Производство фосфора и фосфорной кислоты. Экологические проблемы фосфорного производства

Получение фосфора и фосфорной кислоты. Экологическая оценка отходов фосфорной промышленности. Очистка газа, утилизация фтора, очистка сточных вод, утилизация шлама и фосфогипса в производстве фосфора и фосфорной кислоты. Утилизация техногенных отходов.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 11.02.2014
Размер файла 3,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Получение фосфора

2. Получение фосфорной кислоты

2.1 Получение термической фосфорной кислоты

2.2 Экстракционный метод получения фосфорной кислоты

3. Экологическая оценка отходов фосфорной промышленности

3.1 Очистка газа в производстве фосфора и фосфорной кислоты

3.2 Утилизация фтора в производстве фосфора и фосфорной кислоты

3.3 Очистка сточных вод производства фосфора и фосфорной кислоты

3.4 Утилизация шлама в производстве фосфора и фосфорной кислоты

3.5 Утилизация фосфогипса в производстве фосфора и фосфорной кислоты

4. Современное состояние утилизации техногенных отходов в производстве фосфора

Заключение

Литература

Введение

В процессе развития промышленного производства одно из ведущих мест занимает проблема охраны окружающей среды и рациональное использование сырьевых ресурсов. Особенно остро стоят эти проблемы на предприятиях по производству фосфора.

Большое количество техногенных отходов создает технические и экологические проблемы их удаления и обезвреживания, приводит к значительным экологическим нагрузкам в результате эмиссии загрязняющих веществ.

Обращения с техногенными отходами включает следующие стадии движения: образование, сбор, временное хранение, транспортирование, переработка, обезвреживание и захоронение неутилизируемых остатков. Каждая стадия обращения с отходами оказывает позитивное или негативное влияние на всю систему управления отходами в зависимости от эффективности принимаемых решений. Управление техногенными отходами в основном сводится к организации их сбора, транспортирования и захоронения. Образующиеся техногенные отходы складируются на полигонах, многие из которых не отвечают требованиям экологической и санитарной безопасности. Такая практика удаления отходов приводит к длительному загрязнению окружающей среды, сравнимому по степени опасности с радиационным загрязнением. Так как отходы являются потенциальными вторичными материальными ресурсами, действующая система удаления техногенных отходов приводит к безвозвратной потере ценных вторичных материальных ресурсов, энергетических и земельных ресурсов. Окружающая среда подвергается негативному воздействию складированных отходов в течении десятков лет. С годами интенсивность этого воздействия не всегда уменьшается, а может иметь резкие периодические увеличения в результате изменения геологических, гидрологических и гидрогеологических условий. Необходимо учитывать, что со временем повышается вероятность нарушений в системе инженерной защиты, которая не рассчитана на эксплуатацию в течение десятка лет, а, следовательно, не может являться гарантией экологической безопасности таких объектов в длительном временном аспекте.

Предприятия фосфорной промышленности являются источниками значительного количества твердых отходов. При электротермической переработке фосфоритов Каратау в элементный фосфор образуется ряд побочных продуктов. Значительная их часть - это полученная в процессе агломерации фосфоритная мелочь. По химическому составу она близка к рядовой фосфатной руде, однако содержит значительно меньше карбонатов, фтора и мышьяка, а по фазовому составу отличается вследствие активации фторапатита при высокой температуре с образованием тетракальцийфосфата. Дальнейшая переработка фосфоритной мелочи, например, на удобрения, потребует, по-видимому, меньшего расхода кислотного реагента, чем переработка природных фосфатов, а продукты будут экологически чистыми.

Деградация окружающей среды особенно проявляется в местах концентрации промышленных предприятий, а сами промышленные регионы превращаются в очаговые зоны глубоких изменений в литосфере и биосфере. Как отмечено, в пятикилометровой зоне влияния предприятий, выпускающих фосфор и фосфорные удобрения, концентрация фтора достигает иногда 100 - 200 мг/м3. Под воздействием таких выбросов снижается фотосинтез, наблюдается угнетение растительности и др. По качественному составу и вредности выбросов предприятия фосфорного производства относятся к промышленным производствам, имеющим выбросы в атмосферу газов или аспирационного воздуха, содержащие канцерогенные и ядовитые вещества.

Известно, что электротермическое производство элементного фосфора характеризуется образованием значительного количества газообразных вредных веществ в атмосфере и неорганизованных газовыделений, составляющих 20 - 25 % от их общего количества. Источники неорганизованных выбросов очень разнообразны: хранилища фосфора, открытые склады сырья, шламонакопители, отвалы и т.п. Загрязняющие компоненты те же, что и в выбросах, предусмотренных технологией. Значительно образование вредных твердых и жидких отходов и промежуточных продуктов, занимающих промплощадки и т.д. Технологические условия получения термической фосфорной кислоты также характеризуется выделением вредных испарений, сточных вод, пастообразных и твердых отходов. Все это служит источником техногенного загрязнения окружающей среды.

Практика работы электротермических печей показала, что переработка фосфоритового сырья на элементарный фосфор характеризуется значительным количеством побочных продуктов и отходов: фосфатного шлака, фосфорного шлама, коттрельного молока и др. Это объясняется не только неоднородностью исходного сырья со сложным вещественным составом, но и отсутствием совершенных способов предварительной подготовки сырья для электротермической возгонки фосфора. Переработка фосфоритового сырья на желтый фосфор сопровождается образованием на 1 т фосфора 25 - 27 кг его соединений, 10 - 12 т шлака, до 170 кг фосфорного шлама и др. Работа предприятий фосфорной промышленности на неподготовленном сырье при малоэффективной работе электрофильтров приводит к высокому выходу шламов. Это обусловливает значительные потери, снижение коэффициента использования сырья. Кроме того, существующая технология электротермического производства фосфора применима к переработке только кусковых фосфоритов, при предварительной подготовке которых (дробление, измельчение, грохочение, транспортировка и др.) потери составляют более 40 %. Мелкие фракции накапливаются в отвалах. Выход этих фракций составляет 35 - 44 % от добытой руды, на отдельных участках 46 - 48 %. С уменьшением нижнего предела размеров кусков руды до 15 мм выход фосфатной мелочи возрастает.

Одной из главных причин образования вредных отходов является низкое качество исходного сырья - фосфоритов. Известно, что нестабильные по химическому и минералогическому составу, склонные к обеднению по фосфору, содержащие значительное количество балластных пород фосфориты относятся к труднообогатимому сырью. В настоящее время не имеется реализованных на производстве способов обогащения фосфоритов. Это обусловлено природой их генезиса: слоистое строение фосфоритоносных пачек многочисленных месторождений бассейна, тонкое перемежающееся залегание с чередованием обогащенного по фосфату слоя с пустой и цементирующей породой и кварцем, тесное прорастание минералов породы в фосфатном веществе. Все это не позволяет наиболее полно отделить полезную часть руды от балласта. Такое сырье требует предварительной глубокой термообработки.

Присутствие слюдистых минералов, заметное количество низкотемпературного кварца резко снижает термическую и динамическую прочность кусковых фосфоритов. Это приводит к тому, что уже при добыче и транспортировке руды образуется значительное количество отходов в виде фосфатной мелочи (~ 48 %), которая не находит полной утилизации, складируется на территориях заводов и является источником запыленности, загрязнения промплощадок и природных стоков.

Существующие способы не обеспечивают качественную подготовку кусковых фосфоритов, так как имеют значительные недостатки: низкие технологические показатели (шахтно-щелевые и барабанные печи для термообработки сырья фосфорного производства работают в режиме сушки), значительное пыление, недопустимые производственные шумы, громоздкость и др.

Использование неподготовленного сырья в электротермии приводит к образованию твердых, жидких и газообразных отходов, существенно снижая технологические показатели и ухудшая экологическую обстановку не только на территории предприятия, но и в значительном радиусе вокруг него, отрицательно и необратимо воздействуя на состояние почв, сельскохозяйственных угодий, атмосферы, гидросферы, биосферы. Полученный из неподготовленного сырья элементный фосфор (~ 40%) переходит в шлам, который отличается токсичностью, склонностью к самовозгоранию с образованием тумана фосфорной кислоты и сильно отравляет окружающую среду.

В фосфорном производстве образуется значительное количество сточных вод. Компоненты, входящие в их состав (фосфорная кислота, мышьяк, фтор, тяжелые металлы), очень токсичны, обладают высокой реакционной способностью, отрицательно воздействую на биосферу, почву, гидросферу и др., поэтому проблемы обезвреживания, утилизации и нейтрализации сточных вод актуальны.

Одним из побочных продуктов фосфорного производства является некондиционный феррофосфор, который содержит значительное количество фосфора и может служить ценным сырьем для получения фосфорных солей.

Газообразные выбросы фосфорного производства содержат такие вредные компоненты, как фосфин, фосфор, пентаоксид фосфора, фтор и его соединения, мышьяк, серу и ее соединения. Известно, что существующие способы газоочистки на фосфорных предприятиях не обеспечивают снижение вредных выбросов ниже предельно допустимой концентрации. Улавливание и утилизация газообразных отходов - важнейшая проблема в производстве фосфора.

В настоящее время отсутствуют систематизированные статистические данные по вредным отходам и выбросам электротермического и других производств фосфорной промышленности. Однако электротермический процесс, протекающий на неподготовленном сырье, занимает наибольшую часть материального потока фосфорной подотрасли, и ему принадлежит основная доля "вклада" (до 90 %) в техногенное загрязнение ноосферы.

фосфор кислота экологический утилизация

1. Получение фосфора

Мировые запасы фосфорного сырья ( 26,2 млрд. т), представлены в основном фосфоритами Ca3( PO4)2, фтороапатитом Ca5(PO4)3F и гидроксоапатитом Ca5(PO4)3OH. Фосфатное сырьё включает в себя группу фосфатных руд -апатитов и фосфоритов, представляющих собой сложную смесь минералов, содержащих от 3-5 до 25-30% Р2О5. Основное количество фосфора входит в минералы апатитовой группы. Их общая формула 3Са3(РО4)2 * СаХ, где Х представлен фтором, хлором или гидроксил-ионом. Наиболее распространен фторапатит 3Са3(РО4)2 * СаF2 или 3Са3(РО4)F. Кроме основных минералов, эти руды содержат в своем составе минералы-примеси, в следовых количествах уран, торий, ванадий. Фосфорные руды представляют собой осадочные породы, сцементированные фосфатами кальция.

При добыче фосфорных руд огромные массы вскрытых пород, представляющие собой пески, глины, сланцы с примесями серы и фосфора, поступают в отвалы и практически не используются. Исходя из состава их можно использовать для производства пористых заполнителей (аглопорита) и как добавки к сырью при производстве керамических изделий.

При обогащении фосфорных руд образуется большое количество твердых отходов в виде хвостов флотации, масса которых может достигать 70-- 75% массы исходной руды. Апатитовые руды относятся к легкообогащаемым породам, фосфоритовые -- к труднообогащаемым и требуют применения большого количества реагентов.

Фосфор извлекают разложением минерального сырья. В настоящее время наиболее распространено получило кислотное разложение руд, содержащих более 25% Р2О5.

Производство элементарного фосфора осуществляется электротермическим восстановлением его из природных фосфатов (апатитов или фосфоритов) при 1400-1600 °С коксом в присутствии кремнезёма (кварцевого песка). При помощи углерода (кокса) с введением в шихту кремнезема в качестве флюса, в результате чего образуется фосфор и шлаковый расплав. Шлак сливают из печей в огненно-жидком состоянии и гранулируют мокрым способом. На 1 т фосфора приходится 10-- 12 т шлака.

2Ca3(PO4)2 + 10C + nSiO2 = P4 + 10CO + 6CaO + nSiO2

1 Восстановление фосфора из природных фосфатов представляет собой сложный многостадийный гетерогенный процесс, протекающий через стадии:

- нагревание компонентов шихты,

- поступление в расплав фосфата кальция и оксида кремния,

- диссоциация три кальций фосфата,

- диффузия продуктов диссоциации к поверхности частиц углерода,

- взаимодействие три кальций фосфата с углеродом и образование фосфора, оксида углерода (II) и оксида кальция,

- удаление оксида кальция из зоны реакции в виде силикатов кальция. 1. Получение фосфора. Восстановление фосфора из природных фосфатов представляет собой сложный многостадийный гетерогенный процесс, протекающий через стадии:

- нагревание компонентов шихты,

- поступление в расплав фосфата кальция и оксида кремния,

- диссоциация три кальций фосфата,

- диффузия продуктов диссоциации к поверхности частиц углерода,

- взаимодействие три кальций фосфата с углеродом и образование фосфора, оксида углерода (II) и оксида кальция,

- удаление оксида кальция из зоны реакции в виде силикатов кальция.

В отсутствии флюсов реакция восстановления протекает при 1400°С в течение 20 минут. Для снижения температуры процесса и смещения равновесия реакции вправо в систему вводят оксид кремния, оксид алюминия или алюмосиликаты, связывающие образующийся оксид кальция в виде легко удаляемого шлака:

2Ca5(PO4)3F + 15С + 6SiO2 -ЗР2 + 15СО + 3(3CaO·2SiO2) + CaF2 + Н

Н = 1730 кДж.

В присутствии флюсов реакция восстановления протекает с достаточно высокой скоростью при 1100 - 1300°С. Протекает в диффузионной области и ускоряется факторами, усиливающими диффузию в твердой фазе и в расплаве: повышением дисперсности компонентов шихты, образованием легкоплавких поли эвтектических систем и т.п. Для повышения подвижности расплава и облегчения выгрузки шлаков процесс восстановления ведут на практике при 1500°С.

2. Сжигание фосфора - гетерогенный экзотермический процесс, протекает по уравнению:

Р4 жидк. + 5О2 газ = Р4О10 тв - Н

Н = 753кДж

Степень окисления фосфора зависит от температуры в зоне горения и от скорости диффузии кислорода к поверхности жидкого фосфора. Чтобы обеспечить полноту сгорания и исключить возможность образования низших оксидов фосфора, процесс ведут при температуре 1000 - 1400°С и двукратном избытке воздуха.

3. Гидратация оксида фосфора (V) протекает через ряд стадии. На первой стадии процесса, вследствие высокой температуры в системе, взаимодействие паров оксида фосфора с водой дает метафосфорную кислоту.

Р4Н10 + 2Н2О = 4НРО3 - Н.

При понижении температуры метафосфорная кислота через полифосфорные кислоты превращается в фосфорную (ортофосфорную) кислоту:

НРОз + Н2О = Н3РО4 - Н.

Процесс гидратации оксида фосфора (V) является экзотермическим и сопровождается выделением значительного количества тепла, что учитывается при организации этой стадии технологического процесса.

Предварительно измельченная и обогащенная фосфорсодержащая руда смешивается в заданных соотношениях с кремнезёмом и коксом и загружается в электропечь. Кремнезём необходим для снижения температуры реакции, а также увеличения ее скорости за счет связывания выделяющейся в процессе восстановления окиси кальция в силикат кальция, который непрерывно удаляется в виде расплавленного шлака. В шлак переходят также силикаты и окислы алюминия, магния, железа и др. примеси, а также феррофосфор (Fe2P, FeP, Fe3P), образующийся при взаимодействии части восстановленного железа с фосфором. Феррофосфор, а также растворённые в нём небольшие количества фосфидов марганца и др. металлов по мере накопления удаляются из электропечи с целью последующего использования при производстве специальных сталей.

Пары фосфора выходят из электропечи вместе с газообразными побочными продуктами и летучими примесями (CO, SiF4, PH3, пары воды, продукты пиролиза органических примесей шихты и др.) при температуре 250-350 °С. После очистки от пыли содержащие фосфор газы направляют в конденсационные установки, в которых при температуре не ниже 50 °С собирают под водой жидкий технический белый фосфор.

Разрабатываются методы получения фосфора с применением газообразных восстановителей, плазменных реакторов с целью интенсификации производства за счёт повышения температур до 2500-3000°С, т. е. выше температур диссоциации природных фосфатов и газов-восстановителей (например, метана), используемых в качестве транспортирующего газа в низкотемпературной плазме.

2. Получение фосфорной кислоты

Фосфорная кислота H3PO4 является важнейшим промежуточным продуктом в производстве концентрированных фосфорсодержащих удобрений. Кроме того, фосфорная кислота используется в производстве различных технических солей, разнообразных фосфорорганических продуктов, в том числе инсектицидов, полупроводников, активированного угля, ионообменных смол, для создания защитных покрытий на металлах. Очищенная (пищевая) H3PO4 используется в пищевой промышленности, для приготовления кормовых концентратов, фармацевтических препаратов. Фосфорную кислоту получают из сложного, многокомпонентного сырья, при переработке которого образуются многочисленные и разнообразные отходы.

Фосфорная кислота образуется непосредственно при растворении руды, т.е. прямым извлечением, экстракцией соединений фосфора. Отсюда название продукта - экстракционная фосфорная кислота. Из более бедных руд получают термическую фосфорную кислоту. Процесс основан на восстановлении фосфора из природных фосфатов коксом при высоких температурах и дальнейшем получении H3PO4 и з фосфора.

Кислородные кислоты фосфора, представляющие собой продукты гидратации фосфорного ангидрида. Различают ортофосфорную кислоту (обычно называемую фосфорной кислотой) и конденсированные Ф. к. Наиболее изучена и важна ортофосфорная кислота H3PO4, образующаяся при растворении P4O10 (или P2O5) в воде.

Образует три ряда солей -- фосфатов. При нагревании растворов кислоты происходит её дегидратация с образованием конденсированных фосфорных кислот.

В промышленности ортофосфорную кислоту получают экстракционным (сернокислотным) или термическим способами.

Термический способ основан на сжигании фосфора до фосфорного ангидрида P4 + 5O2 P4O10 и гидратации последнего.

Промышленная ортофосфорная кислота -- важнейший полупродукт для производства фосфорных и комплексных удобрений и технических фосфатов, широко используется также для фосфатирование металлов, в качестве катализатора в органическом синтезе. Пищевая фосфорная кислота применяется для приготовления безалкогольных напитков, лекарств, зубных цементов и др.

Технологический процесс производства фосфорной кислоты электротермическим методом может строиться по двум вариантам:

--по одноступенчатой схеме, без предварительной конденсации паров фосфора, с непосредственным сжиганием выходящего из стадии восстановления фосфорсодержащего газа (рис.1);

--по двухступенчатой схеме, с предварительной конденсацией паров фосфора и последующей переработкой его в фосфорную кислоту (рис. 2.):

Рис. 1 Технологическая схемы производства фосфорной кислоты термическим методом одноступенчатая

Рис. 2 Технологическая схема производства фосфорной кислоты термическим методом двухступенчатая

При окислении фосфора и гидратации оксида фосфора (V) выделяется большое количество тепла, которое для поддержания оптимального теплового режима процесса должно отводиться из системы.

Наиболее распространены циркуляционно-испарительные схемы, в которых охлаждение газов происходит за счет теплообмена с циркулирующей фосфорной кислотой и в результате испарения из нее воды. Подобная технологическая схема установки производительностью 60 тыс. тонн в год 100% -ной кислоты или 2,5 т/час по сжигаемому фосфору, приведена на рис. 3.

Рис. 3 Технологическая схема производства термической фосфорной кислоты двухстадийным методом: 1 - электропечь, 2 - бункер шихты, 3 - газоотсекатель, 4, 14 - электрофильтры, 5 -горячий конденсатор, 6 - холодный конденсатор, 7, 8 - сборник жидкого фосфора, 9 -отстойник жидкого фосфора, 10 - башня сгорания, 11, 13 - холодильники, 12 - башня гидратации, 15 - сборник фосфорной кислоты

В трехфазную электропечь РКЗ-72 Ф (рудотермическая, круглая, закрытая, мощностью 72 MB. А, фосфорная) с самоспекающимися анодами 1 поступает из бункера 2 шихта, состоящая из фосфата, оксида кремния (кварцита) и кокса. Выходящий из печи газ, содержащий 6--10% фосфора, проходит через газоотсекатель 3 в электрофильтр 4, где из него извлекается пыль. Очищенный газ направляется в конденсаторы - промыватели - горячий 5 и холодный 6, охлаждаемые разбрызгиваемой в них водой, которая циркулирует по замкнутому контуру. Сконденсировавшийся жидкий фосфор собирается в сборниках 7 и 8, откуда поступает в отстойник 9.

Степень конденсации фосфора из газа достигает 0,995. Выходящий из конденсаторов газ, содержащий до 85% об. оксида углерода используется в качестве топлива или сжигается. Шлаки, скапливающиеся в нижней части печи 1, непрерывно скачиваются и используются в производстве цемента и других строительных материалов. Из отстойника 9 расплавленный фосфор подается в башню сгорания 10, где распыляется форсунками в токе воздуха. В башню для охлаждения подается циркуляционная фосфорная кислота, охлаждаемая предварительно в холодильнике 11, часть ее в виде 75%-ной фосфорной кислоты, отводится в качестве продукционной и поступает на склад. Для пополнения в систему вводится необходимое количество воды. Из башни сгорания газ при температуре 100°С поступает в башню гидратации-охлаждения 12, орошаемую фосфорной кислотой, где заканчивается процесс гидратации. За счет орошения температура фосфорной кислоты на выходе снижается до 40 - 45°С. Циркулирующая в башне гидратации кислота охлаждается в холодильнике 13. Из башни гидратации 12 газ направляется в электрофильтр 14. Сконденсировавшаяся в нем из тумана фосфорная кислота поступает в сборник 15, а отходящие газы выбрасываются в атмосферу.

Основными аппаратами в производстве термической фосфорной кислоты являются башня сгорания (сжигания) и башня гидратации.

Башня сгорания полая, имеет коническую форму, диаметр около 4 м и высота около 14 м. Крышка башни охлаждается водой и имеет форсунку для распыления фосфора. Башня гидратации выполнена в виде цилиндра высотой 15 м и диаметром 3 м и содержит насадку из колец Рашига и три яруса форсунок для распыления кислоты.

Технологический схема установки мощностью 60 тысяч т в год 100%-ной H3PO4 приведена на рис. 4. Расплавленный желтый фосфор распыляется нагретым воздухом под давлением до 700 кПа через форсунку в башне сжигания, орошаемой циркулирующей кислотой. Нагретая в башне кислота охлаждается оборотной водой в пластинчатых теплообменниках. Продукционная кислота, содержащая 73-75% H3PO4, отводится из контура циркуляции на склад. Дополнит, охлаждение газов из башни сжигания и абсорбцию кислоты производят в башне охлаждения (гидратации), что снижает послед, температурную нагрузку на электрофильтр и способствует эффективной очистке газов. Отвод теплоты в башне гидратации осуществляется циркулирующей 50%-ной H3PO4, охлаждаемой в пластинчатых теплообменниках. Газы из башни гидратации после очистки от тумана H3PO4 в пластинчатом электрофильтре выбрасываются в атмосферу. На 1 т 100%-ной H3PO4 расходуется 320 кг P.

Рис. 4 Циркуляционная двухбашенная схема производства термодинамически H3PO4, где 1 - сборник кислой воды; 2 - хранилище фосфора; 3,9 - циркуляционные сборники; 4,10 - погружные насосы; 5,11 - пластинчатые теплообменники; 6 - башня сжигания; 7 - фосфорная форсунка; 8 -башня гидратации; 12 - электрофильтр; 13 - вентилятор

Разложению кислотами подвергаются также сопутствующие примеси: кальцит, доломит, сидерит, нефелин, глауконит, каолин и др. минералы. Это приводит к увеличению расхода используемой кислоты, а также снижает извлечение P2O5 в целевой продукт вследствие образования нерастворимых фосфатов железа FeH3(PO4)2* 2,5H2O при концентрациях P2O5 выше 40% (содержание P4O10 обычно дается в пересчете на P2O5) и FePO4* 2H2O - при более низких концентрациях. Выделяющийся при разложении карбонатов СО2 образует в экстракторах стойкую пену; растворимые фосфаты Mg, Fe и Al снижают активность фосфорной кислоты, а также уменьшают содержание усвояемых форм P2O5 в удобрениях при последующей переработке фосфорная кислота.

С учетом влияния примесей определены требования к фосфатному сырью, согласно которым природные фосфаты с повышенным содержанием соединение Fe, Al, Mg, карбонатов и органическое веществ непригодны для производства фосфорной кислоты

Экстракционный метод получения фосфорной кислоты

Более экономичный экстракционный метод получения фосфорной кислоты основан на разложении природных фосфатов кислотами (в основном серной, в меньшей степени азотной и незначительно соляной). Фосфорнокислые растворы, полученные разложением азотной кислотой, перерабатывают в комплексные удобрения, разложением соляной кислотой - в преципитат.

Одним из хорошо исследованных является сернокислотное разложение апатитового концентрата, получаемого обогащением хибинской апатит-нефелиновой руды и содержащего около 39% Р2О5 Суть метода - извлечение (экстрагирование) P4O10(обычно используют формулу P2O5) в виде H3PO4.. Его разложение - гетерогенная реакция «жидкость-твердое»:

Примеси - Са и F - сразу выделяются в реакторе. Первая выпадает в осадок в виде гипса (СаSO4), вторая уходит в газовую фазу в виде фтористого водорода НF. Ф.схема ( рис.5.58) включает разложение измельченного сырья в реакторе (экстрапоре), фильтрацию твердого осадка, упаривание фосфорной кислоты до товарной концентрации и очистку отходящих газов. Твердый отход получил название «фосфогипс». При промывке отходящих газов водой фтористый водород улавливается в виде кремнефтористоводородной кислоты H2SiF6.

Реактор разложения представляет собой последовательность секций с интенсивным перемешиванием реагентов из них и перетоком между ними(рис.5.60). Перемешивание предотвращает расслоение на твердую и жидкую фазу. В первой половине секций происходит растворение апатита. Остальные секции работают как дозреватель, в них формируются кристаллы СаSO4. Между последней и первой секциями - интенсивный рецикл. Степень разложения апатита достигает 97 %, образуются крупные кристаллы, облегчающие их отделение фильтрацией.

По этому методу природные фосфаты обрабатывают H2SO4 с послед, фильтрованием полученной пульпы для отделения фосфорная кислота от осадка сульфата Ca. Часть выделенного основного фильтрата, а также весь фильтрат, полученный при промывке осадка на фильтре, возвращают в процесс экстрагирования (раствор разбавления) для обеспечения достаточной подвижности пульпы при ее перемешивании и транспортировке. Массовое соотношение между жидкой и твердой фазами от 1,7 :1 до 3,0:1.

Разложению кислотами подвергаются также сопутствующие примеси: кальцит, доломит, сидерит, нефелин, глауконит, каолин и др. минералы. Это приводит к увеличению расхода используемой кислоты, а также снижает извлечение P2O5 в целевой продукт вследствие образования нерастворимых фосфатов железа FeH3(PO4)2· 2,5H2O при концентрациях P2O5 выше 40% (содержание P4O10 обычно дается в пересчете на P2O5) и FePO4· 2H2O - при более низких концентрациях. Выделяющийся при разложении карбонатов СО2 образует в экстракторах стойкую пену; растворимые фосфаты Mg, Fe и Al снижают активность фосфорной кислоты, а также уменьшают содержание усвояемых форм P2O5 в удобрениях при последовательной переработке фосфорной кислоты.

С учетом влияния примесей определены требования к фосфатному сырью, согласно которым природные фосфаты с повышенным содержанием соеднений Fe, Al, Mg, карбонатов и орг. веществ непригодны для производства фосфорной кислоты.

В зависимости от температуры и концентрации фосфорной кислоты в системе CaSO4-H3PO4-H2O сульфат Ca осаждается в виде дигидрата (гипса), гемигидрата или ангидрита. В реальных условиях осадок загрязнен примесями P2O5 в виде неразложенных природных фосфатов, недоотмытой H3PO4, сокристаллизованных фосфатов различных металлов и др., поэтому образующиеся сульфаты Ca называются фосфогипс, фосфогемигидрат и фосфоангидрит. В зависимости от типа осаждаемого сульфата различают три прямых способа производства экстракционной фосфорной кислоты: дигидратный, полугидратный (гемигидратный) и ангидритный, а также комбинированные: полугидратно-дигидратный и дигидратно-полугидратный.

В СНГ наибольше отработан в промышленности дигидратный способ, который отличается высоким выходом P2O5 (93-96,5%) в продукционную к-ту; однако относительно низкая концентрация фосфорной кислоты требует ее последнего упаривания. Основные стадии процесса: экстракция с внешней или внутренней циркуляцией и вакуумным или воздушным охлаждением экстракционной пульпы, дозревание пульпы после экстрактора, отделение фосфорной кислоты на наливных вакуум-фильтрах. Эффективность процесса определяют в экстрагирование P2O5 и фильтрование пульпы. Аппаратурное оформление должно обеспечить полноту разложения сырья и кристаллизацию сульфата Ca в условиях минимального пересыщения им жидкой фазы. Оптимальная форма и размеры кристаллов сульфата Ca обусловливают хорошую фильтруемость пульпы и эффективную отмывку от фосфорной кислоты миним. кол-вом воды (для получения конц. продукционной фосфорной кислоты). Типовая схема дигидратного способа (рис. 4) реализуется при непрерывном дозировании в экстрактор фосфатного сырья, 75-93%-ной H2SO4 и оборотной H3PO4. Т-ра процесса 72-75 0C, продолжительность 4-6 ч. Использование 93%-ной H2SO4 (при переработке апатитового концентрата) позволяет увеличить подачу воды для промывки фосфогипса навакуум-фильтре. Поступающая на фильтр фосфорная кислота отделяется, осадок фосфогипса промывается на фильтре по противоточ-ной схемеводой с возвратом образующейся слабой фосфорной кислоты в экстрактор. Фосфорную кислоту, полученную из апатитового концентрата (28-32% P2O5), обычно упаривают до содержания P2O5 52-54%. Концентрирование фосфорной кислоты, полученной из фосфоритов (20-24% P2O5), неосуществимо без предварит. очистки от примесей и не используется в промышленности.

Гемигидратный процесс позволяет получить более конц. фосфорную кислоту (в отдельных случаях до 50% P2O5 без дополнит, упаривания). Фосфорную кислоту, содержащую 36-38% P2O5, можно получить из апатитового концентрата практически на том же оборудовании, что и в типовом дигидратном процессе с воздушным охлаждением пульпы. Фосфориты Каратау по этому методу не перерабатывают. Широкого распространения гемигидратные процессы пока не получили из-за повышенной т-ры (80-100 0C), выделения HF в газовую фазу, более низкого выхода P2O5 в к-ту, чем в дигидратном методе. В усовершенствованных пром. схемах предусмотрено предварит. смачивание апатитового сырья в скоростном смесителе, разделение зон разложения и кристаллизации и др. Проведение процесса при содержании H2SO4 в жидкой фазе пульпы 0,2-1,0% в первом реакторе и 2,0-3,0% во втором позволяет снизить кол-во растворенного сульфата Ca в продукционной фосфорной кислоте, значительно уменьшить зарастание оборудования и трубопроводов, существенно интенсифицировать работу осн. технол. узлов.

Рис. 5 Технологическая схема типового произ-ва экстракционной H3PO4 в дигидратном процессе из апатитового концентрата, мощность 110 тыс. т P2O5 в год: 1 - бункер для фосфатного сырья; 2 - ленточный весовой дозатор; 3 - двухбаковый экстрактор; 4 -хранилище серной к-ты; 5 - погружнойнасос; 6 -расходомер серной к-ты; 7 - циркуляционный погружной насос; 8 - испаритель; 9 - брызгоуловитель; 10 -барботажный нейтрализатор; 11 - конденсатор; 12 -лотки карусельного вакуум-фильтра; 13 - сепараторы (ресиверы); 14 - промежуточный сборник суспензии, образующейся прирегенерации фильтровальной ткани; 15, 16, 17 - барометрич. сборники: для первого (основного) фильтра (15), для оборотной фосфорной к-ты (16), для промывного фильтрата (17). Содержание P2O5 в фильтратах: Ф1 - 28-32%, Ф2 - 22-25%, Ф3 - 5-10%

Ангидритный способ имеет ряд преимуществ перед дигидратным и полугидратным: позволяет без упаривания получать к-ту, содержащую до 50% P2O5; при экстракции в газовую фазу выделяется большая часть фтора; получаемая к-та меньше загрязнена сульфатом Ca. Использование метода в пром-сти сдерживают: жесткие коррозионные условия (высокие температуры и концентрации фосфорной кислоты), образование мелких кристаллов и необходимость большого числа ступеней противоточной промывки.

Комбинированные способы получения экстракционной фосфорной кислоты- гемигидратно-дигидратный и дигидратно-гемигид-ратный - более технологичны и экономичны, чем одностадийные. Обеспечивают повышение степени использования фосфатного сырья (за счет снижения технол. потерь P2O5), увеличение концентрации продукционной фосфорной кислоты, получение более чистого сульфата Ca с целью его дальнейшей переработки.

За рубежом широко распространены гемигидратно-дигид-ратные схемы, внедрен также дигидратно-гемигидратный способ. Однако комбинир. процессы иногда усложнены двойным фильтрованием или нетехнологичны из-за высокой продолжительности стадии перекристаллизации в гемигидратно-ди-гидратном методе (общая продолжительность процесса 10-16 ч в зависимости от сырья). Из усовершенствованных комбинир. технологий наиб. интерес представляет отечеств. дигидратно-гемигидратный процесс с промежуточным фильтрованием. Метод позволяет получать из апатитового концентрата фосфорную кислоту, содержащую 33-34% P2O5, из фосфоритов Каратау - фосфорную кислоту, содержащую 28-30% P2O5. Степень извлечения P2O5 из сырья ок. 99%. Продолжительность процесса не превышает 6 ч. Фосфополугидрат (фосфогемигидрат) содержит менее 0,5% P2O5 и0,15% F и м.б. применен как вяжущее ср-во в строит. материалах.

Термическая фосфорная кислота выпускается 85-86%-ная (по P2O5, свободна от примесей), экстракционная - в виде 40%-ных водных р-ров (содержит много примесей).

3. Экологическая оценка отходов фосфорной промышленности

В результате производственной деятельности фосфорной промышленности образуются твердые (шлаки, шлам, фосфогипс и т.д), жидкие( сточные воды) и газообразные отходы.

Фосфорные шлаки представляет собой сложное поликомпонентное вещество основу которого составляет система CаO - SiO2 - P2O5, а количество примесей Al2O3, MgO, Fe2O3, Na2O зависит от состава исходного сырья и технологического процесса возгонки фосфора. По химическому составу фосфорные шлаки схожи с доменными, но отличается от них низким содержанием Al2O3, MgO, Fe2O3, Na2O и дополнительно содержит оксид фосфора и фтора. По степени радиоактивности данные отходы химической промышленности удовлетворяют требованиям "Норм радиационной безопасности (НРБ-99)" и могут быть использованы в любом виде строительства без ограничений по радиационному фактору.

Под воздействием перепада температур, атмосферного влияния, влаги и ветра они подвержены постепенному разрушению с образованием мелкодисперсной пыли и выделением токсичных газов в виде НF (фтористый водород) и рН3 (фосфин). Склонность к водорастворению фторидов и фосфинов содержащихся в отходах способствует заражению подземных и поверхностных вод. При содержании в воде 1-2 мг/л у людей и домашних животных развиваются флюороз зубов и костей. Пыль, содержащая соединения фтора и фосфора также вызывает заболевания глаз, дыхательных путей, способствует развитию сердечно-сосудистой недостаточности, заражению почек, печени и желудка.

Как показывают данные химического анализа в фосфорном шлаке и фосфогипсе содержатся вредные элементы как стронции, мышьяк, кадмий, титан и марганец.

Удаление токсичных веществ из состава исходного сырья невозможно или очень сложно, а запасы достаточно чистого природного сырья весьма ограничены. В связи, с чем получение экологически безопасных строительных материалов из промышленных отходов является перспективным направлением для расширения сырьевой базы промышленности строительных материалов, развития производства, снижения стоимости продукции строительного назначения, предотвращения образования новых отвалов и уменьшения потребности в оборудовании новых полигонов.

Отходы фосфорной промышленности оказывают следующие негативные влияния на окружающую среду:

- загрязнение подземных и поверхностных вод. Большую опасность для водных объектов представляют фтористые и фосфорные соединения, сульфаты;

- отрицательное влияние на состояние земельных ресурсов. В настоящее время отходы фосфорной промышленности занимают площадь около 200 га;

- загрязнение атмосферного воздуха. Источником загрязнения являются фтористые и фосфорные соединения, которые распространяются в виде пыли и газов.

Материалоемким и высокопроизводительным способом утилизации отходов фосфорной промышленности является использование их для получения дорожно-строительных материалов, в том числе асфальтобетона.

3.1 Очистка газа в производстве фосфора и фосфорной кислоты

В производстве фосфора и фосфорных кислот процесс образования отходящих газов характеризуется большим количеством источников неорганизованных выбросов загрязняющих веществ и следовательно, необходимо очищать значительные объёмы аспирационных газов.Свою специфику имеет и очистка технологических газов.

На стадии подготовки сырья основным источником пылегазовых выбросов служат измельчения и сушки кокса и кварцита, размолота фосфорита, грануляции и обжига.

Отходящие от сушильных барабанов газы очищают от пыли в «циклонах».

Газы, отходящие от мельничной установки, очищают по двухступенчатой схеме, включающей два или четыре циклона и рукавной фильтр.

Аспирационные газы, отсасываемые от грануляционных тарелок, содержат 2,5-38 г/м3пыли, а также соединение фтора и фосфора. Образующие, в этом узле отходящие газы очищаются в скрубберной батарее, состоящей из вертикального орошаемого газохода и двух последовательно установленных скрубберов распыляющего типа. Эффективность системы по пыли составляет 90-94 %, по газу (соединение фтора и фосфора) 35-55 %(рис.1.7)

Из зоны сушки обжиговой машины 1 газы подаются в скрубберную батарею 6. Сюда же поступает объединенный газовый поток из зон обжига и охлаждения после предварительной очистки в спаренном циклоне 3. Эффективность скрубберов по пыли составляет 91,5 %, а по газу 30-45 %.

На стадии подготовки сырья наряду с системами очистки отходящих газов действуют системы аспирации (рис.1.8).

Из схемы следует, что качество получаемого из технологических газов товарного продукта, а также объёмы шлаков, сточных вод и другие параметры технологического процесса во многом определяются эффективностью очистки печного газа от пыли.

Современные фосфорные печи снабжены двумя системами двухпольных электрофильтров. На газоходах, соединяющих электрофильтры, устанавливают шибер, позволяющий перекрывать газ и останавливать систему.

Отходящие после узла конденсации газы на большинстве фосфорных заводов сжигают на свече, что нельзя признать лучшим решением. До сих пор остаются актуальной проблема оптимального технологического оформления установки для очистки отходящих газов фосфорных печей в целях рекуперации тепла.

Основные источники образования аспирационных газов в печном цехе - пылегазовые выбросы, образующиеся в загрузочных бункерах печи, в летках и желобах выпуска шлама, установки шлама, а также при сливе и розливе феррофосфора.

Для аспирации узла загрузки воздух непрерывно отсасывают из печных бункеров и мест пепесыпов шихты и затем очищают в рукавных фильтрах.

Образующие при сливе шлама пылегазовые выбросы представляют собой сложные аэрозольные системы, содержащие соединение фосфора, фтора и серы в относительно небольших концентрациях (рис.1.9).

Характерная особенность газовых выбросов при сливе феррофосфора состоит в их периодичности (1-2 раза в сутки от одной печи) и кратковременности (10-15 мин.).Твердая фаза выделяющихся при сливе аэрозолей на 98 % состоит из кислородсодержащих соединений фосфора (в пересчете на Р2О5).Все газоходы объединены в сборный горизонтальный коллектор, откуда дымососами выбрасывается через 100-метровую трубу в атмосферу.

В производстве термической фосфорной кислоты образующиеся отходящие газы содержат туман и соединения фосфора. В двухбашенной циркуляционной схеме получения этой кислоты предусмотрена дополнительная башня для охлаждения газа и улавливания тумана кислоты, а также электрофильтр для очистки газов, обеспечивающий степень очистки 99%(рис.1.10)

Выделяющиеся в производстве газы содержат фтористый водород, Пары серной и фосфорной кислот. Кроме того, имеют место выбросы пылевидных частиц апатитового концентрата.

Сырьё со склада поступает в бункер 5, в нижнюю часть непрерывно подают воздух для предотвращения зависания твердой фракции. Воздух, содержащий пыль апатитового концентрата, проходит последовательно циклоны 6, рукавный фильтр 7, после чего вентилятором 8 выбрасывается в атмосферу. Из бункеров 5 апатитовый концентрат через дозаторы 9 поступает в промежуточные бункеры 4, а затем в общий бункер 3, откуда транспортером 2 попадает в экстрактор 1. Из бака 10 в первую секцию экстрактора поступает 56% серная кислота. Образующие в экстракторе фтористые газы по газоходу 30 попадают в двухступенчатый скруббер Вентури 23 на очистку. Центробежные насосы 33и 34 обеспечивают подачу воды на орошение в скруббер. Очищенные газы выбрасываются в атмосферу.

Пульпу из экстрактора с помощью погружных насосов 28 перекачивают в вакуумный испаритель 15. Очистку выделяющихся в испарителе паров от НF проводят в три стадии: вначале в промывной башне 16, орошаемой кислой водой, затем в барометрическом конденсаторе 17, орошаемой проточной водой, и в скруббере Вентури 22. Поток очищенных паров объединяется с потоком паров, выходящим из скруббера Вентури 23, и по общей трубе 20 выводится на выхлоп. Из испарителя 15 частично упаренная пульпа возвращается в экстрактор, после чего погружным насосом 29 подается на карусельный вакуум-фильтр 18. Здесь кислота 28-32% отделяется в сборник 19, а образовавшиеся пары фосфорной кислоты и фтористые газы отсасываются вентилятором 14 и по трубе 13 подаются на выхлоп.

Проблемы очистки отходящих газов от фтористых соединений актуальна и для стадии получения концентрированной экстракционной фосфорной кислоты. В системах очистки отходящих газов устанавливают более эффективны абсорберы (газопромыватели пленочного типа, со стабилизатором пенного слоя, с подвижной насадкой и т.д.)

3.2 Утилизация фтора в производстве фосфора и фосфорной кислоты

Это основной компонент отходящих газов, образующихся при использовании обоих способов получения фосфорной кислоты: при высокотемпературном он улетучивается в виде SiF4, а при экстракции - в виде фтористого водорода ( t0 кип = 19,50С ). Фтор широко используется в ядерной энергетике, в производстве полимерных материалов, фреонов, стекла и керамики. Из отходящих газов производства Н3РО4 тетрафторид кремния и фтористый водород можно извлекать щелочной абсорбцией в насадочных, распылительных или циклонных абсорберах. При использовании извести абсорбция HF не вызывает затруднений

Ca(OH)2 + 2 HF = CaF2 + H2O,

а тетрафторид, наряду с кристаллическим осадком гексафторосиликата кальция образует аморфный гидрат кремния

2 Ca(OH)2 + 3 SiF4 = 2CaSiF6 v + SiO2.2H2O,

который налипает на стенки аппарата, забивает коммуникации, замедляет процессы разделения фаз. Задача несколько упрощается при водной экстракции тетрафторида, т.к при гидролизе возникает кислотная среда и образуется менее гидратированный диоксид кремния:

2H2O + 3 SiF4 = 2H2 Si F6 + SiO2v

Наиболее удобна аммиачно-щелочная экстракция, которая опять же более применима для улавливания фтористого водорода:

HF + NH3 = NH4F,

NH4F + NaOH = NaF + H2O + NH3

Образующийся по второй реакции аммиак возвращается на обработку следующей порции НF, а фтористый натрий - на улавливание тетрафторида:

SiF4 + NaF = Na2SiF6.

Гексафторосиликат удобнее всего соединить с алюминатом натрия:

Na2SiF6 + NaAlO2 = Na3AlF6 + SiO2 ,

и полученный криолит направить на электролиз алюминия, где он применяется в качестве флюса для понижения температуры расплава.

3.3 Очистка сточных вод производства фосфора и фосфорной кислоты

Производство экстракционной фосфорной кислоты связано с расходом значительных количеств воды. В процессе производства эта вода загрязняется многочисленными примесями, среди которых наиболее токсичными являются: желтый фосфор, фтористые и цианистые соединения, фенолы, фосфин. Организация работы фосфорного завода без выпуска сточных вод является наиболее целесообразной. Такая организация использования воды основана на наличии взаимосвязанных замкнутых циклов, с промежуточной очисткой воды до установленных норм. Главным звеном в этой организации является цех очистки сточных вод. Принимая химически загрязненную воду завода, он должен переработать ее и выдать воду установленного регламентом качества для снабжения технологических процессов, систем мокрой пыле-газоочистки и других потребителей.

Использование воды в замкнутом цикле в производстве экстракционной фосфорной кислоты стало возможным при направлении потока навстречу потоку фосфора. В этом случае свежая вода в количестве 20 м3/сут расходуется только на нужды лаборатории, а в технологии используется только оборотная вода. Из общего количества повторно используемой воды, равного 148 м3/сут, 18 м3/сут расходуется на смыв полов, 80 м3/сут; для подпитки систем гидратации и 50 м3/сут -- на все операции, связанные с транспортированием и хранением фосфора.

Из оборотной охлаждающей системы вода, подогретая в теплообменниках, первоначально подается в дозаторы для вытеснения фосфора в башню сжигания (рис. 5). При выгрузке фосфора из хранилища в дозаторы в хранилище перекачивается оборотная вода из сборника оборотной воды. Передавливание фосфора из железнодорожной цистерны в хранилище осуществляется путем подачи под давлением оборотной воды из сборника, который заполняется водой, вытесняемой фосфором из хранилища при его загрузке. После окончания передавливания фосфора в железнодорожные цистерны еще некоторое время подается вода для промывки самой цистерны и фосфоропровода; при этом вода циркулирует в замкнутом контуре: железнодорожная цистерна -- хранилище фосфора-- сборник -- железнодорожная цистерна.

При такой организации производства образуются три вида сточных вод:

1) фосфорсодержащие из железнодорожных цистерн после выдавливания фосфора в хранилище;

2) от лаборатории;

3) от смыва полов.

Все эти сточные воды поступают в сборник фосфорсодержащих сточных вод, откуда равномерно пёрекачиваются в отстойник. Осветленная вода собирается в сборнике, откуда подается на гидратацию фосфорного ангидрида. Как показал опыт работы, использование очищенных сточных вод для гидратации фосфорного ангидрида не оказывает отрицательного влияния на качество получаемой фосфорной кислоты

Рис. 6 Технологическая схема использования воды в замкнутом цикле в производстве экстракционной фосфорной кислоты на привозном фосфоре. Сооружения: / -- узел для подогрева воды; // -- дозаторы фосфора; /// -- башня сжигания фосфора; IV -- хранилище фосфора; V -- сборники оборотной воды; VI -- участок мойки железнодорожных цистерн; VII -- сборник фосфорсодержащих сточных вод; VIII -- отстойник; IX -- сборник осветленной воды; X -- лаборатория. Потоки: / -- продувочные воды оборотной охлаждающей системы; 2 -- фосфор; 3 -- оборотная вода; 4 -- фосфорсодержащий шлам; 5 -- фосфорсодержащие сточные воды; 6 -- свежая речная вода

Типовая схема очистки сточных вод, принятая на заводах по производству экстракционной фосфорной кислоты, предусматривает следующие операции:

1) первое осветление сточных вод, поступающих на очистку;

2) нейтрализацию осветленной воды с одновременным получением взвеси фосфатов и фторида кальция;

3) второе осветление сточных вод;

Вторично осветленная вода направляется в накопители для повторного использования.

Первое осветление сточных вод

При степени загрязненности сточных вод фосфором первое осветление должно обеспечивать осаждение 90-98% взвесей, содержащих фосфор. Получаемый при этом шлам содержит от 10 до 30% элементарного фосфора. Для снижения производственных потерь, этот шлам непосредственно сжигают в специальных топках, получая фосфорную кислоту.

Вторичное осветление сточных вод

Полнота удаления взвешенных частиц, содержащих элементарный фосфор, зависит от эффективности процесса вторичного осветления сточных вод. Для укрупнения взвесей малорастворимых солей кальция, а, следовательно, для повышения скорости их осаждения, в полученную при нейтрализации суспензию добавляют раствор полиакриламида, выполняющего роль флокулянта.

Полиакриламид является высокомолекулярным полиэлектролитом, который в воде диссоциирует, образуя на своих нитевидных молекулах заряженные узлы, способные присоединиться к твердым взвешенным частицам, содержащим на поверхности ионы многовалентных металлов. В результате сорбции молекулы полиакриламида с отдельными взвешенными частицами образуют флоккулы, что способствует быстрому осаждению частиц.

...

Подобные документы

  • Технология и основные этапы извлечения кремнефтористоводородной кислоты при процессе производства фосфорной кислоты: производство экстрактной фосфорной кислоты, переработка отходов образующихся в процессе и извлечение кремнефтористоводородной кислоты.

    реферат [155,3 K], добавлен 11.10.2010

  • Производство фосфорной кислоты экстракционным и электротермическим методами. Физико-химические основы процесса. Изображение графических моделей ХТС. Условия разложения фторапатита. Процесс гидратации димера оксида фосфора. Башни сгорания и гидратации.

    курсовая работа [516,6 K], добавлен 05.04.2009

  • Способы производства экстракционной фосфорной кислоты. Установки для абсорбции фтористых газов. Конструктивный расчет барометрического конденсатора. Определение диаметра абсорбера. Автоматизация технологической схемы производства фосфорной кислоты.

    дипломная работа [30,2 K], добавлен 06.11.2012

  • Общая характеристика и виды фосфора. Методы получения фосфора в промышленности, отходы производства и их утилизация. Применение фосфора и его соединений. Экологические последствия, связанные с взаимодействием фосфорного предприятия с окружающей средой.

    презентация [191,9 K], добавлен 02.12.2016

  • Общие сведения о фосфорной кислоте, методы ее получения экстракционным полугидратным способом. Разработка принципиальной технологической схемы производства фосфорной кислоты со схемой КИПиА. Расчет материального баланса и расходных коэффициентов.

    курсовая работа [716,5 K], добавлен 11.03.2015

  • Характеристика технологии производства экстракторной фосфорной кислоты из апатитового концентрата. Технико-экономические показатели данного процесса и его организационная структура. Расчет капитальных и эксплуатационных затрат при модернизации фильтра.

    контрольная работа [40,0 K], добавлен 20.02.2011

  • Стадии технологического процесса производства экстракционной фосфорной кислоты. Прием и хранение апатитового концентрата в отделении подготовки сырья, его подача в экстрактор. Методы очистки отходящих газов. Устройство и принцип работы циклона ЦН-15.

    курсовая работа [207,5 K], добавлен 18.06.2013

  • Технологический процесс, нормы технологического режима. Физико-химические свойства диаммоний-фосфата. Технологическая схема. Прием, распределение фосфорной кислоты. Первая и второая стадии нейтрализации фосфорной кислоты. Гранулирование и сушка продукта.

    курсовая работа [361,2 K], добавлен 18.12.2008

  • Характеристика коксохимического производства ОАО "ЕВРАЗ ЗСМК". Установка утилизации химических отходов. Определение количества печей в батарее. Технология совместного пиролиза угольных шихт и резинотехнических изделий. Утилизация коксохимических отходов.

    дипломная работа [697,3 K], добавлен 21.01.2015

  • Обеззараживание и переработка медицинских отходов. Новая технология уничтожения медицинских отходов. Метод термического обезвреживания медицинских отходов в Москве. Классификация медицинских отходов по эпидемиологической и токсической опасности.

    курсовая работа [1,7 M], добавлен 03.03.2010

  • Производство фосфорной кислоты, фосфорных и комплексных удобрений и технических фосфатов. Применение фосфорных удобрений, химический состав. Вынос питательных веществ урожаем основных культур. Внесение в почву удобрений для оптимизации питания растений.

    контрольная работа [95,6 K], добавлен 11.05.2009

  • Физико-химические свойства аммиачной селитры. Основные стадии производства аммиачной селитры из аммиака и азотной кислоты. Установки нейтрализации, работающие при атмосферном давлении и работающие при разрежении. Утилизация и обезвреживание отходов.

    курсовая работа [605,6 K], добавлен 31.03.2014

  • Разработка экологически чистой и экономичной технологии утилизации опасного многотоннажного техногенного отхода (отработанных автомобильных шин и других резинотехнических изделий) при помощи деструкции под действием концентрированной серной кислоты.

    дипломная работа [1,8 M], добавлен 25.04.2013

  • Введение полимеризации капролактама по катионному или анионному механизмам с целью уменьшения продолжительности процесса. Поликапроамид, полученный в присутствии кислого эфира полиэтиленгликоля и фосфорной кислоты. Сырье для получения магнитопласта.

    отчет по практике [269,5 K], добавлен 30.03.2009

  • Основные виды обработки древесины, важнейшие полуфабрикаты из нее. Изучение процесса утилизации, рекуперации и переработки отходов деревообрабатывающего производства. Оценка класса опасности отходов с выявлением суммарного индекса опасности отходов.

    курсовая работа [890,3 K], добавлен 11.01.2016

  • Описание шлаков, фосфорной кислоты и побочных продуктов, которые являются отходами цветной металлургии. Влияние температуры и продолжительности на степень превращения хлорида цинка. Характеристика оптимального режима при использовании хлорида железа.

    курсовая работа [1,2 M], добавлен 20.12.2017

  • Установки для выпаривания экстракционной фосфорной кислоты (ЭФК). Расчет выпарного аппарата, тарельчатого абсорбера и барометрического конденсатора. Физико-химические особенности поглощения фтористых газов. Установки для абсорбции фтористых газов.

    дипломная работа [2,8 M], добавлен 21.10.2013

  • Физико-механические свойства каучуков. Классификация резин, маркировка, ее хранение и применение. Ингредиенты, добавляемые при производстве резины и их влияние на свойства резины. Способы переработки, складирование, утилизация и захоронение отходов.

    курсовая работа [54,3 K], добавлен 04.12.2012

  • Изучение свойств и определение области практического использования адипиновой кислоты как двухосновной карбоновой кислоты. Описание схемы установки периодического действия для её получения. Оценка экологических факторов производства и его безопасность.

    контрольная работа [307,5 K], добавлен 29.01.2013

  • Технологическая схема производства серной кислоты: краткое описание процесса, функциональная и операторная схема. Этапы сернокислого производства. Получение обжигового газа из серы. Контактное окисление диоксида серы. Материальный расчет, показатели.

    курсовая работа [1,4 M], добавлен 23.02.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.