Электропривод и автоматизация главного привода специального вальцетокарного станка модели IK 825 Ф2

Разработка высокоточной системы стабилизации мощности резания вальцетокарного калибровочного станка, обеспечивающая низкую чувствительность к параметрическим возмущениям. Изучение синтезированной высокоточной системы на математической аналоговой модели.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 05.02.2014
Размер файла 243,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

С2зт = 1 * 167 = 167 грн (7.14)

Кроме тарифной заработной платы в полную сумму выплат входят:

премии (20% от тарифной ставки);

дополнительная заработная плата (10% от тарифной ставки);

другие доплаты (10% тарифной заработной платы).

В целом все доплаты составляют 40% от тарифной заработной платы.

Сумма полных выплат по базовому варианту составит:

С1зп = С1зт * 1.40 = 205 *1.40 = 287 грн (7.15)

Сумма полных выплат по новому варианту составит:

С2зп = С2зт * 1.4 = 167 *1.4 = 233.8 грн (7.16)

Затраты на материалы и комплектующие изделия составляют:

при капитальном ремонте -- 50% тарифной заработной платы;

при среднем ремонте -- 35% тарифной заработной платы;

при текущем ремонте -- 15% тарифной заработной платы.

Для базового варианта затраты на материалы составляют:

С1м = 205 * (0.5 + 2 * 0.35 + 15 * 0.15) = 488.17 грн (7.17)

Для нового варианта затраты на материалы составляют:

С2м = 167 * (0.5 + 2 * 0.35 + 15 * 0.15) = 397.67 грн (7.18)

Цеховые и общезаводские расходы принимаем 80% от тарифной заработной платы. Для базового варианта они составят:

С1об = 205 * 0.8 = 164 грн (7.19)

Для нового варианта цеховые и общезаводские расходы составят:

С2об = 167 * 0.8 = 133.6 грн (7.20)

7.4 Расчет прочих расходов

В смете годовых эксплуатационных расходов прочие расходы принимаются в размере 1% от суммы капитальных вложений.

Для базового варианта прочие расходы составят:

С1пр = 0.01 * 132476.4 = 1324.8 грн (7.21)

Для нового варианта прочие расходы составят:

С1пр = 0.01 * 114452.4 = 1144.5 грн (7.22)

Для анализа эксплуатационных расходов составим Таблицу 7.5.

Таблица 7.5. - Эксплуатационные расходы

Наименование расходов

базовый

вариант

новый

вариант

Амортизация, грн

8114.00

7010.40

Затраты на электроэнергию, грн

82473.00

79044.00

Заработная плата, грн

4697.00

4043.80

Затраты на материалы, грн

488.17

397.67

Цеховые и общезаводские затраты, грн

164.00

133.60

Прочие расходы, грн

1413.00

1220.00

Итого - эксплуатационные расходы, грн

97349.17

91850.17

7.5 Расчет эффективности проектируемой системы

Поскольку мы рассчитываем эффективность новой системы при внедрении, то необходимо сравнивать капитальные затраты, капитальные вложения и эксплуатационные расходы используя относительные показатели и относя проектируемый вариант к базовому.

Для сравнения капитальных вложений используем относительную экономию капитальных вложений, которая рассчитывается по следующей формуле:

(7.23)

При сравнении эксплуатационных затрат используем показатель относительной экономии (уменьшения) затрат:

(7.24)

Как видно по результатам вычислений, новая система электропривода эффективнее базовой. Экономия капитальных вложений объясняется тем, что установочная мощность новой системы меньше базовой. Однако снижение эксплуатационных расходов получилось незначительным, поскольку новая система загружена больше, чем базовая, что влечет за собой повышение потребления электроэнергии и более дорогие ремонты (затраты на ремонты нового оборудования меньше затрат на ремонт базового оборудования, но незначительно, смотри табл.7.5.).

На основании вышеприведенного можно увидеть, что экономически обосновано, что, выбирая двигатели и тиристорные преобразователи новой серии, можно добиться экономии как капитальных затрат, так и эксплуатационных расходов.

8. Охрана труда

По условиям эксплуатации электропривода механизма специального вальцетокарного калибровочного станка модели IK 825 Ф2, согласно [12] разделен на части. Электродвигатель главного привода расположен непосредственно возле станка (в соответствии с кинематической схемой). Тиристорный преобразователь находится на некотором удалении от станка. Управление электроприводом осуществляется оператором с пульта управления.

Двигатель постоянного тока мощностью 70 кВт закреплен на фундаменте и является стационарной установкой, питающейся от тиристорного преобразователя через двухпроводную сеть постоянного напряжения 220 В.

Двигатель установлен в пыльном, влажном, грязном помещении вальцетокарной мастерской, относящемуся к особо опасным с точки зрения поражения электрическим током.

Точение металла связано с выбросом металлической стружки высокой температуры, раскаленного масла, помещение характеризуется категорией B по пожарной опасности.

Тиристорный преобразователь включает трансформатор мощностью 143 кBA и сам тиристорный преобразователь мощностью 92 кВт, питающегося от трехрпроводной сети переменного тока напряжения 380 B промышленной частоты 50 Гц, расположен в непосредственной близости от станка.

Вальцетокарная мастерская относится к пожароопасным помещениям с пожароопасными зонами класса П III, в которых обращаются горючие жидкости (масла) с температурой вспышки 61-С и твердые горючие вещества. Потенциальные опасности, связанные с технологическим процессом по [14], создают:

- наличие раскаленных материалов;

- наличие движущихся частей машин и механизмов в вальцетокарной мастерской;

- наличие шумов и вибраций.

- К движущимся частям и механизмам относятся:

- шпиндель вальцетокарного станка;

- вращающиеся валы механических передач;

- движущиеся по вальцетокарной мастерской краны и транспортеры.

Опасность существует непрерывно во время работы станка.

Последствия возможного воздействия этой опасности на обслуживающий персонал - механические травмы, при получении которых возможна частичная или полная утрата трудоспособности, смертельный исход. К раскаленным предметам и материалам относят резец и заготовку, которые в процессе резания могут достигать температуры 500 -С. При воздействии этих факторов на человека возможно получение ожогов и механических травм, а также, как следствие, временная утрата трудоспособности. Шум, возникающий при работе цеха, широкополосный постоянный и при длительном воздействии на человека приводит к развитию профессиональных заболеваний, связанных с потерей слуха, приводящей к утрате работоспособности. Вибрации возникают при вхождении резца в металл и выходе из него, при чрезмерно больших подачах, и также приводят к профессиональным заболеваниям.

8.1 Параметры микроклимата

Помещение вальцетокарной мастерской относят к помещениям со значительным избытком явного тепла, и, следовательно, допустимые нормы температуры, относительной влажности, скорости движения воздуха в теплый период года составляют 25-С при влажности 70% и скорости воздуха - 0.7 м/с, в холодный и переходный периоды года понижение температуры должно быть не ниже 10-С вне постоянных мест работы, а на рабочих местах для холодного и переходного периодов температура должна составлять 18-С при относительной влажности 60% и скорости воздуха - 0.3 м/с.

В рабочей зоне механизма присутствуют следующие вредные вещества: медно-графитовая пыль, пыль оксидов железа, серы, углерода.

Источниками медно-графитовой пыли являются коллекторные пластины электрических машин, а пыли оксидов серы, железа, углерода - получаемые в процессе резания металла мелкие частицы.

В кабине операторов присутствуют такие вредные вещества, как оксид углерода, оксид серы, пыль оксида железа.

Углекислый газ образуется в результате дыхания самого оператора, а также в результате выжигания углерода им металла в процессе резания.

Оксид серы образуется в результате выжигания серы из металла в процессе резания.

Количества оксидов углерода и серы, получаемые в результате выжигания этих веществ из металлов, пренебрежимо малы. Кроме того, в вальцетокарной мастерской имеется мощная система вытяжной вентиляции.

Воздействия вредных факторов на работающих заключается в попадании пыли в дыхательные пути и легкие организма человека, засорение пор кожи и ухудшение теплообменных свойств организма с окружающей средой.

Воздействие углекислого газа проявляется в затруднении дыхания и увеличении ритма работы сердца.

Предельно допустимые концентрации:

- медно - графитовой пыли 4.0 мг/м3; кл. оп. 4;

- оксида железа (Fe2O3) 6.0 мг/м3; кл. оп. 4;

- диоксида углерода (СO2) 20.0 мг/м3; кл. оп. 4;

- оксида серы (SO3) 0.5 мг/м3; кл. оп. 4.

Рабочее освещение вальцетокарной мастерской - искусственное и естественное, аварийное - искусственное. Искусственное освещение в обоих случаях общее, обеспеченное светильниками, размещенными в верхней части вальцетокарной мастерской (верхней зоне) равномерно.

В кабине операторов рабочее освещение общее, обеспеченное светильниками с люминесцентными лампами, расположенными в верхней части кабины. Эвакуационное освещение - искусственное, общее.

Контрастность объектов в вальцетокарной мастерской большая (0.5 - K - 0.2).

Разряд зрительной работы в вальцетокарной мастерской - VI, к которому относят рассматривание предметов более 5 мм.

Норма освещенности равна 200 лК, а коэффициент естественного освещения при совместном освещении - 1.8 до III пояса.

Наименьшая освещенность рабочей поверхности производственных помещений и территорий предприятия, требующих обслуживания при аварийных режимах составляет 5% от освещенности, нормируемой для рабочих помещений при системе общего освещения, но не менее 2 лК.

Норма звукового давления для оператора составляет 65 дБ при частоте шума выше 1000 Гц - высокие частоты.

8.2 Мероприятия по электробезопасности проектируемой электроустановки

Согласно [13] должны быть предусмотрены следующие меро-приятия по обеспечению электробезопасности электроустановки:

- режим контроля питающей сети;

- защита от случайного проникновения к токоведущим частям электроустановки;

- контроль и профилактика повреждений изоляции;

- заземление;

- защитное отключение;

- применение защитных средств;

- организационные и технические мероприятия.

Сеть между двигателем и тиристорным преобразователем является двухпроводной с изолированными проводами. Это необходимо по техническим соображениям и независимо от опасности поражения электрическим током применяется именно эта схема.

Питание тиристорного преобразователя серии КТЭУ осуществляется от распределительной шины 380В через разделительный трансформатор, распределительная шина расположена вдоль стены на высоте 3 м на изоляторах. Ошиновка подключена к масляному выключателю, с другой стороны к которому прикреплены провода, питающие тиристорный преобразователь. Кабель уложен в подземный бетонированный кабельный канал, накрытый сверху рифлеными листами железа. Края каналов закреплены металлическими заземленными уголками.

Тиристорный преобразователь помещен в металлический шкаф, в котором также размещен разделительный трансформатор. Двери шкафа и ограждения оснащены блокировкой, которая обеспечивает отключение масляного выключателя при открывании дверей ограждения или шкафа. Для снятия блокировки кроме закрытия дверей необходимо нажать кнопку “Пуск”.

Подвод питания к электродвигателю осуществляется с помощью кабеля, уложенного в подземный кабельный канал.

Кабеля для питания тиристорного преобразователя и двигателя - бронированные для защиты от возможных механических повреждений.

Контроль изоляции цепи 380В осуществляется периодически при отключенной установке. При этом измеряется сопротивление изоляции отдельных участков сети, трансформаторов, электрических аппаратов, двигателя. Измеряются сопротивление каждой фазы относительно земли защитным аппаратом.

Нормальным сопротивлением изоляции кабеля ниже 1000В считается 0.5 МОм, измерения производятся мегомметром на напряжение 1000 В.

Контроль изоляции сети между двигателем и тиристорным преобразователем, а также сети напряжением 380В осуществляется постоянно, так как повреждение и пробой изоляции приводит к возникновению повышенной опасности поражения человека электрическим током. Контроль осуществляется прибором ПКИ, схема которого приведена на Рис.8.1. Отсчет сопротивления изоляции производят по шкале прибора. При снижении сопротивления изоляции до предельно допустимого уровня 0.25 МОм прибор подает звуковой и световой сигналы.

Сопротивление изоляции двигателя и тиристорного преобразователя составляют 0.5 МОм в нормальном состоянии, трансформатора - 1.5 МОм, и измеряется мегомметром на 500 В и 1000 В.

Защитное отключение обеспечивает отключение установки при возникновении аварийных режимов.

Контроль напряжения на корпусе трансформатора, преобразователя, двигателя осуществляется с помощью схемы, реагирующей на напряжение корпуса относительно земли (см. Рис.8.2). В схемах этого типа датчиком служит реле напряжения РЗ, включенное между корпусом и вспомогательным заземлителем. Схема осуществляет защиту от глухих замыканий на землю и пригодна в сетях с изолированной и заземленной нейтралью. Достоинством схемы является ее простота. Недостатки - необходимость применять вспомогательный заземлитель, неселективность при общем заземлении и отсутствие самоконтроля.

Для контроля напряжения фазы относительно земли используют схему, приведенную на Рис.8.3. Датчики включены между фазами и землей и измеряют напряжение фаз относительно земли, близкие в номинальном режиме к фазовым напряжениям источника питания. При повреждении изоляции фазы напряжение этой фазы относительно земли уменьшится. Если напряжение этой фазы окажется ниже уставки, то сеть отключается. Отключение произойдет и при обрыве цепи любого реле. Таким образом осуществляется самоконтроль.

Достоинством схемы является четкое срабатывание при глухом замыкании на землю независимо от сопротивления изоляции и емкости сети, а также самоконтроль схемы.

Недостаток - применение большого числа реле.

Для защиты преобразователя от режима короткого замыкания в кабельной линии, питающей двигатель, в КТЭУ применен автоматический выключатель, разрывающий цепь при замыкании любой из линий на землю или между собой.

При срабатывании любой из перечисленных защит обеспечена световая сигнализация, свидетельствующая о неисправности той или иной части установки.

В помещении, где эксплуатируется проектируемая установка, используются искусственные заземление:

- вертикальные забитые стальные трубы - 60 мм и длиной 2.5м;

- горизонтальные укрепленные стальные полосы площадью сечения Sсеч = 50 мм2.

Сопротивление заземляющего устройства не более 4 Ом.

Электродвигатель, тиристорный преобразователь, трансформатор заземлены. Для этого соответствующие болты заземления подключены к контуру заземления медным проводом сечением не менее 2.5 мм2. Сопротивление вертикального заземлителя (трубы) определим по формуле:

где - - удельное сопротивление грунта, Ом*см;

lт - длина трубы, см;

d - наружный диаметр трубы, см;

h - глубина заложения трубы, см.

Задаемся следующими значениями параметров:

- = 400 Ом*см;

lт = 300 см;

d = 6 см;

h = 280 см.

Тогда:

Организационные мероприятия по обеспечению безопасности производства работ в электроустановках являются следующие:

оформление работы нарядом или распоряжением;

оформление в наряде допуска к работе;

надзор во время работы;

оформление в наряде окончания работы;

закрытие наряда.

Техническими мероприятиями по обеспечению безопасности работ являются:

отключение ремонтируемого электрооборудования и принятие мер против ошибочного его включения;

установка временных ограждений токоведущих частей и вывешивание запрещающих плакатов “Не включать - работают люди” или “Не включать - работы на линии”;

присоединение переносного заземления к заземляющей шине стационарного заземляющего устройства и проверка отсутствия напряжения на токоведущих частях, которые для безопасности производства работ подлежат замыканию накоротко и заземлению;

наложение переносных заземлений на отключенные токоведущие части электропривода сразу после проверки отсутствия напряжения или включение специальных заземляющих разъединителей;

ограждение рабочего места и вывешивание на ограждении разрешающую надпись: “Работать здесь”.

Эти технические мероприятия выполняет допущенный к работе из числа оперативного ремонтного персонала с квалификационной группой не ниже III по разрешению лица, отдающего распоряжение на производство работ.

Право выдачи нарядов и распоряжений на производство работ в электроустановках представляется лицам электротехнического персонала вальцетокарной мастерской (начальнику мастерской, начальнику эксплуатации или мастеру), уполномоченным на это специальными распоряжениями главного энергетика комбината. Эти лица должны иметь квалификационную группу не ниже IV.

Для предотвращения аварий работы по срочному устранению неисправностей выполняются оперативно - ремонтным персоналом без наряда.

Безопасность работы в электроустановках обеспечивается применением электротехнических средств защиты.

При работе с электрическими цепями напряжением до 1000В применяются следующие основные защитные средства: диэлектрические перчатки; измерительные оперативные штанги; электроизмерительные клещи; указатели напряжения; слесарно - монтажный инструмент.

К дополнительным защитным средствам в электроустановках ниже 1000В относят галоши, резиновые коврики, изолирующие подставки.

Все электротехнические защитные средства периодически проходят проверку и на них указывается срок безопасного применения.

Для предотвращения возникновения пожара в помещении предусмотрена электрическая пожарная сигнализация, состоящая из извещающих датчиков, установленных в помещении вальцетокарной мастерской. Для быстрой ликвидации очагов загорания используются огнетушители типа ОХП-4 и ОУ-2А, которые располагаются в непосредственной близости от станка. Для предотвращения возможного возгорания в опасных зонах вальцетокарной мастерской оболочки электрических аппаратов, приборов, шкафов, сборок выполнены со степенью защиты IP44. Также используются ряд других первичных средств пожаротушения, таких как песок, ломы, багры, ведра, находящиеся на пожарных щитах или возле них.

Организационные мероприятия по пожарной профилактике проводят с целью обеспечения правильной эксплуатации электроустановки и проведения противопожарного инструктажа среди оперативно - ремонтного персонала. Комплектные тиристорные электроприводы серии КТЭУ предназначены для работы в закрытых помещениях при отсутствии непосредственного воздействия солнечной радиации, агрессивных сред, с концентрацией токопроводящей пыли не более 0.7 мг/м3. Здание вальцетокарной мастерской в большей степени обеспечивает относительно чистую, сухую и изолированную площадь для установки такого рода электрооборудования.

Помещение для постоянного пребывания обслуживающего персонала комфортабельное, с кондиционируемым воздухом. Это помещение построено с соблюдением строительных норм и правил СНИП II-12-77 и предусматривает защиту акустическим методом от работающего электрооборудования главного привода специального вальцетокарного станка модели IK 825 Ф2, а также от оборудования других механизмов.

Проход между электроприводом и стеной здания вальцетокарной мастерской или рядом установленным агрегатом составляет не менее 0.6 м (так как установка имеет высоту более 1 м). Для создания благоприятного микроклимата в помещении оператора предусмотрено кондиционирование воздуха. Для предотвращения попадания персонала под вращающиеся механические части оборудования станка пространство вокруг станка ограждено металлической сеткой с ячейкой 25х25 мм.

Заключение

В ходе данного проекта была рассчитана максимально возможная мощность резания на вальцетокарном калибровочном станке модели IK 825 Ф2 и определен необходимый уровень ее стабилизации.

Исходя из требуемой мощности был выбран двигатель новой серии 4ПН с хорошими динамическими и статическими свойствами. Выбранный двигатель был проверен по нагреву с учетом пуско-тормозных режимов двигателя и учетом времени обработки одного валка.

Была рассчитана система стабилизации мощности резания на требуемом уровне. Рассчитанная система всесторонне исследовалась с помощью пакета МАСС.

После подведения результата исследований можно сделать следующие выводы:

- статизм по скорости системы при разомкнутой обратной связи по мощности, то есть пока мощность не выходит за уровень стабилизации, составляет при номинальной нагрузке 1.7 1/с, что составляет 2.16% от скорости холостого хода, что обеспечивается не только контурами регулирования тока и скорости, но и хорошими статическими свойствами самого двигателя;

- погрешность при стабилизации мощности при самом тяжелом варианте, когда теоретическая мощность резания превышает на 15% уровень стабилизации мощности (то есть при обработке вязкого материала с большими подачами) составляет 1178 Вт или 1,96% от уровня стабилизации, что вполне можно считать удовлетворительной работой системы;

- время переходного процесса пуска ввиду применения ПИ-регулятора тока уменьшилось по сравнению с расчетным с 2.0 с до 0.9 с в моделируемой системе, то есть снизилось на 55%, что позволяет уменьшить время обработки одного валка;

- перерегулирования по току составляют при самом тяжелом режиме 5.1%;

- перерегулирования по скорости составляют при самом тяжелом режиме 4.98%;

- перерегулирования по мощности составляют при самом тяжелом режиме 4.6%.

Также была рассчитана экономическая эффективность предлагаемой системы по сравнению с имеющейся в настоящее время на станке и некоторые экономические параметры, затраты на ремонт, общецеховые расходы и прочее.

Для обеспечения безопасности и удобства работы персонала были проработаны некоторые вопросы охраны труда, такие как параметры микроклимата и электробезопасность проектируемой установки.

Перечень ссылок

1. Справочник технолога машиностроителя. В 2х томах. Издание перераб. и доп. Под ред. А. Г. Косиловой. -- М. Машиностроение, 1988г.

2. Комплектные тиристорные электроприводы: Справочник / И. Х. Евзеров, А. С. Горобец, Б. И. Мошкович и др. Под ред.

3. В.М. Перельмутера. -- М.: Энергоатомиздат, 1998г. -- 319с., ил.

4. Фишбейн В.Г. Расчет систем подчиненного регулирования вентильного электропривода постоянного тока. -- М.: Энергия, 1972г. -- 134с., ил.

5. Справочник по автоматизированному электроприводу / Под ред. В. А. Елисеева и А. В. Шинянского. -- М.: Энергоатомиздат. 1983г. -- 616с., ил.

6. Вибір елементів реверсивних тиристорних перетворювачів електроприводів постійного струму. / В.Т. Пiлецький. -- К.: IСДО, 1994г.

7. Крановое электрооборудование: Справочник / Ю. В. Алексеев, А. П. Богословский, Е. М. Певзнер и др.; Под ред. А. А. Рабиновича. -- М. Энергия, 1979г. -- 240 с. ил.

8. Соколов Н.Г. Основы конструирования электроприводов. -- М.: Энергия, 1971г. -- 256 с., ил.

9. Башарин Н.К., Новиков В.А., Соколовский Г.Г. Управление электроприводами: Учебное пособие для вузов. -- Л.: Энергоиздат, 1982г. -- 392с., ил.

10. Шапарев Н.К. Расчет автоматизированных электроприводов систем управления металлообработкой: Учеб. пособие. -- 2е изд., перераб. и доп. -- К.: Лыбидь, 1992г. -- 272с., ил.

11. Капунцов Ю.Д., Елисеев В.А., Ильяшенко А.А. Электрооборудование и электропривод промышленных установок: Учебник для вузов / Под ред. проф. М. М. Соколова. -- М.: Высш. школа, 1979г. -- 359с., ил.

12. Сандлер А.С. Электропривод и автоматизация металлорежущих станков. Учеб. пособие для вузов. -- М.: Высш. школа, 1972г. -- 440с.

13. Долин П.А. Основы техники безопасности в электроустановках: Учеб. пособие для вузов. -- М.: Энергия,1979г. -- 408с., ил.

14. Правила технической эксплуатации электроустановок потребителей и правила техники безопасности при эксплуатации электроустановок потребителей.

15. Технологическая инструкция полунепрерывного стана 600. -- Алчевск, 1980 г.

16. Руководство по эксплуатации. Станок вальцетокарный калибровочный специальный. Модель IК 825 Ф2. -- Краматорск, 1986г.

17. Атаев Д.И., Болотников В.А. Аналоговые интегральные микросхемы для бытовой радиоаппаратуры: Справочник. 2-е издание -- М.: Изд-во МЭИ, ПКФ «Печатное дело», 1992 г. -- 240 с., ил.

Речь на защите дипломного проекта специалиста

Тема дипломного проекта -- электропривод и автоматизация главного привода специального вальцетокарного станка модели IK 825 Ф2.

В связи с выходом отечественных производителей металлопродукции на внешний рынок и производством проката по стандартам ASTM, DIN и другим, к его качеству и геометрическим размерам предъявляются повышенные требования, зачастую превышающие требования существующих ГОСТов и технических условий.

Качество металлопроката и геометрические размеры профилей, в том числе и производимых станом 600 Алчевского металлургического комбината, зависят от многих факторов, одним из которых является качество изготовления и точность обработки поверхности валков черновых и чистовых клетей прокатных станов.

При обработке валков, имеющих неоднородную структуру и различные физико-механические свойства, возникают броски мощности резания, которые отрицательно влияют на качество поверхности валков и точность геометрических размеров готового проката.

В связи с этим в данном проекте была предложена система стабилизации мощности резания на заданном уровне, что оказывает положительное влияние на качество поверхности обрабатываемых валков.

В результате проведенного анализа существующей на данном станке системы электроприводабыло выявлено, что максимальная мощность резания достигается при черновой обработке валков. При этом величины подачи и глубины резания достигают максимальных значений. Для обесппечения необходимой мощности был выбран двигатель и синтезирована система автоматического управления.

На листе 1 приведена функциональная схема главного привода станка. Приводной двигатель питается от тиристорного преобразователя, подключенного к питающей сети 380В через вводной трансформатор, выполняющий одновременно функцию потенциального разделения питающей сети и цепей питания двигателя. Тиристорный преобразователь -- серийный, серии ЭПУ1, со встроенными регуляторами тока и скорости, а также с возможностью использования при необходимости второй зоны регулирования скорости. Основная регулируемая координата -- скорость вращения двигателя. Схема выпрямления -- встречно-параллельная на базе схемы Ларионова. Управления группами вентилей -- совместно-согласованное.

На листе 2 приведена математическая модель системы автоматического регулирования мощности главного привода вальцетокарного калибровочного станка модели IK 825 Ф2. Полученная система подчиненного регулирования -- трехконтурная, с контурами тока, скорости и мощности резания. Регулятор тока выполнен по ПИ-закону, регулятор скорости - П, регулятор мощности резания -- П. Информация, пропорциональная мощности резания получается косвенным образом путем перемножения сигналов датчиков тока и скорости. В качестве возмущений в контуре мощности выступают подача S и глубина резания t. Статический ток -- реактивный, пропорциональный уровню мощности резания.

На листе 3 приведена структурная схема системы для моделирования на МАССе. При моделировании учитывалась внутренняя обратная связь по противоЭДС двигателя. В процессе моделирования были получены следующие результаты:

статизм по скорости системы при разомкнутой обратной связи по мощности, то есть пока мощность не выходит за уровень стабилизации, составляет при номинальной нагрузке 1.7 1/с, что составляет 2.16% от скорости холостого хода, что обеспечивается не только контурами регулирования тока и скорости, но и хорошими статическими свойствами самого двигателя;

погрешность при стабилизации мощности при самом тяжелом варианте, когда теоретическая мощность резания превышает на 15% уровень стабилизации мощности (то есть при обработке вязкого материала при больших подачах) составляет 1178 Вт или 1,96% от уровня стабилизации, что вполне можно считать удовлетворительной работой системы;

время переходного процесса пуска ввиду применения ПИ-регулятора тока уменьшилось по сравнению с расчетным с 2.0 с до 0.9 с в моделируемой системе, то есть снизилось на 55%, что позволяет уменьшить время обработки одного валка;

перерегулирования по току составляют при самом тяжелом режиме 5.1%;

перерегулирования по скорости составляют при самом тяжелом режиме 4.98%;

перерегулирования по мощности составляют при самом тяжелом режиме 4.6%.

На листе 6 приведены графики переходных процессов пуска двигателя и стабилизации мощности резания при номинальных параметрах.

Лист 7 отражает переходные процессы при возмущениях в системе, то есть при изменении величины подачи или глубины резания.

Кинематическая схема системы приведена на листе 4. Коробка скоростей двигателя -- двухступенчатая. На листе приведены шестерни, которые принимают участие в передаче при «тяжелой» обработке -- при черновом точении. На статической характеристике системы видно, что статизм системы по скорости при номинальной нагрузке незначителен.

На листе 5 представлена принципиальная схема датчика мощности. Его основой служат датчик тока УБСР-ДТ-3АИ, встроенный в преобразователь, и тахогенератор, стоящий на валу двигателя. Сигналы, пропорциональные току якоря двигателя и скорости его вращения перемножаются на микросхеме К525ПС2А, на выходе которой получается сигнал, пропорциональный мощности резания. Параметры микросхемы приведены в записке в разделе 5.5.

Также была рассчитана экономическая эффективность предлагаемой системы по сравнению с имеющейся в настоящее время на станке и некоторые экономические параметры, затраты на ремонт, общецеховые расходы и прочее. Лист 8 отражает некоторые экономические показатели разработанной системы, а также краткий сравнительный анализ разработанной и имеющейся систем автоматического управления.

Размещено на Allbest.ru

...

Подобные документы

  • Технологическая характеристика широкополосного стана НШС-2000, назначение и устройство вальцетокарного калибровочного станка специальный модели IК825Ф2 с цифровой индикацией и управлением. Составление и описание работы схемы управления во всех режимах.

    дипломная работа [362,8 K], добавлен 19.03.2012

  • Обоснование методов модернизации привода главного движения станка модели 1740РФ3. Техническая характеристика станка, особенности расчета режимов резания. Расчет привода главного движения с бесступенчатым регулированием. Построение структурного графика.

    курсовая работа [3,0 M], добавлен 28.09.2010

  • Кинематический расчет привода станка модели 16К20. Выбор и расчет предельных режимов резания, передачи винт-гайка качения. Силовой расчет привода станка, определение его расчетного КПД. Проверочный расчет подшипников, определение системы смазки.

    курсовая работа [1,7 M], добавлен 09.09.2010

  • Определение технических параметров токарного гидрокопировального станка модели 1722. Методы образования производящих линий при обработке на данном станке. Схема рабочей зоны станка. Расчет направляющих и режимов резания. Разработка смазочной системы.

    курсовая работа [2,5 M], добавлен 16.01.2015

  • Изучение процесса модернизации привода главного движения вертикально-сверлильного станка модели 2А135 для обработки материалов. Расчет зубчатых передач и подшипников качения. Кинематический расчет привода главного движения. Выбор электродвигателя станка.

    курсовая работа [888,2 K], добавлен 14.11.2011

  • Изучение основных режимов металлорежущего станка. Кинематический расчёт привода главного движения. Построение графика мощности и момента, силовые расчеты элементов привода, ременной передачи и валов. Привила выбора шлицевых соединений и системы смазки.

    курсовая работа [868,5 K], добавлен 28.01.2014

  • Общая характеристика и назначение вертикально-фрезерных станков. Особенности модернизации привода главного движения станка модели 6С12 с бесступенчатым изменением частоты вращения шпинделя. Компоновочная схема привода с указанием его основных элементов.

    курсовая работа [447,4 K], добавлен 09.09.2010

  • Проектирование привода главного движения вертикально-фрезерного станка на основе базового станка модели 6Т12. Расчет технических характеристик станка, элементов автоматической коробки скоростей. Выбор конструкции шпинделя, расчет шпиндельного узла.

    курсовая работа [2,4 M], добавлен 22.04.2015

  • Построение 3D модели в "КОМПАС 3D". Выбор режимов резания. Расчет максимальной требуемой мощности станка. Подбор модели станка и оснастки для станка. Генерирующие коды для станков с ЧПУ. Использование запрограммированных команд для управления станком.

    контрольная работа [2,3 M], добавлен 24.06.2015

  • Назначение станка, выполняемые операции, определение технических характеристик. Выбор структуры, кинематический расчет привода главного движения. Разработка конструкции, расчет шпиндельного узла на точность, жесткость, виброустойчивость. Система смазки.

    курсовая работа [328,5 K], добавлен 22.10.2013

  • Назначение и краткая характеристика станка базовой модели. Основные недостатки конструкции. Описание основных узлов и датчиков линейных перемещений. Расчет модернизации привода главного движения, коробки скоростей и привода вращения осевого инструмента.

    курсовая работа [3,1 M], добавлен 20.01.2013

  • Устройство, состав и работа фрезерного станка и его составных частей. Предельные расчетные диаметры фрез. Выбор режимов резания. Расчет скоростей резания. Ряд частот вращения шпинделя. Определение мощности электродвигателя. Кинематическая схема привода.

    курсовая работа [3,2 M], добавлен 20.01.2013

  • Проблема совершенствования современных металлообрабатывающих станков. Технические характеристики для токарных станков. Расчет и обоснование режимов резания. Определение частот вращения, силы резания и эффективных мощностей. Расчет элементов привода.

    курсовая работа [661,9 K], добавлен 22.10.2013

  • Особенности устройства и технологические возможности станка. Технологические возможности и режимы резания на станке. Разработка структурной формулы привода главного движения. Геометрический и проверочный расчет зубчатых передач по контактным напряжениям.

    курсовая работа [1,5 M], добавлен 02.02.2022

  • Назначение станка и область применения. Выбор структуры привода главного движения. Определение технических характеристик станка. Силовой, прочностной расчет основных элементов привода главного движения. Проверочный расчёт подшипников и валов на прочность.

    курсовая работа [624,1 K], добавлен 25.10.2013

  • Выбор предельных режимов резания и электродвигателя. Кинематический расчет привода станка. Расчет на прочность стальных зубчатых передач. Выбор элементов, передающих крутящий момент. Расчет трёхопорного шиндельного узла с подшипниками качения в опорах.

    курсовая работа [3,5 M], добавлен 22.09.2010

  • Проведение критического анализа системы управления токарного станка модели HOESCH D1000 с целью выявления ее недостатков и предложений вариантов модернизации. Выполнение расчета и выбора двигателя необходимой мощности, момента привода подачи станка.

    дипломная работа [2,2 M], добавлен 24.03.2010

  • Разработка кинематики привода подач и привода главного движения токарно-винторезного станка. Определение назначения станка, расчет технических характеристик. Расчет пары зубчатых колес. Разработка кинематики коробки подач, редуктора и шпиндельного узла.

    курсовая работа [970,1 K], добавлен 05.11.2012

  • Анализ базовой модели широкоуниверсального фрезерного станка, обоснование модернизации. Кинематический расчет привода главного движения. Функциональная схема СЧПУ. Разработка цикла позиционирования. Силовые и иные расчеты деталей и механизмов привода.

    дипломная работа [1,1 M], добавлен 19.05.2011

  • Процесс торцевого фрезерования на вертикально-фрезерном станке, оптимальные значения подачи, скорости резания. Ограничения по кинематике станка, стойкости инструмента, мощности привода его главного движения. Целевая функция - производительность обработки.

    контрольная работа [134,0 K], добавлен 24.05.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.