости от ПО обеспечивает приём аналоговых сигналов напряжением 10 В постоянного тока для цепи адаптивного управления.

Параметры АЦП:

- диапазон преобразования 1024;

- погрешности преобразования в диапазоне от 0 до 78 мВ не более 2%;

- погрешности преобразования в диапазоне от 78мВ до 10В не более %;

Устройство обеспечивает хранение пр...


Подобные документы

  • Проектирование токарного станка с числовым программным управлением повышенной точности с гидростатическими опорами шпинделя, его назначение и область применения. Расчет параметров резания. Расчет затрат на производство и определение его эффективности.

    дипломная работа [445,8 K], добавлен 08.03.2010

  • Проектирование привода главного движения токарно-винторезного станка. Модернизация станка с числовым программным управлением для обработки детали "вал". Расчет технических характеристик станка. Расчеты зубчатых передач, валов, шпинделя, подшипников.

    курсовая работа [576,6 K], добавлен 09.03.2013

  • Расчет реверсивного комплектного автоматического электропривода и обоснование замены устаревшей программы управления на станке с числовым программным управлением. Осуществление проверки работоспособности модернизированного электрооборудования станка.

    дипломная работа [2,0 M], добавлен 05.09.2014

  • Виды и назначение токарных станков. Технология обработки заготовок, сложных и точных деталей больших и малых габаритов. Станки с числовым программным управлением. Устройство токарного станка по точению древесины, инструменты. Наладка и настройка станка.

    презентация [12,6 M], добавлен 17.04.2015

  • Электропривод с двигателем постоянного тока с независимым возбуждением. Построение в MatLab релейной схемы управления двигателем, регулирование по скорости. Сравнительный анализ разработанных систем управления станка с числовым программным управлением.

    курсовая работа [732,0 K], добавлен 08.07.2012

  • Выбор электродвигателя и определение числа зубъев передач. Подбор материала и термообработки зубчатых колес. Расчет на прочность элементов привода. Определение клиноременной передачи и действительных частот вращения шпинделя. Проверка шлицевых соединений.

    курсовая работа [151,7 K], добавлен 10.02.2015

  • Общая структура, обоснование применения и классификация систем числового программного управления. Назначение постпроцессоров и разработка системы подготовки обработки детали станка. Алгоритм работы программного модуля и его технологическая реализация.

    дипломная работа [3,7 M], добавлен 11.10.2010

  • Назначение и область применения горизонтально-фрезерного станка модели 6П80Г. Название основных узлов и органов управления станка, принцип его работы. Структурная и кинематическая схема станка, его наладка, эскиз фрезерования плоской поверхности.

    контрольная работа [5,3 M], добавлен 27.12.2012

  • Определение технических параметров токарного гидрокопировального станка модели 1722. Методы образования производящих линий при обработке на данном станке. Схема рабочей зоны станка. Расчет направляющих и режимов резания. Разработка смазочной системы.

    курсовая работа [2,5 M], добавлен 16.01.2015

  • Служебное назначение станка. Расчет режимов резания, валов, зубчатой и клиноременной передач. Выбор электродвигателя. Разработка кинематической структуры станка. Определение числа скоростей привода главного движения. Проектирование шпиндельного узла.

    курсовая работа [911,9 K], добавлен 15.04.2015

  • Стандартная система координат станка с числовым программным управлением. Направления стандартной системы координат различных видов станков. Методика и условные обозначения осей координат и направлений перемещений на схемах агрегатных станков с ЧПУ.

    реферат [1,7 M], добавлен 21.05.2010

  • Группы и типы станков с числовым программным управлением, их отличительные признаки и сферы применения, функциональные особенности. Классификация станков по точности, по технологическим признакам и возможностям, их буквенное обозначение на схемах.

    реферат [506,2 K], добавлен 21.05.2010

  • Проектирование установки для проведения заводских аттестационных испытаний станка с ЧПУ на точность позиционирования линейных осей. ТЗ на разработку испытательного стенда, описание методики. Изучение оптической схемы работы интерферометра Кёстерса.

    курсовая работа [612,5 K], добавлен 14.12.2010

  • Технические характеристики, точность и долговечность фрезерных станков. Расчет предельных режимов обработки на станке. Основные преимущества станков. Разработка кинематической схемы привода главного движения. Расчетные нагрузки для привода станка.

    курсовая работа [2,6 M], добавлен 12.12.2011

  • Общие сведения о станках с числовым программным управлением. Классификация станков по технологическому назначению и функциональным возможностям, их устройство. Оснастка и инструмент для многоцелевых станков. Технологические циклы вариантов обработки.

    презентация [267,7 K], добавлен 29.11.2013

  • Технологическая подготовка управляющей программы для обработки детали на станке с устройством числового программного управления НЦ-31. Эскиз заготовки и обоснование метода её получения. Кодирование режимов обработки и математическая подготовка программы.

    курсовая работа [439,5 K], добавлен 19.10.2014

  • Техническая характеристика токарного станка модели 165. Разработка конструкции расточной головки, устройства для нарезания конической резьбы, опор передней и задней, предохранительной муфты. Выбор заготовки, расчет режима резания и нормы времени.

    дипломная работа [193,3 K], добавлен 27.10.2017

  • Описание конструкции станка 1720ПФ30 и ее назначение, технические характеристики, и кинематическая схема. Выбор основных геометрических параметров коробки скоростей. Расчет режимов резания и определение передаточных чисел. Расчет шпиндельного узла.

    курсовая работа [360,7 K], добавлен 13.06.2015

  • Описание гидравлической схемы и расчетный проект гидропривода многоцелевого сверлильно-фрезерно-расточного станка с ЧПУ. Выбор элементов гидропривода: рабочая жидкость и давление. Подбор гидромотора, трубопроводов и гидроаппаратуры. КПД гидропривода.

    курсовая работа [254,4 K], добавлен 08.02.2011

  • Существенные преимущества использования станков с числовым программным управлением. Главные недостатки аналоговых программоносителей. Языки программирования обработки заготовок на станках. Исследование циклов нарезания резьбы и торцевой обработки.

    диссертация [2,9 M], добавлен 02.11.2021

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.