Переработка нефти и газа

Основные факторы, определяющие выход и качество продуктов первичной перегонки нефти. Классификация ректификационных колонн по конструкции внутреннего устройства. Выбор и обоснование варианта переработки. Разработка поточной технологической схемы.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 13.02.2014
Размер файла 1,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

  • Введение
  • 1. Теоретические основы первичной переработки нефти
    • 1.1 Индексация нефти и ее связь с технологией их переработки
    • 1.2 Физические основы переработки нефти
    • 1.3 Основные факторы, определяющие выход и качество продуктов первичной перегонки нефти
  • 2. Характеристика нефти
  • 3. Выбор и обоснование варианта переработки нефти
  • 4. Разработка поточной технологической схемы (НПЗ)
  • 5. Описание технологических процессов, входящих в схему НПЗ
  • 6 Материальные балансы технологических процессов НПЗ
  • 7. Суммарный материальный баланс НПЗ
  • Заключение

Введение

Нефтяная промышленность сегодня - это крупный комплекс, который живет и развивается по своим закономерностям. Нефть - это сырье для нефтехимии в производстве синтетического каучука, спиртов, полиэтилена, полипропилена, широкой гаммы различных пластмасс и готовых изделий из них, искусственных тканей; источник для выработки моторных топлив (бензина, керосина, дизельного и реактивных топлив), масел и смазок, а также котельно-печного топлива (мазут), строительных материалов (битумы, гудрон, асфальт); сырье для получения ряда белковых препаратов, используемых в качестве добавок в корм скоту для стимуляции его роста.

В настоящее время нефтяная промышленность Российской Федерации занимает 3 место в мире. Нефтяной комплекс России включает 148 тыс. нефтяных скважин, 48,3 тыс. км магистральных нефтепроводов, 28 нефтеперерабатывающих заводов общей мощностью более 300 млн. т/год нефти, а также большое количество других производственных объектов.

На предприятиях нефтяной промышленности и обслуживающих ее отраслей занято около 900 тыс. работников, в том числе в сфере науки и научного обслуживания - около 20 тыс. человек.

Промышленная органическая химии прошла длинный и сложный путь развития, в ходе которого ее сырьевая база изменилась кардинальным образом. Начав с переработки растительного и животного сырья, она затем трансформировалась в угле- или коксохимию (утилизирующую отходы коксования угля), чтобы в конечном итоге превратиться в современную нефтехимию, которая уже давно не довольствуется только отходами нефтепереработки. Для успешного и независимого функционирования ее основной отрасли - тяжелого, то есть крупномасштабного, органического синтеза был разработан процесс пиролиза, вокруг которого и базируются современные олефиновые нефтехимические комплексы. В основном они получают, а затем и перерабатывают низшие олефины и диолефины. Сырьевая база пиролиза может меняться от попутных газов до нафты, газойля и даже сырой нефти. Предназначавшийся вначале лишь для производства этилена, этот процесс теперь является также крупнотоннажным поставщиком пропилена, бутадиена, бензола и других продуктов.

Нефть - наше национальное богатство, источник могущества страны, фундамент ее экономики. нефть колонна технологический

Выбор направления переработки нефти и ассортимента получаемых нефтепродуктов определяется физико-химическими свойствами нефти, уровнем технологии нефтеперерабатывающего завода и настоящей потребности хозяйств в товарных нефтепродуктах. Различают четыре основных варианта переработки нефти:

1) топливный с глубокой переработкой нефти;

2) топливный с неглубокой переработкой нефти;

3) топливно-масляный;

4) топливно-нефтехимический.

По топливному варианту нефть перерабатывается в основном на моторные и котельные топлива. Топливный вариант переработки отличается наименьшим числом участвующих технологических установок и низкими капиталовложениями. Различают глубокую и неглубокую топливную переработку. При неглубокой переработке нефти отбор светлых нефтепродуктов составляет не более 40 - 45%, а выработка котельного топлива достигает 50 - 55% на исходную нефть. При глубокой переработке нефти стремятся получить максимально возможный выход высококачественных и автомобильных бензинов, зимних и летних дизельных топлив и топлив для реактивных двигателей. Выход котельного топлива в этом варианте сводится к минимуму.

Таким образом, предусматривается такой набор процессов вторичной переработки, при котором из тяжелых нефтяных фракций и остатка - гудрона получают высококачественные легкие моторные топлива. Сюда относятся каталитические процессы - каталитический крекинг, каталитический Реформинг, гидрокрекинг и гидроочистка, а также термические процессы, например коксование. Переработка заводских газов в этом случае направлена на увеличение выхода высококачественных бензинов. Более перспективным является вариант глубокой переработки нефти, при котором выход светлых нефтепродуктов составляет 65% на нефть, а котельное топливо (мазут) вырабатывается только для обеспечения собственных нужд НПЗ.

По топливно-масляному варианту переработки нефти наряду с топливами получают смазочные масла. Для производства смазочных масел обычно подбирают нефти с высоким потенциальным содержанием масляных фракций. Попутно с получением масел производят парафины и церезин, а из асфальтов и экстрактов, являющихся также продуктами установок очистки масел, получают битумную продукцию и нефтяной кокс.

Топливно-нефтехимический вариант переработки нефти предусматривает не только получение широкого ассортимента топлив, но и развитие нефтехимического производства. Нефтехимические производства используют в качестве сырья: прямогонный бензин, ароматические углеводороды, жидкие и твердые парафины. При переработке этого сырья получается целая гамма нефтехимической продукции: этилен и полиэтилен, дивинил и изопрен, бутиловые спирты и ксилолы, фенол и ацетон, стирол и полимерные смолы.

1. Теоретические основы первичной переработки нефти

1.1 Индексация нефти и ее связь с технологией их переработки

В зависимости от свойств получаемых нефтепродуктов выбирают наиболее рациональные, экономически выгодные пути переработки нефти. Для определения наиболее приемлемого варианта переработки нефти приводят классификацию. Существует несколько видов классификаций. Когда нефтепереработка только начала развиваться, нефти делили на три вида в зависимости от плотности: легкий, средний, утяжеленные. Позже появилась классификация горного бюро США, затем классификация ГрозНИИ, но в настоящее время наибольшее применение находит технологическая классификация.

Технологические классификации обычно преследуют прикладные цели и часто носят ведомственный характер. В основу их положены признаки, имеющие значения для технологии переработки нефти или получения того или иного ассортимента продуктов.

Рассмотрим принятую в России технологическую классификацию (таблица 1).

Как видно из этих норм по содержанию серы и парафина, требования касаются не только нефти, но и качества наиболее употребляемых топлив (и базовых масел), причем определяющим для отнесения нефти к тому или иному классу или виду являются требования по дистиллятам.

Шифр нефти по этой классификации записывается пятизначным числом с точками. Например,1.2.2.1.3 - малосернистая нефть, со средним содержанием светлых дистиллятов, с достаточно высоким содержанием парафина.

Шифр нефти является как бы ее технологическим паспортом, определяющим направление ее переработки (на топлива или масла), набор технологических процессов (сероочистка, депарафинизация) и ассортимент конечных продуктов.

Таблица 1 - Технологическая классификация нефтей

Класс нефти

Содержание серы, %(масс)

Нефть

Бензин (н.к.-180 °C)

Авиац. кер. (120-240 °C)

Диз. топливо (240-350 °C)

1 (малосернистая)

?0,5

?0,1

?0,1

?0,2

2 (сернистая)

0,5-2,0

?0,1

?0,25

?1,0

3 (высокосернистая)

2,0

>0,1

>0,25

>1,0

Тип нефти

Содержание фракций до 350 °C,%(масс)

1 (легкая)

?55,0

2 (средняя)

45-54,9

3(тяжелая)

<45

Группа нефти

Потенциальное содержание базовых масел. % (масс)

1

>25

>45

2

15-24,9

45

3

15-24,9

30-44,9

4

<15

<30

Подгруппа нефти

Индекс вязкости

1

>95

2

90-95

3

85-90

4

<80

Вид нефти

Содержание парафина, % (масс)

Требования по депарафинизации

не требуется

требуется

1 (малопарафинистая)

?1,5

Для получения реактивного и дизельного топлив и дистиллятных базовых масел

-

2 (парафинистая)

1,51-6.0

Для получения реактивного и летнего дизельного топлива

Для получения зимнего дизельного топлива дистиллятных базовых масел

3 (высокопарафинистая)

>6,0

-

Для получения реактивного топлив и дистиллятных базовых масел

1.2 Физические основы переработки нефти

Нефти различных месторождений заметно отличаются по фракционному составу - содержанию легких, средних и тяжелых дистиллятов. Большинство нефтей содержит 15-25% бензиновых фракций, выкипающих до 180 °С, и 45-55% фракций, перегоняющихся до 300-350 °С.

Основные химические элементы, входящие в состав нефти, - углерод (82-87%), водород (11-14%), сера (0,1-7%), азот (0,001-1,8%), кислород (0,5-1%).

Общее содержание алканов (парафины) в нефтях достигает 30-50%, циклоалканов (циклопарафины, нафтены) - от 25 до 75%. Арены (ароматические углеводороды) содержатся, как правило, в меньшем количестве по сравнению с алканами и цикло-алканами (10-20%).

Соотношения между группами углеводородов придают нефтям различные свойства и оказывают влияние на выбор метода переработки нефти и номенклатуру получаемых продуктов.

Нефть является основным источником сырья для нефтеперерабатывающих заводов при получении моторных топлив, масел и мазута. Нефть и продукты ее переработки служат также сырьем для синтеза многочисленных химических продуктов: полимерных материалов, пластических масс, синтетических каучуков и волокон, спиртов, растворителей и др. В перспективе большая часть нефтепродуктов (особенно энергетических топлив) может быть замещена альтернативными энергоносителями, в то время как замена нефтяного сырья в качестве источника получения нефтехимических продуктов мало вероятна. Более того, доля нефти, используемой в нефтехимических производствах, в ближайшие годы в мире возрастет до 8% и по прогнозам в 2000 г. достигнет 20-25%. В связи с этим происходит интеграция нефтеперерабатывающей и нефтехимической промышленности и формирование нефтехимических комплексов.

Несмотря на то, что в состав нефти входят практически все химические элементы таблицы Д.И. Менделеева, её основа всё-таки органическая и состоит из смеси углеводородов различных групп, отличающихся друг от друга своими химическими и физическими свойствами. Независимо от сложности и состава, переработка нефти начинается с первичной перегонки. Обычно перегонку проводят в два этапа - с небольшим избыточным давлением, близким к атмосферному и под вакуумом, при этом используя для подогрева сырья трубчатые печи. Поэтому, установки первичной переработки нефти носят названия АВТ - атмосферно-вакуумные трубчатки.

Смысл процесса довольно прост. Как и все другие соединения, нефть преимущественно содержит жидкие углеводороды, которые имеют свою температуру кипения, то есть температуру, выше которой они испаряются, переходят в паровую фазу.

Перегонка осуществляется в ректификационной колонне, которая представляет собой высокий цилиндрический аппарат, перегороженный множеством ректификационных тарелок. Их конструкция такова, что поднимающиеся вверх пары углеводородов, могут частично конденсироваться, собираться на этих тарелках и по мере накопления на тарелке жидкой фазы сливаться вниз через специальные сливные устройства. В то же время парообразные продукты продолжают проходить через слой жидкости на каждой тарелке, и по мере прохождения по колонне вверх насыщаются более близкими по температурам кипения фракциями.

Температура в ректификационной колонне снижается по её высоте - от куба, до самой верхней тарелки. Для получения из нефти необходимой фракции, кипящей в заданных температурных пределах, достаточно сделать отводы из колонны на определённой высоте. Каждая фракция имеет свое конкретное назначение и в зависимости от него может быть широкой или узкой, то есть выкипать в интервале двухсот или двадцати градусов. И чем более узкие фракции необходимо получить, тем выше должны быть колонны. Чем больше в них тарелок, тем больше раз одни и те же молекулы должны, поднимаясь вверх с тарелки на тарелку контактировать друг с другом, переходя из газовой фазы в жидкую и обратно. Другими словами пройти многократную конденсацию и испарение с массообменом.

На практике перегонку (или, как говорят специалисты, разгонку), проводят в нескольких колоннах. Обычно их пять. На первой колонне выделяется легкая бензиновая фракция, во второй керосиновая и дизельные фракции. Легкая, нестабильная бензиновая фракция конденсируется в специальном холодильнике-конденсаторе и уже в жидком виде отправляется в стабилизационную колонну, откуда стабильная, широкая бензиновая фракция направляется в колонну для разделения на узкие фракции с последующим использованием их на вторичных процессах. Остатки атмосферной перегонки нефти направляют для извлечения более тяжелых масляных фракций в вакуумную колонну.

Комбинирование нефтепереработки (первичная переработка, каталитический крекинг, риформинг) с нефтехимическими процессами (пиролиз, синтез мономеров, производство пластмасс и др.) значительно расширяет возможности выбора оптимальных схем глубокой переработки нефти, повышает гибкость производственньгх систем для получения моторных топлив или нефтехимического сырья, способствует увеличению их рентабельности. В настоящее время имеется большое число процессов и их комбинаций, которые потенциально могут обеспечить глубину переработки нефти вплоть до 100%.

1.3 Основные факторы, определяющие выход и качество продуктов первичной перегонки нефти

Перегонка (дистилляция) - это процесс физического разделения нефти и газов на фракции (компоненты), различающиеся друг от друга и от исходной смеси по температурным пределам (или температуре) кипения. По способу проведения процесса различают простую и сложную перегонку.

Простая перегонка осуществляется постепенным, однократным или многократным испарением.

Перегонка с постепенным испарением состоит в постепенном нагревании нефти от начальной до конечной температуры с непрерывным отводом и конденсацией образующихся паров. Этот способ перегонки нефти и нефтепродуктов в основном применяют в лабораторной практике при определении их фракционного состава.

При однократной перегонке жидкость (нефть) нагревается до заданной температуры, образовавшиеся и достигшие равновесия, пары однократно отделяются от жидкой фазы - остатка. Этот способ, по сравнению с перегонкой с постепенным испарением, обеспечивает при одинаковых температуре и давлении большую долю отгона.

Перегонка с многократным испарением заключается в последовательном повторении процесса однократной перегонки при более высоких температурах или низких давлениях по отношению к остатку предыдущего процесса.

Из процессов сложной перегонки различают перегонку с дефлегмацией и перегонку с ректификацией.

При перегонке с дефлегмацией образующиеся пары конденсируют, и часть конденсата в виде флегмы подают навстречу потоку пара. В результате однократного контактирования парового и жидкого потоков уходящие из системы пары дополнительно обогащаются низкокипящими компонентами, тем самым несколько повышается четкость разделения смесей.

Перегонка с ректификацией - наиболее распространенный в химической и нефтегазовой технологии массообменный процесс, осуществляемый в аппаратах - ректификационных колоннах - путем многократного противоточного контактирования паров и жидкости. Контактирование потоков пара и жидкости может производиться либо непрерывно (в насадочных колоннах) или ступенчато (в тарельчатых ректификационных колоннах).

Классификация ректификационных колонн

Ректификационная колонна представляет собой вертикальный цилиндрический аппарат различного диаметра (1,5-3,5м), высоты (от 10-12 до 30-35м). Изготовляется колонна из специальной марки стали, и она оснащена специальными контактными устройствами.

Все ректификационные колонны делят по нескольким признакам:

1) по технологическому режиму в колонне различают: колонны, работающие при атмосферном давлении или близком к нему; колонны, работающие под избыточным давлением; колонны, работающие под вакуумом;

2) по типу контактных устройств различают: колонны насадочного типа; роторно-дисковые колонны; тарельчатые колонны.

3) по количеству отбираемых продуктов различают простые и сложные колонны. Простой называют колонну, в которой отбирают два продукта - верхний и нижний. Сложной называют колонну, в которой отбирают три и более продукта: сверху, снизу и сбоку колонны.

Простые колонны обеспечивают разделение исходной смеси (сырья) на два продукта: ректификат (дистиллят) - выводимый с верха колонны в парообразном состоянии, и остаток - нижний жидкий продукт ректификации.

Сложные колонны обеспечивают разделение исходной смеси на три и более продукта.

Вариант переработки нефти выбирают в зависимости от шифра нефти. В связи с тем, что светлые фракции (до 350° С) всегда используются в качестве топлив, варианты переработки нефти выбирают в зависимости от группы и подгруппы нефти. Принципиальная технологическая схема АВТ принимается после выбора варианта переработки.

При выборе схемы следует учесть состав и характеристики перегоняемой нефти, а также ассортимент, требования к качеству получаемых продуктов.

Рисунок 1 - Простая ректификационная колонна

Рисунок 2 - Сложная ректификационная колонна

I. Атмосферная трубчатка (АТ). Этот блок предназначен для отбора от нефти светлых нефтепродуктов при атмосферном давлении. В атмосферной части схема перегонки может быть с однократным испарением и двухкратным испарением: а) с предварительным отбензиниванием нефти; б) с предварительным испарением легких фракций.

Выбор той или иной схемы зависит от типа нефти и ее класса (особенно по меркаптановой сере), а также содержащихся в нефти растворенных газов. При выборе каждой из этих схем следует учитывать их недостатки и преимущества.

1. Установки с однократным испарением (ОИ) применяются при перегонке стабильных нефтей с незначительным содержанием растворенных газов. Они обеспечивают минимальные энергозатраты и меньшую металлоемкость по сравнению с другими схемами. Существенный недостаток этих установок - отсутствие технологической гибкости для перевода на новое сырье и др. ассортимент продуктов, а также большие потери фракций, выкипающих до 350 °С, с мазутом.

Рисунок 3 - Схема установки с ОИ

2. При двукратном испарении с предварительным отбензиниванием. Бензиновая фракция и УВ газ отбираются в отбензинивающей колонне, а в основной отбирается легкая, тяжелая керосиновая фракции. Эта схема переработки нефти применяется при наличии в нефти большого количества растворенных газов и бензиновой фракции, а при переработке обводненных, сернистых нефтей. Достоинством этой установки является высокая технологическая гибкость, возможность снижения давления и нагрузки печи от легких фракций, что позволяет тем самым разрушить основную ректификационную колонну и предотвратить ее коррозию. Недостатком этой установки является энергоемкость, обусловленная необходимостью нагрева нижней части отбензинивающей колонны «горячей струей». Отбензиненную нефть приходится нагревать до более высокой температуры (390 єС), что снижает качество масленых дистиллятов, находящихся в мазуте (рис. 3).

3. Разновидностью блока АТ с двухкратным испарением является схема с предварительным испарением легких фракций, т.е. с эвапоратором. По этой схеме, нагретая в теплообменнике или в печи нефть поступает в испаритель, в котором за счет ОИ, разделяется на паровую и жидкостную фазы. Паровая фаза из испарителя подается в питательную секцию сложной ректификационной колонны. Достоинствами являются снижение нагрузки на печь и гидравлическое сопротивление печи. Недостатком является увеличение нагрузки по парам в сложной ректификационной колонне, т.к. в ней происходит ректификация и паров из испарителя и паров, образовавшихся за счет нагревания жидкой фазы в печи. Эта схема переработки нефти применяется крайне редко (рис. 5).

II. Вакуумная трубчатка (ВТ). Этот блок предназначен для перегонки мазута. В зависимости от варианта переработки нефти от мазута отбирают вакуумный газойль (350-500 єС) - топливный вариант или масленые дистилляты (350-400, 400-450, 450-500 єС) - топливно-масляный вариант. При отборе от мазута вакуумного газойля применяют схему с ОИ, т.е. мазут после нагрева в печи поступает в вакуумную колонну, где от него отбирается вакуумный газойль, а снизу колонны выводится гудрон (рис. 6).

Рисунок 4 - Схема установки с двухкратным испарением (с предварительным отбензиниванием)

Рисунок 5 - Схема установки с двухкратным испарением (предварительным испарением легких фракций)

В случае отбора от мазута масляных дистиллятов и когда требуется высокая четкость разделения, применяют схему вакуумного блока с двухкратным испарением. В этом случае в первой вакуумной колонне отбирается от мазута широкая масляная фракция (350-500 и 350-520 єС), а затем эта фракция разделяется на узкие масляные дистилляты во второй вакуумной колонне, но эксплуатационные расходы на перегонку мазута по этой схеме значительно выше.

Рисунок 6 - Схема установки с ОИ (при перегонке мазута топливным вариантом)

В настоящее время атмосферные и вакуумные блоки строят в составе одной установки (рис.7), что позволяет значительно снизить:

а) протяженность трубопроводов;

б) число промежуточных емкостей;

в) эксплуатационные затраты;

г) количество обслуживаемого персонала.

Рис. 7 - Принципиальная схема типовой современной АВТ:

1 - резервуар с нефтью; 2 - блок ЭЛОУ; 3 - отбензинивающая колонна; 4 - атмосферная колонна; 5 - колонна стабилизации; 6 - колонна вторичной перегонки бензина; 7 - вакуумная колонна; 8 - эжектор; 9 - печи; 10 - теплообменники; 11 - холодильники; 12 - насосы;

Потоки:I - сырая нефть; II - обессоленная нефть; III - отбензиненная нефть; IV,V- бензиновые фракции; VI - углеводородные газы; VII - сжиженный газ; VIII - фракция НК 85 оС; IX - фракция 85-10 оС; ; X - мазут; XI - газойлевая фракция; XII - легкий вакуумный газойль; XIII - вакуумный газойль; XIV - гудрон; ; XV - керосин; XVI - дизельное топливо

2. Характеристика нефти

Исходная нефть, для первичной переработки которой проектируется установка, указывается в задании на курсовое проектирование. В данном случае это Озексуатская нефть. Приведем подробную характеристику нефти и составим ее шифр.

Таблица 2 - Физико-химические свойства нефти

0,823

М

219

V30

6,28

V50

3,75

Температура застывания, ?C

20

Температура вспышки, ?C

0

Давление насыщенных паров

При 38 ?C

-

При 50 ?C

-

Парафин

Содержание %

17,5

Температура плавления?C

52

Содержание, %

серы

0,09

азота

0,12

Смол силикагелевых

2,1

асфальтенов

0,38

Выход фракций вес. %

до 200 ?C

24,2

до 350?C

58,1

Таблица 3 - Потенциальное содержание фракций в нефти

Отгоняется до температуры, оС

нефть

Отгоняется до температуры, оС

нефть

28 (газ до С4)

60

62

85

90

95

100

105

110

120

130

140

145

150

160

170

180

190

200

210

220

240

250

260

270

280

0,2

2,4

2,5

3,6

3,9

4,2

4,6

5,4

7,1

8,3

10,1

11,8

13,6

14,7

15,6

17,0

19,2

20,6

22,0

24,2

26,6

27,9

30,2

33,5

35,6

38,4

290

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

40,9

44,3

45,4

47,3

50,3

52,6

55,5

58,1

60,4

63,4

65,6

66,6

68,5

69,5

70,6

71,8

73,6

74,6

75,7

76,7

77,7

Таблица 4 - Свойства определяющие шифр Озексуатской нефти

Наименование

Значение

1

2

1. Содержание серы, % масс.

- в нефти

- в бензине (н.к.-120С)

- в керосине (180-240С)

- в дизельном топливе (240-350С)

0

следы

-

-

Класс нефти:

1

2. Содержание фракций, выкипающих до 350 С, % масс.

20,4

Тип нефти:

3

3. Суммарное содержание базовых масел, % масс.

- на нефть

- на мазут

-

-

Группа нефти:

-

4. Индекс вязкости базовых масел:

-

Подгруппа нефти:

-

5. Содержание парафина в нефти, % масс.

17,5

6. Температура, С

-начала кристаллизации авиакеросина

-застывания дизельного топлива

- застывания базовых масел

-60

-15

-

Вид нефти:

3

Шифр нефти:

1.3.-.-.3

На основании определенного выше шифра, можно сказать, что Озексуатская нефть, малосернистая с низким содержанием светлых дистиллятов и низким содержанием парафина. Следовательно, перерабатывается по топливному варианту.

3. Выбор и обоснование варианта переработки нефти

Выбор направления переработки нефти и ассортимента получаемых нефтепродуктов определяется физико-химическими свойствами нефти, уровнем развития техники нефтепереработки и потребностями в товарных нефтепродуктах данного экономического района. Различают три основных варианта переработки нефти: 1) топливный; 2) топливно-масляный; 3) нефтехимический (комплексный).

По топливному варианту нефть перерабатывают в основном на моторные и котельные топлива. При одной и той же мощности завода по нефти топливный вариант переработки отличается наименьшим числом технологических установок и низкими капиталовложениями. Переработка нефти по топливному варианту может быть глубокой и неглубокой. При глубокой переработке нефти стремятся получить максимально возможный выход высококачественных авиационных и автомобильных бензинов, зимних и летних дизельных топлив и топлив для реактивных двигателей. Выход котельного топлива в этом варианте сводится к минимуму. Таким образом, предусматривается такой набор процессов вторичной переработки, при котором из тяжелых нефтяных фракций и остатка - гудрона получают высококачественные легкие моторные топлива. Сюда относятся каталитические процессы - каталитический крекинг, каталитический риформинга, гидрокрекинг и гидроочистка, а также термические процессы, например, коксование. Переработка заводских газов в этом случае направлено на увеличение выхода высококачественных бензинов. При неглубокой переработке нефти предусматривается высокий выход котельного топлива.

По топливно-масляному варианту переработки нефти наряду с топливами получают смазочные масла. Для производства смазочных масел обычно подбирают нефти с высоким потенциальным содержанием масляных фракций. В этом случае для выработки высококачественных масел требуется минимальное число технологических установок. Масляные фракции (фракции, выкупающие выше 350 °C), выделенные из нефти, сначала подвергаются очистке избирательными растворителями: фенолом или фурфуролом, чтобы удалить часть смолистых веществ и низкоиндексные углеводороды, затем проводят депарафинизацию при помощи смесей метил этил кетона или ацетона с толуолом для понижения температуры застывания масла. Заканчивается обработка масляных фракций отбеливающими глинами.

При любом из двух разобранных вариантов переработки нефти следует предусматривать процессы по производству сырья для нефтехимической промышленности: этилена, пропилена, бутиленов, бензола, толуола и др. Из года в год увеличивается доля нефти, используемой как сырье для нефтехимической промышленности.

Нефтехимический вариант переработки нефти по сравнению с предыдущими вариантами отличается большим ассортиментом нефтехимических продуктов и в связи с этим наибольшим числом технологических установок и высокими капиталовложениями.

Выбор того или иного варианта переработки нефти, а, следовательно, и схемы промышленной установки первичной переработки нефти, обусловлен качеством исходной нефти и зависит также от ассортимента намеченных к выработке продуктов с заданными интервалами выкипания.

Экономически целесообразным вариантом переработки Серноводской нефти является топливный, в связи с недостаточным содержанием в ней масляных фракций. Исходя из шифра нефти (1.2.-.-.3.) и для получения выбранных конечных продуктов с приведенными выше свойствами, выберем трехступенчатую схему атмосферно - вакуумной перегонки нефти. В основу разрабатываемой схемы положим одну из промышленных схем АВТ с трехкратным испарением.

Нефть будет подвергаться предварительному обезвоживанию и обессоливанию, поэтому блок ЭЛОУ опускаем.

По принятой схеме нефть проходит три ступени перегонки: предварительной отбензинивание, собственно разделение на фракции и последующую вакуумную перегонку мазута.

Продукты установки АВТ

1. УВ газ, выделяемый из нефти, содержит значительное количество пропана и бутана, частично пентана. Этот газ направляется на ГФУ. Полученные из него фракции используют как бытовые и промышленные топлива, сырье на установках пиролиза, алкилирования (получения алкил - бензина). Полимеризации (получения полимер - бензина).

2. Бензиновая фракция (28-180°C). В основном подвергается вторичной перегонке с получением фракций.

3. Керосиновая фракция (180-240°C) используется для получения реактивных топлив, а также в качестве осветительного керосина.

4. Дизельных фракции (240-350°C) используется для производства различных сортов дизельных топлив.

Мазут (остаток выше 350°C) используется для получения котельного топлива, а также в качестве сырья установок термокрекинга.

5. Вакуумный газойль(350-500°C) используется в качестве сырья установок каталитического крекинга для получения высокооктановых бензинов.

6. Гудрон (остаток выше 500°C) используется в качестве сырья установок термокрекинга.

Описание технологической схемы АВТ

Обезвоженная и обессоленная нефть насосом прокачивается через теплообменники , где она нагревается до температуры 180-200 °С, в простую отбензинивающую колонну на разделение. От нефти отбирают низкокипящие фракции. Давление газов поддерживается в колонне чуть выше атмосферного. Сверху колонны отбирают пары бензиновой фракции с растворенными углеводородными газами, которые далее отделяют от фракции. Часть бензиновой фракции подается обратно в колонну, в качестве холодного орошения, а балансовое количество выводится с установки. Остатком отбензинивающей колонны является отбензиненная нефть, которая подается в печь, где доиспаряется и нагревается до температуры 350 °С и далее поступает в сложную колонну.

Часть отбензиненной нефти возвращается в простую колонну в качестве горячей струи. В сложной ректификационной колонне отбирают три дистиллята, сверху колонны отбирают пары легкой керосиновой фракции и воды, которые охлаждаются в аппарате воздушного охлаждения, доохлаждаются в конденсаторе - холодильнике и поступают в емкость-водоотделитель. Часть легкой керосиновой фракции возвращается в колонну в качестве орошения, а балансовое количество выводится с установки.

Тяжелая керосиновая и дизельная фракции выводятся с установки через боковые погоны, которые поступают в теплообменники, где отдают свое тепло нефти, доохлаждаются в и выводятся с установки. Остатком сложной ректификационной колонны является мазут, который поступает в печь, где нагревается до температуры 420 ° С и поступает в вакуумную колонну. Температура в печи П-2 поддерживается в пределах 420 ° С во избежание термического разложения молекул. В вакуумной колонне К-3 работает специально вакуум создающая аппаратура. Сверху колонны пароструйным эжектором через барометрический конденсатор выводятся пары - разложения. Вакуумный газойль выводится боковыми погонами, остатком вакуумной колонны является гудрон, который охлаждается до температуры 20-40° С в холодильнике погружного типа и выводится с установки.

4. Разработка поточной технологической схемы (НПЗ)

Сырая нефть с промыслов поступает на ЭЛОУ. Обезвоженная и обессоленная нефть направляется на первичную переработку, т.е. на АВТ.

Углеводородный газ, полученный на установке АВТ, направляется на ГФУ, где он разделяется на сухой (метан - этана) и сжиженный газы (пропановая, бутановая, изопентановая фракции). Сухой газ используется как бытовое и промышленное топливо. Сжиженный газ направляется на блок сжиженных углеводородных газов. Они (сжиженные газы) могут использоваться как баллонное топливо, направляться на установки алкилирования.

Бензиновая фракция (28-180°C) направляется на вторичную перегонку. Она разделяется на две части: бензиновую фракцию 28-85°C, направляемую на изомеризацию (но мы ее на изомеризацию не будем отправлять, чтобы лишний процесс не добавлять, а направим сразу на добавление к товарным бензинам для улучшения их пусковых свойств). Бензиновую фракцию 85-180°C, направляемую на каталитический риформинга, где из нее получают высокооктановый бензин и ВСГ. Бензин риформинга направляется в блок «товарных бензинов», где он смешивается с бензиновой фракцией 28-85 °C . Углеводородный газ направляется вместе с другими газами на ГФУ, а ВСГ- на гидроочистку.

Керосиновая фракция (180-240°C). В зависимости от содержанием серы в ней определяют проводить гидроочистку или нет. В соответствии с шифром нефти гидроочистка для керосиновой фракции не требуется. Далее необходимо провести депарафинизацию, но в данном случае мы этот процесс опустим и направим ее в блок «реактивного топлива».

Дизельная фракция (240-350°C) - требуется гидроочистка. Образующийся углеводородный газ направляются на ГФУ, а бензиновая фракция на каталитического риформинга для повышения октанового числа. Дизельное топливо направляется на депарафинизацию (в зависимости от содержания в нем парафина). Обычно для дизельного топлива проводится карбамидная депарафинизация, в результате чего получается само дизельное топливо и парафин. Вакуумный газойль (350-500°C) является сырьем для каталитического крекинга, продуктами которого являются углеводородный газ, бензин, легкий и тяжелый газойли. Легкий газойль используется как компонент дизельного топлива, а тяжелый - как котельное топливо. Гудрон (>500°C) направляется на замедленное коксование, где получают углеводородный газ, бензин, легкий и тяжелый газойли и кокс (рис.4.1).

Выбор направления переработки нефти и ассортимента получаемых нефтепродуктов определяется физико-химическими свойствами нефти, уровнем развития техники нефтепереработки и потребностями в товарных нефтепродуктах данного экономического района. Различают три основных варианта переработки нефти: 1) топливный; 2) топливно-масляный; 3) нефтехимический (комплексный).

В зависимости от варианта переработки заводы имеют различный набор установок. Для всех заводов топливного варианта характерны установки риформинга, каталитического крекинга, гидроочистки дистиллятов. Заводы, работающие по масляному варианту, как правило, имеют установки деасфальтизации гудрона, селективной очистки (раньше фенолом или фурфуролом, в последнее время применяется N-метилпирролидон ввиду относительных нетоксичности и экологичности последнего), депарафинизации, гидро- или адсорбционной очистки.

Российские заводы работают по одному из трёх вариантов: топливному, топливно-масляному и топливно-нефтехимическому. В случае первого бывают два случая - глубокой и неглубокой переработки нефти. Ниже подробно рассмотрена поточная схема завода, работающего по топливному варианту глубокой переработки нефти.

Схема завода, работающего по топливному варианту глубокой переработки нефти.

Рисунок 8 - Схема завода, работающего по топливному варианту глубокой переработки нефти.

Среди российских НПЗ по топливному варианту неглубокой переработки нефти), работают Орский, Киришский и другие, конечно, различающиеся по набору установок, но одинаковые по основным направлениям переработки без каталитического крекинга и гидрокрекинга, коксования.

По поточной схеме (масляный вариант) работают Волгоградский, Рязанский, Ферганский НПЗ. Отличием от топливного варианта является то, что отсутствует процесс термического крекинга гудрона, а мазут направляется на маслоблок, где из него в ходе последовательных процессов (в случае дистиллятов: вакуумная перегонка, селективная очистка, депарафинизация, гидроочистка (в случае остатка процессу селективной очистки предшествует деасфальтизация)) получают дистиллятные и остаточные базовые масла, а также парафин и церезин (в ходе их обезмасливания).

5. Описание технологических процессов, входящих в схему НПЗ

Вторичная перегонка бензина (теория. схемы. описание)

Продукты первичной переработки нефти направляются на дальнейшую вторичную переработку. Все процессы вторичной переработки можно разделить по следующим признакам:

- по условиям проведения различают термические (протекают при высоких температурах и давлении), термокаталитические (протекают при высоких температурах, давлении и в присутствии катализатора) и гидрогенизационных (протекают в присутствии водорода) процессы;

- по цели вторичной переработки различают: процессы, направленные на повышение качества продуктов; процессы, направленные на углубление переработки нефти; процессы переработки газов.

5.1 Каталитический риформинг

Прямогонные бензиновые фракции имеют низкие октановые числа, так как состоят в основном из низкооктановых, парафиновые, и нафтеновые УВ. Назначением процесса каталитического риформинга является получение высокооктановых бензинов путем ароматизации прямогонных бензинов. Процесс каталитического риформинга может быть также направлен на получение индивидуальных ароматических углеводородов (бензола, толуола, ксилола).

Сырье процесса. В качестве сырья процесса используются прямогонные бензиновые фракции, причем присутствие в сырье С6 -С7 нежелательно, т.к. в условиях процесса они подвергаются гидрокрекингу и дают большой выход газов. Поэтому на процесс риформинга направляют бензиновые фракции с пределами выкипания 85-180°C. Для получения индивидуальные ароматические УВ используют узкие бензиновые фракции.

Продукты процесса. В процессе риформинга получают два целевых и один побочный продукт:

1. бензин риформинга имеет высокое октановое число, содержит большое количество ароматических УВ (до 60%) и имеет тяжелый фракционный состав. Все это приводит к тому, что бензины риформинга не могут использоваться в качестве товарных бензинов в чистом виде, а используются только как компоненты;

2. водородсодержащий газ (ВСГ) является очень важным продуктом риформинга, который используется в гидрогенизационных процессах;

3. углеводородный газ риформинга не содержит непредельных углеводородов и направляется на газофракционирующую установку (ГФУ).

Принципиальная технологическая схема каталитического риформинга (рис.9).

Сырье риформинга после блока гидроочистки смешивается с циркулирующего ВСГ и нагревается в первой секции печи до температуры 510 °C, затем поступает в первый по ходу движения реактор , в котором находится стационарный (не движущийся, постоянный) слой катализатора. При контакте сырья с катализатором часть сырья подвергается превращению, но так как реакция эндотермическая, температура сырья снижается до 470-480 °C. Поэтому пары продуктов риформинга и сырья выводятся из реактора, нагреваются во второй секции печи до температуры 510°C и подаются в реактор. Пары продуктов и сырья на выходе из также имеют пониженную температуру. Поэтому они вновь нагреваются в третьей секции печи и поступают в реактор. Пары продуктов и ВСГ из реактора поступают на разделение в сепаратор, сверху которого выводится ВСГ. Избыточная часть ВСГ выводится с установки, а циркулирующая часть возвращается (бензин), который поступает в разделительную колонну, сверху которой выводится углеводородный газ, головка стабилизации, а снизу реформат.

Рисунок 9 - Принципиальная схема установки каталитического риформинга для получения высокооктанового бензина на стационарном катализаторе:

Р-1 - реактор гидроочистки; Р-2,-3,-4 - реакторы риформинга; П-1,-2,-3 - трубчатые печи; РК-1,-2 - ректификационные колонны; А - адсорбер; СО - секция очистки газов; Е-1,-3 - сепараторы высокого давления; Е-2,-4 - сепарационные емкости колонн; Т - теплообменники; Х - холодильники; Н - насосы; К-1,-2 - компрессоры;

Потоки: I - бензин 85-180 оС; II -ВСГ; III - гидроочищенный катализат; IX,XI - углеводородные газы; V - отдув ВСГ; VI - гидроочищенный бензин на риформинг; VII - риформированный катализат; VIII - жидкая фаза; IX - ВСГ на очистку; X - нестабильный катализат риформинга; XII - сжиженный газ; XIII - стабильный высокооктановый бензин; XIV - товарный ВСГ

5.2 Каталитический крекинг

Каталитический крекинг появился в США и к настоящему времени неузнаваемо усовершенствовался. Сейчас это самый массовый процесс получения высокооктанового бензина, газа для синтеза алкилбензина - компонента дизельного топлива и сырья для получения технического углерода. Поэтому он является базовым процессом в схемах глубокой переработки нефти.

С химической точки зрения каталитический крекинг - это процесс где оптимально используются ресурсы водорода исходного сырья при частичном выводе углерода и получении преимущественно ароматических и изоалкановых углеводородов.

Сырье для этого процесса оценивается по фракционному составу и по содержанию примесей.

Качество сырья:

а) Фракционный состав сырья. Бензиновые фракции в сырье каталитического крекинга нежелательны, так как в процессе химический состав их не изменяется, следовательно, и октановое число, т.е. они, являются балластом на установке. Но в последнее время в сырье каталитического крекинга стали вовлекать бензиновые фракции вторичных процессов термокрекинга и коксования с целью облагораживания их как по химическому составу, так и по октановому числу. В сырье крекинга их содержание достигает 15%. Керосиновые и дизельные фракции не вовлекаются в сырье каталитического крекинга, так как являются сырьем для производства реактивных и дизельных топлив. Ограничивающим фактором по концу кипения каталитического крекинга является содержание гетероатомных соединений смол, Асфальтенов и тяжелых металлов.

б) Химический (групповой) состав сырья. Наиболее реакции свободными в процессе каталитического крекинга являются изопарафиновые и алкинафтеновые углеводороды; ароматизированные углеводороды в составе сырья каталитического крекинга приводят к увеличению выхода кокса. Таким образом, наиболее благоприятным сырьем каталитического крекинга являются сырье парафин нафтенового основания и нежелательно ароматическое сырье.

в) Содержание нежелательных компонентов. Нежелательные компоненты сырья каталитического крекинга можно условно разделить на две группы:

1) вызывающие только повышенное коксоотложение на катализаторе;

2) вызывающие отравление катализатора.

К первой группе относятся полициклические, ароматические УВ, смолы и асфальтены.

Ко второй группе относятся сернистые соединения, тяжелые металлы и азотистые соединения основного характера (адсорбируется на кислотных центрах катализатора, блокируя их).

Продукты каталитического крекинга:

1. углеводородный газ содержит значительное количество пропана, изобутана и бутана. После фракционирования на ГФУ сухой газ используется в качестве сырья нефтехимии, бытового топлива; изобутан используется в качестве сырья нефтехимии и процесса алкилирования;

2. бензиновая фракция (н.к.-195 ?C) используется в качестве компонента авто- и авиабензинов;

3. легкий газойль (пределы выкипания 195-350, 195-270, 270-420?C) используется в качестве компонента дизельного топлива, для производства «игольчатого» кокса и в качестве флогента;

4. тяжелый газойль используется в качестве компонента котельного топлива.

Принципиальная технологическая схема установки каталитического крекинга.

Сырье каталитического крекинга с блока гидроочистки поступает в узел смещения лифт - реактора Р-1. перед подачей сырья в узел смешения подается водяной пар, сюда же из регенератора ссыпается горячий регенерированный катализатор. При контакте с горячей катализатором сырье испаряется, пары сырья и катализатор начинают подниматься по лифт - реактору. За время прохождения лифт-реактора (1,5-3 сек.) сырье успевает полностью крекироваться.

Пары продуктов и катализатор попадают в отстойную зону реактора. За счет увеличения диаметра отстойной зоны скорость движения катализаторной смеси уменьшается и под действием силы тяжести катализатор ссыпаются парную секцию; за счет контакта с водяным паром тяжелые УВ отпаривается на поверхности катализатора. Для улучшения контакта катализатора и водяного пара парная секция снабжена каскадными горелками. Дисорбированный катализатор из парной зоны ссыпается в регенератор. Регенерация катализатора осуществляется выжигом с поверхности катализатора горячим воздухом образовавшегося кокса. Дымовые газы, образовавшиеся при выжигании кокса, проходят двухступенчатую систему циклонов для улавливания каталитического пыли, затем подаются в котел-утилизатор КУ, в котором за счет тепла отходящих дымовых газов образуется водяной пар, затем дымовых водяной пар, затем дымовые газы проходят электрофильтры для полного управления каталитической пыли и выбрасываются в атмосферу. Регенерированный катализатор возвращаются в лифт-реактор. Пары продуктов крекинга в отстойной зоне реактора также проходят двухступенчатую систему циклонов для улавливания каталитической пыли, затем подаются в ректификационную колонну на разделение. Сверху колонны выводится углеводородный газ, бензиновая фракция и водяной пар, которые после охлаждения и конденсации разделяются в водогазосепараторе. Боковыми погонами колонны являются легкие и тяжелые газойли, выводимые через стриппинги, нижняя часть колонны представляет собой отстойник каталитического шлама. Он возвращается в парную секцию колонны. Сверху отстойника выводится остаток выше 400 или 420 ?C, (рис.10).

Рисунок 10 - Принципиальная схема установки каталитического крекинга

Р-1 - реактор сквознопоточный; РГ-1 - регенератор с кипящим слоем; Сеп - сепарационная зона реактора; Ц-1,-2 - циклонные группы; КУ - котел-утилизатор; ЭФ - электрофильтр; БК - бункер для катализатора; ПВ - подогреватель воздуха; П-1- трубная печь; РК - ректификационная колонна; ОК - отпарная колонна; ГБ - газовый блок; ОЗ - отпарная зона; остальные обозн. на рис.9

Потоки: I - сырье, II - продукты реакции; III - углеводородный газ; IV - бензин; V - керосиновая фракция; VI - сырье для технического углерода; VII - остаточная фракция свыше 420оС; VIII - шлам; IX - водный конденсат; X - перегретый водяной пар; XI - воздушное дутье; XII - топливо на нагрев воздуха; XIII - дымовые газы; XIV - очищенные и охлажденные дымовые газы; XV - свежий катализатор на догрузку системы; XVI - уловленная катализаторная сыпь; XVII - закоксованный катализатор; XVIII - регенерированный катализатор.

5.3 Термокрекинг и висбрекинг

Термокрекинг - один из первых процессов вторичной переработки нефти, начиная с 20-х годов. Сейчас как самостоятельный процесс он значение потерял и используется только как процесс облагораживания тяжелого сырья или в комбинированных установках.

Висбрекинг - наоборот, возродившийся процесс, позволяющий за счет уменьшения выхода низкокачественного бензина увеличить выход дизельной фракции ( 150-350 оС) и получить большое количество вакуумного газойля для каталитического крекинга.

Висбрекинг - процесс однократного термического крекинга тяжелого остаточного сырья, проводимый в мягких условиях. Типичное сырье висбрекинга - мазуты, получаемые при атмосферной перегонке нефтей, или вакуумные гудроны. Восприимчивость гудрона к висбрекингу тем выше, чем ниже температура его размягчения и чем меньше асфальте-нов, нерастворимых в м-пентане.

Висбрекинг проводится для производства преимущественно жидкого котельного топлива пониженной по сравнению с сырьем вязкости (вариант I), либо с целью производства в повышенных количествах газойля - сырья для установок гидрокрекинга и каталитического крекинга (вариант II). В обоих вариантах побочными легкими продуктами являются газы и бензиновые фракции, выход которых обычно не превышает 3 и 8 % (масс.) на сырье. Проведение процесса в более жестких условиях, что оценивается по выходу бензина, может приводить к нестабильности топлив, получаемых смешением остаточного продукта висбре-кинга с другими компонентами тяжелого жидкого котельного топлива. Нестабильное топливо расслаивается, в нем образуется осадок.

При проведении висбрекинга по варианту I характерно следующее:

- сохранение в составе остаточного продукта (называемого ниже висбрекинг-мазутом) всех жидких фракций, кроме бензиновых;

- высокий выход висбрекинг-мазута (90--93 % масс. на сырье);

- более низкие по сравнению с сырьем вязкость, температуры начала кипения и застывания висбрекинг-мазута;

- простота и гибкость технологической схемы установки, позволяющие перерабатывать остаточное сырье разного качества. В результате висбрекинга гудронов значительно сокращается расход маловязкого дистиллятного разбавителя при приготовлении котельного топлива. Содержание тяжелых бензиновых фракций в остаточном продукте висбрекинга ограничивают, учитывая необходимость получения топлива с достаточно высокой температурой вспышки.

При проведении висбрекинга по варианту II установка дополняется вакуумной секцией, предназначаемой для выделения из висбрекинг-мазута вакуумного газойля. В результате процесса потенциальное содержание вакуумного газойля в сырье повышается на 25--40 % (об.).

На некоторых заводах часть тяжелого остатка, получаемого по варианту II и являющегося нижним продуктом вакуумной колонны, используется как топливо на самих заводах, а избыток после разбавления маловязким продуктом, например каталитическим газойлем, направляется в резервуар товарного мазута нормированной вязкости.

Установка висбрекинга может входить как секция в состав комбинированной установки. Возможны также варианты установок висбрекинга: на одних нагретое сырье по выходе из печи направляется в не обогреваемый реактор, где в основном и осуществляется неглубокий термокрекинг; на других - нагретое сырье подвергается висбрекингу в обогреваемом змеевике (сокинг-секция), расположенном во второй топочной камере трубчатой печи.

Для висбрекинга гудронов условия процесса такие: температура 460-500°С; давление 1,4 - 3,5 МПа. Длительность пребывания сырья в зоне реакции определяется с помощью уравнения скорости реакции первого порядка. Процесс висбрекинга протекает с поглощением тепла.

Октановое число бензиновой фракции висбре-кинга находится в пределах от 58 до 68 (моторный метод, без присадки). Содержание серы в бензиновых и керосиновых фракциях существенно ниже, чем в сырье; однако эти фракции обычно нуждаются в очистке.

Рисунок 11 - Схема установки двухпечного термокрекинга

1,2 - подогреватель и испаритель сырья; 3 - ректификационная колонна; 4,5, и 6 - испарители высокого, среднего и низкого давления; 7 - печи; 8 - насос;

Потоки: I - мазут; II - утяжеленный мазут; III - паровая фаза; IV- тяжелая фракция; V - пары средней ступени; VI - пары низкой ступени; VII - газ; VIII - бензин; IX - керосино-газойлевая фракция; X- тяжелый газойль; XI - крекинг-остаток

5.4 Процесс замедленного коксования

Коксование предназначено для получения высокоуглеродистого твердого материала, называемого коксом. В качестве сырья процесса используют остатки от прямой перегонки нефти (мазут, гудроны) и тяжелые фракции термокаталитических процессов (тяжелые газойль, крекинг - остатки, пиролизная смола), остатки масляного производства (экстракты, асфальты). По назначению кокс можно разделить на четыре группы:

1) электродный кокс, предназначенный для производства электродов для выплавки Аl и других металлов;

...

Подобные документы

  • Процесс первичной перегонки нефти, его схема, основные этапы, специфические признаки. Основные факторы, определяющие выход и качество продуктов первичной перегонки нефти. Установка с двухкратным испарением нефти, выход продуктов первичной перегонки.

    курсовая работа [1,3 M], добавлен 14.06.2011

  • Характеристика и организационная структура ЗАО "Павлодарский НХЗ". Процесс подготовки нефти к переработке: ее сортировка, очистка от примесей, принципы первичной переработки нефти. Устройство и действие ректификационных колонн, их типы, виды подключения.

    отчет по практике [59,5 K], добавлен 29.11.2009

  • Характеристика нефти по ГОСТ Р 51858-2002 и способы ее переработки. Выбор и обоснование технологической схемы атмосферно-вакуумной трубчатой установки (АВТ). Расчет количества и состава паровой и жидкой фаз в емкости орошения отбензинивающей колонны.

    курсовая работа [1,3 M], добавлен 07.09.2012

  • Характеристика современного состояния нефтегазовой промышленности России. Стадии процесса первичной переработки нефти и вторичная перегонка бензиновой и дизельной фракции. Термические процессы технологии переработки нефти и технология переработки газов.

    контрольная работа [25,1 K], добавлен 02.05.2011

  • Характеристика нефти, фракций и их применение. Выбор и обоснование поточной схемы глубокой переработки нефти. Расчет материального баланса установки гидроочистки дизельного топлива. Расчет теплообменников разогрева сырья, реакторного блока, сепараторов.

    курсовая работа [178,7 K], добавлен 07.11.2013

  • Кривая истинных температур кипения нефти и материальный баланс установки первичной переработки нефти. Потенциальное содержание фракций в Васильевской нефти. Характеристика бензина первичной переработки нефти, термического и каталитического крекинга.

    лабораторная работа [98,4 K], добавлен 14.11.2010

  • Разработка поточной схемы завода по переработке нефти. Физико-химическая характеристика сырья. Шифр танатарской нефти согласно технологической классификации. Характеристика бензиновых фракций. Принципы расчета материальных балансов, разработка программы.

    курсовая работа [290,6 K], добавлен 09.06.2014

  • Характеристика вакуумных (масляных) дистиллятов Медынской нефти и их применение. Выбор и обоснование технологической схемы установки первичной переработки нефти. Расчет состава и количества паровой и жидкой фаз в емкости орошения отбензинивающей колонны.

    курсовая работа [1,1 M], добавлен 16.03.2014

  • Характеристика нефти и ее основных фракций. Выбор поточной схемы глубокой переработки нефти. Расчет реакторного блока, сепараторов, блока стабилизации, теплообменников подогрева сырья. Материальный баланс установок. Охрана окружающей среды на установке.

    курсовая работа [446,7 K], добавлен 07.11.2013

  • Назначение и описание процессов переработки нефти, нефтепродуктов и газа. Состав и характеристика сырья и продуктов, технологическая схема с учетом необходимой подготовки сырья (очистка, осушка, очистка от вредных примесей). Режимы и стадии переработки.

    контрольная работа [208,4 K], добавлен 11.06.2013

  • Характеристика вакуумных дистилляторов и их применение. Выбор и обоснование поточной схемы глубокой переработки нефти. Расчет основных аппаратов (реактора, колонны разделения продуктов крекинга, емкости орошения) установки каталитического крекинга.

    курсовая работа [95,9 K], добавлен 07.11.2013

  • Требования к товарным нефтепродуктам. Материальные балансы установок, описание технологической установки гидрокрекинга. Обоснование выбора схемы завода, расчёт октанового числа бензина смешения. Специфика нефтепродуктов, расчёт глубины переработки нефти.

    курсовая работа [1,5 M], добавлен 17.10.2021

  • Общая характеристика нефти, определение потенциального содержания нефтепродуктов. Выбор и обоснование одного из вариантов переработки нефти, расчет материальных балансов технологических установок и товарного баланса нефтеперерабатывающего завода.

    курсовая работа [125,9 K], добавлен 12.05.2011

  • Ознакомление с процессом подготовки нефти к переработке. Общие сведения о перегонке и ректификации нефти. Проектирование технологической схемы установки перегонки. Расчет основной нефтеперегонной колонны К-2; определение ее геометрических размеров.

    курсовая работа [418,8 K], добавлен 20.05.2015

  • Способы регулирования температурного режима по высоте колонны первичной переработки нефти. Схема работы парциального конденсатора и циркуляционного неиспаряющегося орошения. Варианты подачи орошения в сложной ректификационной колонне по переработке нефти.

    презентация [1,8 M], добавлен 26.06.2014

  • Обоснование выбора нефти для производства базовых масел. Групповой состав и физико-химические свойства масляных погонов. Особенности поточной схемы маслоблока и технологической схемы установки. Расчет испарительных колонн по экстрактному раствору.

    курсовая работа [292,1 K], добавлен 05.11.2013

  • Физико-химическая характеристика нефти. Первичные и вторичные процессы переработки нефти, их классификация. Риформинг и гидроочистка нефти. Каталитический крекинг и гидрокрекинг. Коксование и изомеризация нефти. Экстракция ароматики как переработка нефти.

    курсовая работа [71,9 K], добавлен 13.06.2012

  • Общая схема и этапы переработки нефти. Процесс атмосферно-вакуумной перегонки. Реакторный блок каталитического крекинга. Установка каталитического риформинга, ее назначение. Очистка и переработка нефти, этапы данного процесса, его автоматизация.

    презентация [6,1 M], добавлен 29.06.2015

  • Современный состав технологических процессов нефтепереработки в РФ. Характеристика исходного сырья и готовой продукции предприятия. Выбор и обоснование варианта переработки нефти. Материальные балансы технологических установок. Сводный товарный баланс.

    курсовая работа [61,1 K], добавлен 14.05.2011

  • Классификация нефтей и варианты переработки. Физико-химические свойства Тенгинской нефти и ее фракций, влияние основных параметров на процессы дистилляции, ректификации. Топливный вариант переработки нефти, технологические расчеты процесса и аппаратов.

    курсовая работа [416,8 K], добавлен 22.10.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.