Расчет электродуговой печи
Сущность сталеплавильных процессов. Раскисление и легирование стали. Обоснование выбора плавильного агрегата и технология плавки. Применение синтетического шлака. Выплавка стали в кислых дуговых печах. Плавка с использованием металлизованных окатышей.
Рубрика | Производство и технологии |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 16.03.2014 |
Размер файла | 2,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Введение
Металлургия - (от греч. metallurgйo -- добываю руду, обрабатываю металлы, от mйtallon -- рудник, металл и йrgon -- работа), в первоначальном, узком значении -- искусство извлечения металлов из руд; в современном значении -- область науки и техники и отрасль промышленности, охватывающие процессы получения металлов из руд или др. материалов, а также процессы, связанные с изменением химического состава, структуры, а, следовательно, и свойств металлических сплавов. К металлургии относятся: предварительная обработка добытых из недр земли руд, получение и рафинирование металлов и сплавов; придание им определённой формы и свойств.
В современной технике исторически сложилось разделение металлургии на чёрную и цветную. Чёрная металлургия охватывает производство сплавов на основе железа: чугуна, стали, ферросплавов (на долю чёрных металлов приходится около 95% всей производимой в мире металлопродукции). Цветная металлургия включает производство большинства остальных металлов. В связи с использованием атомной энергии развивается производство радиоактивных металлов.
Металлургические процессы применяются также для производства полупроводников и неметаллов (кремний, германий, селен, теллур, мышьяк, фосфор, сера и др.); некоторые из них получают попутно с извлечением металлов. В целом современная металлургия охватывает процессы получения почти всех элементов периодической системы, за исключением галоидов и газов.
1. Производство стали
Сущность сталеплавильных процессов заключается в окислении примесей (углерода, кремния, марганца, фосфора и др.) чугуна и стального лома оксидами железа шлака, железной рудой, чистым кислородом или кислородом воздуха и доведении состава жидко металла до состава марочной стали с последующим ее раскислением и легированием.
Сталеплавильные процессы отличаются большим разнообразием технологических условий и методов ведения плавок, а также типами использования агрегатов. Важнейшими в настоящее время являются основной мартеновский скрап - и скрап-рудный процессы (~ 40% от общего производства), кислородно-конверторный (~ 40%) и процессы выплавки стали в электропечах (дуговых и индукционных). Известны также кислые процессы, производящиеся в печах с кислой футеровкой; мартеновский и конверторный бессемеровский.
Способ производства стали определяет некоторые особенности ее качества - основная и кислая мартеновская сталь, бессемеровская, томасовская и другие, которые по своим свойствам существенно различаются.
Выплавка стали кислородно-конверторным процессом и в большегрузных электропечах непрерывно возрастает. Получают дальнейшее развитие способы вторичного рафинирования стали вакуумом или шлаком: вакуумный дуговой переплав (ВДП), вакуумный индукционный переплав (ВИП), электрошлаковый переплав (ЭШП), вакуумирование стали в ковше различными способами и другие методы переплава и обработки стали.
При окислительной плавке передача кислорода рафинируемому металлу осуществляется через шлак, который образуется из оксидов выгорающих примесей металла (и др.), флюсующих добавок (СаО) и огнеупорной футеровки печи (MgO, CaO и др.). Поэтому химический состав и физическое состояние шлака оказывают решающее влияние на полноту и скорость реакций окисления растворенных в металле углерода, кремния, марганца и фосфора, а также на удаление серы.
Сталеплавильные шлаки в зависимости от химического состава могут быть основными или кислыми. Основными шлаками называют такие, у которых отношение СаО/SiO (основность) изменяется в пределах 1,3-3 и выше. Кислые шлаки имеют основность <1. Основность шлака определяет тип сталеплавильного процесса - основной или кислый, т.е. его технологическую сущность, а также состав и вид материалов футеровки сталеплавильного агрегата.
Основные шлаки позволяют удалять из металла вредные примеси - серу и фосфор. Поэтому основной сталеплавильный процесс получил наибольшее распространение.
Важнейшая характеристика шлака - его окисленность, т.е. содержание оксидов железа, в частности FeO, который является основным источником окисления примесей металла - кремния, марганца, фосфора и углерода.
1.2 Раскисление и легирование стали
Раскисление стали производят с целью ее очистки от растворенного в ней кислорода. Раскисление осуществляют двумя методами - осаждающим и диффузионным.
Осаждение Раскисление происходит по реакции
Продуктом реакции является не растворимый в жидком металле оксид элемента - раскислителя (Э).
В качестве раскислителя может быть использован всякий элемент, оксид которого обладает более низкой упругостью диссоциации, чем оксид железа (II). Это условие выражается соотношением
.
Предпочтительнее брать такие элементы - раскислители - кремний, марганец, алюминий - и ферросплавы на их основе - ферросилиций (12, 45 и 75% Si), ферромарганец (72% Mn), силикомарганец и сплав AMS (18,5% Mn; 14,4% S и 9,1% Al). Используются также силикокальций, силикоцирконий, ферротитан и др.
Сущность диффузного раскисления стали заключается в восстановлении оксида железа (II) в шлаке элементами - раскислителями, входящими в состав смесей. Согласно закону раскисления снижение (FeO) вызывает диффузию кислорода из металла в шлак до момента установления равновесия при данной температуре.
Преимуществом диффузионного раскисления, в отличие от осаждающего, является чистота металла в отношении неметаллических включений, так как продукты раскисления остаются в шлаке.
Порошкообразные раскисляющие смеси, в состав которых обычно входят углеродистые материалы, ферросилиций и алюминий, подаются на поверхность шлака в несколько приемов.
Так как при диффузионном раскислении фосфор из шлака переходит в металл, то шлак предварительно скачивают возможно полнее.
Высокая стоимость раскислителей и большой их расход ограничивают применение диффузионного раскисления только особыми случаями выплавки высококачественных легированных сталей.
В зависимости от степени раскисления любая сталь может быть отнесена к одному из следующих трех типов - кипящая, полуспокойная и спокойная.
Легирование стали производится различными легирующими элементами - никелем, медью, алюминием и другими элементами или ферросплавами. Наиболее распространенные легирующие элементы - марганец ,кремний и хром используется пи выплавке конструкционных и инструментальных сталей ,а также сталей с особыми свойствами (трансформаторные, жаропрочные, нержавеющие и др.).
Никель, молибден, ванадий и кобальт применяются для легирования конструкционных сталей особого назначения.
В последнее время в качестве легирующих элементов и модификаторов находят все большее применение бор, титан, ниобий и редкоземельные элементы, которые обычно вводятся в металл в небольших количествах для повышения прокаливаемости, улучшения обрабатываемости, пластических и вязкостных свойств стали.
2. Обоснование выбора плавильного агрегата
Дуговая печь нашли широкое применение в металлургии -- главным образом для плавки стали и в несколько видоизменённом виде для выплавки ферросплавов и чугуна из руд, а также в химической промышленности -- для производства карбида кальция, фосфора и др. продуктов. Электроэнергия в Дуговая печь подаётся от трансформатора через медные шины и угольные или (чаще) графитированные электроды, большей частью круглого сечения. Наибольшее распространение получили трёхфазные Дуговая печь, в которых дуги горят между тремя электродами и перерабатываемым материалом. Современная электросталеплавильная Дуговая печь представляет собой мощный высокомеханизированный и автоматизированный агрегат (рис. 1), в котором сведена к минимуму продолжительность производственных операций между плавками -- выпуск предыдущей и загрузка материалов для следующей, что позволяет наиболее эффективно использовать рабочее печное время.
2.1 Устройство дуговых печей
1 Общее описание дуговой электропечи
Дуговая печь состоит из рабочего пространства (собственно печи) с электродами и токоподводами и механизмов, обеспечивающих наклон печи, удержание и перемещение электродов и загрузку шихты.
Плавку стали ведут в рабочем пространстве, ограниченном сверху куполообразным сводом, снизу сферическим подом и с боков стенками.
Огнеупорная кладка пода и стен заключена в металлический кожух. Съемный свод набран из огнеупорных кирпичей, опирающихся на опорное кольцо. Через три симметрично расположенных в своде отверстия в рабочее пространство введены токопроводящие электроды, которые с помощью специальных механизмов могут перемещаться вверх и вниз. Печь питается трехфазным током.
Рис. 1. Механизмы подъема и поворота свода ДСП
Шихтовые материалы загружают на под печи, после их расплавления в печи образуется слой металла и шлака. Плавление и нагрев осуществляется за счет тепла электрических дуг, возникающих между электродами и жидким металлом или металлической шихтой.
Выпуск готовой стали и шлака осуществляется через сталевыпускное отверстие и желоб путем наклона рабочего пространства. Рабочее окно, закрываемое заслонкой, предназначено для контроля за ходом плавки, ремонта пода и загрузки материалов.
Рис 2.-Дуговая сталеплавильная печь ДСП-200 ёмкостью 200 т: 1 -- графитированный электрод диаметром 710 мм; 2 -- электрододержатель; 3 -- свод; 4 -- водоохлаждаемое сводовое кольцо; 5 -- цилиндрический кожух; 6 -- водоохлаждаемая вспомогательная дверка; 7 -- электромеханический механизм поворота печи вокруг вертикальной оси; 8 -- электромеханический механизм наклона печи; 9 -- сливной носок; 10 -- подвижный токоподвод из водоохлаждаемых гибких кабелей; 11 -- шток для вертикального перемещения системы стойка -- рукав -- электродержатель -- электрод; 12 -- токоподвод из охлаждаемых медных труб.
Основной элемент конструкции Дуговая печь -- металлический корпус в виде кожуха, как правило, круглого сечения. Изнутри кожух футерован высокоогнеупорными материалами. Огнеупорная кладка съёмного свода печи выполнена в кольце. Для загрузки шихты в печь свод обычно поднимают и отводят в сторону. В стенах Дуговая печь имеются одно или два рабочих окна и одно выпускное отверстие с жёлобом для слива металла и шлака в ковш. В своде расположены отверстия для ввода электродов, снабжённые водоохлаждаемыми металлическими коробками (экономайзерами). Дуговая печь устанавливается на люльке для возможности наклона печи в сторону рабочего окна или выпускного отверстия при помощи механизма наклона с электрическим или гидравлическим приводом. Современные Дуговая печь снабжены индукторами для электромагнитного перемешивания жидкой ванны. Дуговая печь строят различной ёмкости (до 250 т) с мощностью трансформатора до 85 000 кв.
Рис. 3. Схемы дуговых печей: а -- прямого действия; б -- косвенного действия; в -- с закрытой дугой.
Существенным отличием получения стали в дуговых печах является возможность получения в плавильном пространстве восстановительной или нейтральной атмосферы и различного давления.
Восстановительная атмосфера в электродуговых печах позволяет получить шлак, содержащий в конце плавки не более 1% FeO, что примерно в 10 раз меньше, чем в обычном шлаке мартеновской печи.
Другим отличием является отсутствие в атмосфере печи кислорода. Поэтому ведение окислительных процессов возможно только за счет внешнего кислорода, источниками которого могут быть железная руда и газообразный кислород, вдуваемый в ванну.
По этой же причине имеют место меньшие потери металла на угар. Возможность ведения плавки на шлаке с более высокой температурой плавления и перегрева в условиях основного процесса облегчает осуществление десульфурации. При основном процессе плавки обеспечиваются все условия, необходимые для получения стали с минимальным содержанием серы.
В тоже время процесс дефосфорации в электродуговых печах хуже.
В электродуговых печах имеются благоприятные условия для переплава высоколегированных отходов. Здесь потери дефицитных легирующих элементов минимальны.
Особенностью выплавки стали в электродуговых печах является возможность работы с одним шлаком, без специального восстановительного периода. Это значительно сокращает продолжительность плавки, расход электроэнергии и улучшает все технико-экономические показатели процесса.
В процессе электроплавки конечный результат предопределяется в основном взаимодействии двух фаз - металлической и шлаковой. В остальных процессах тремя металлической, газовой и шлаковой
Поэтому с точки зрения возможности использования влияния физико-химических факторов на конечные результаты электроплавка является более совершенной. Практически значительное количество дефектов в отливках и слитках из легированных сталей, получается, из-за плохого качества металла или вызываются и усугубляются четырьмя вредными примесями: кислородом, серой, водородом и фосфором. Электроплавка является наиболее гибким процессом для борьбы с тремя примесями: кислородом, серой и водородом.
Основное преимущество дуговой печи заключается в возможности раскисления и обессеривания металла и легкости его перегрева, поэтому в целях удешевления процесса иногда применяют так называемый «дуплекс-процесс», при котором расплавление скрапа и окисление ведут в более дешевом плавильном аппарате - мартеновской печи, а затем жидкий металл переливают в дуговую печь для рафинирования и доводки до нужного состава. Реже применяют дуплекс-процесс «конвертор-электропечь».
При дуплекс-процессах мощность печи может быть меньше, чем при работе на твердой завалке, так как расплавление скрапа в этом случае отсутствует. Проводящиеся время от времени плавки на твердой завалке выполняют при уменьшенном весе шихты; они из-за меньшей мощности более длительны, но так как проводятся не часто (главным образом после ремонта футеровки), то их удлинение не является существенным. Электрический режим печей, работающих на жидкой завалке, также значительно спокойнее. При наличии жидкого металла, покрытого слоем шлака, дуга горит более стабильный, и отсутствуют короткие замыкания из-за обвалов шихты.
Электродуговая печь может быть остановлена или пущена в эксплуатацию в любое время, удобное для производства, и при любом режиме работы. Капитальные затраты на установку электродуговых печей в среднем на 40% меньше, чем на установку мартеновских печей аналогичной производительности.
2.2 Выплавка стали в основных дуговых электропечах
Основной составляющей шихты (75-100%) электроплавки является стальной лом. Лом не должен содержать цветных металлов и должен иметь минимальное количество никеля и меди; желательно, чтобы содержание фосфора в ломе не превышало 0.05%. при более высоком содержании фосфора продолжительность плавки возрастает. Лом не должен быть сильно окисленным (ржавым). С ржавчиной (гидратом окиси железа) вносится в металл много водорода. Лом должен быть тяжеловесным, чтобы обеспечивалась загрузка шихты в один прием (одной бадьей). При легковесном ломе после частичного расплавления первой порции шихты приходится вновь открывать печь и подсаживать шихту, что увеличивает продолжительность плавки.
В последнее время расширяется применение металлизованных окатышей и губчатого железа - продуктов прямого восстановления обогащенных железных руд. Они содержат 85-93% Fe, основными примесями являются окислы железа, SiO2 и Al2O3. Отличительная особенность этого сырья - наличие углерода от 0.2-0.5 до 2% и очень низкое содержание серы, фосфора, никеля, меди и других примесей, обычно имеющихся в стальном ломе. Это позволяет выплавлять сталь, отличающуюся повышенной чистотой от примесей. Переплав отходов легированных сталей позволяет экономить дорогие ферросплавы. Эти отходы сортируют по химическому составу и используют при выплавке сталей, содержащих те же легирующие элементы, что и отходы.
Для повышения содержания углерода в шихте используют чугун, кокс и электродный бой. Основное требование к чугуну - минимальное содержание фосфора, поэтому чтобы не вносить много фосфора в шихту малых (40 т) печей не более 10% чугуна, а в большегрузных не более 25%.
В качестве шлакообразующих в основных печах применяют известь, известняк, плавиковый шпат, боксит, шамотный бой; в кислых печах - кварцевый песок, шамотный бой, известь. В качестве окислителей используют железную руду, прокатную окалину, агломерат, железные окатыши, газообразный кислород. К шлакообразующим и окислителям предъявляются те же требования, что и при других сталеплавильных процессах: известь не должна содержать более 90% CaO, менее 2% SiO2, менее 0.1% S и быть свежеобоженной, чтобы не вносить в металл водород. Железная руда должна содержать менее 8% SiO2, поскольку он понижает основность шлака, менее 0.05% S и мене 0.2% P; желательно применять руду с размером кусков 40-100 мм, поскольку такие куски легко проходят через слой шлака и непосредственно реагирует с металлом. В плавиковом шпате, применяемом для разжижения шлака содержание CaF2 должно превышать 85%. В электросталеплавильном производстве для легирования и раскисления применяются практически все известные ферросплавы и легирующие.
2.3 Технология плавки
Рис. 4. Технологическая схема производства стали в дуговой сталеплавильной печи
Плавка в дуговой печи начинается с заправки печи. Жидкоподвижные нагретые шлаки сильно разъедают футеровку, которая может быть повреждена и при загрузке. Если подина печи во время не будет закрыта слоем жидкого металла и шлака, то она может быть повреждена дугами. Поэтому перед началом плавки производят ремонт - заправку подины. Перед заправкой с поверхности подины удаляют остатки шлака и металла. На поврежденные места подины и откосов - места перехода подины в стены печи - забрасывают сухой магнезитовый порошок, а в случае больших повреждений - порошок с добавкой пека или смолы.
Заправку производят заправочной машиной, выбрасывающей через насадку при помощи сжатого воздуха заправочные материалы, или, разбрасывающей материалы по окружности с быстро вращающегося диска, который опускается в открытую печь сверху.
Рис. 5. Схема загрузки дуговой сталеплавильной печи.
Для наиболее полного использования рабочего пространства печи в центральную ее часть ближе к электродам загружают крупные куски (40 %), ближе к откосам средний лом (45%), на подину и на верх загрузки мелкий лом (15%). Мелкие куски должны заполнять промежутки между крупными кусками.
Выплавка сталей включает следующие операции: расплавление металла, удаление содержащихся в нем вредных примесей и газов, раскисление металла, и выливание его из печи в ковш для разливки по изложницам или формам. Значение этих операций и требования, которые они предъявляют к дуговой печи, могут быть весьма различными.
Рис. 6. Этапы плавления шихты.
а - начало плавления; б - опускание электрода; в - подъем электрода; с - окончание плавления.
Расплавление скрапа необходимо вести по возможности скорее и с минимальным расходом энергии. Зачастую длительность его превосходит половину продолжительности всей плавки и при этом расходуется 60-80% всей электроэнергии. Характерной особенностью периода является неспокойный электрический режим печи. Горящая между концом электрода и холодным металлом дуга нестабильна, ее длина невелика и сравнительно небольшие изменения в положении электрода или металла (обвал, сдвиг подплавленного куска скрапа) вызывают либо обрыв дуги, либо, наоборот, короткое замыкание. Ход плавления шихты в дуговой печи иллюстрируется рис.6. Дуга загорается сначала между концом электрода и поверхностью шихты (рис.6, а), причем для повышения ее устойчивости в первые минуты под электроды обычно подкладывают куски кокса или электродного боя. После сгорания последних начинает подплавляться металл я каплями стекать на подину. В шихте образуются колодцы, в которые углубляются опускающиеся электроды (рис.6 б) до тех пор, пока они не достигнут подины, на которой во избежание перегрева ее к этому моменту должна быть образована лужа расплавленного металла (рис.6 в). Это самый беспокойный, неустойчивый период горения дуги; подплавляемые куски шихты падают на электрод, закорачивая дугу опускании куска шихты под торцом электрода может, наоборот, наступить обрыв тока. Горящая между электродом и расплавленным металлом дуга перегревает металл: начинается размыв и расплавление шихты, окружающей колодцы. Колодцы расширяются, уровень жидкого металла в ванне начинает повышаться, а электроды- подниматься (рис.6в). В конце этого периода почти весь металл оказывается расплавленным; остаются лишь отдельные куски шихты на откосах («настыли», рис.6г), расплавляющиеся последними. Чтобы не затягивать период расплавления, обычно эти «настыли» сбрасывают ломом в глубь ванны. Период расплавления считают законченным, когда весь металл в печи перешел в жидкое состояние. К этому моменту режим горения дуги становится более спокойным, так как температура в печи выше, поверхность металла покрыта слоем шлака, образованным заброшенными в печь в период расплавления кусками извести и всплывающими окислами; длина дуги по сравнению с началом расплавления увеличивается в несколько раз дуга горит устойчивее, количество толчков тока и обрывов уменьшается.
2.4 Окислительный период
После окончания периода расплавления начинается окислительный период, задачи которого заключаются в следующем: окисление избыточного углерода, окисление и удаление фосфора; дегазация металла; удаление неметаллических включений, нагрев стали. Окислительный период плавки начинают присадкой железной руды, которую дают в печь порциями. В результате присадки руды происходит насыщение шлака FeO и окисление металла по реакции: (FeO)=Fe+[O]. Растворенный кислород взаимодействует с растворенным в ванне углеродом по реакции [C] +[O]=CO. Происходит бурное выделение пузырей CO, которые вспенивают поверхность ванны, покрытой шлаком. Поскольку в окислительный период на металле наводят известковый шлак с хорошей жидкоподвижностью, то шлак вспенивается выделяющимися пузырями газа. Уровень шлака становится выше порога рабочего окна, и шлак вытекает из печи. Выход шлака усиливают, наклоняя печь в сторону рабочего окна на небольшой угол. Шлак стекает в шлаковик, стоящий под рабочей площадкой цеха. За время окислительного периода окисляют 0,3--0,6 % C со средней скоростью 0,3--0,5 % С/ч. Для обновления состава шлака одновременно с рудой в печь добавляют известь и небольшие количества плавикового шпата для обеспечения жидкоподвижности шлака. Непрерывное окисление ванны и скачивание окислительного известкового шлака являются непременными условиями удаления из стали фосфора.
Для протекания реакции окисления фосфора 2[P]+5[O]=(P2O5); (Р2O5)+4(СаО)=(СаО)4*P2O5 необходимы высокое содержание кислорода в металле и шлаке, повышенное содержание CaO в шлаке и пониженная температура. В электропечи первые два условия полностью выполняются. Выполнение последнего условия обеспечивают наводкой свежего шлака и постоянным обновлением шлака, так как шлак, насыщенный (СаО)4*P2O5 скачивается из печи. По ходу окислительного периода происходит дегазация стали--удаление из нее водорода и азота, которые выделяются в пузыри СО, проходящие через металл.
Выделение пузырьков СО сопровождается также и удалением из металла неметаллических включений, которые выносятся на поверхность потоками металла или поднимаются наверх вместе с пузырьками газа. Хорошее кипение ванны обеспечивает перемешивание металла, выравнивание температуры и состава. Общая продолжительность окислительного периода составляет от 1 до 1,5 ч. Для интенсификации окислительного периода плавки, а также для получения стали с низким содержанием углерода металл продувают кислородом. При продувке кислородом окислительные процессы резко ускоряются, а температура металла повышается со скоростью примерно 8-- 10 С/мин. Чтобы металл не перегрелся, вводят охлаждающие добавки в виде стальных отходов. Применение кислорода является единственным способом получения низкоуглеродистой нержавеющей стали без значительных потерь ценного легирующего хрома при переплаве.
Окислительный период заканчивается, когда содержание углерода становится ниже заданного предела, содержание фосфора 0,010%, температура металла несколько выше температуры выпуска стали из печи. В конце окислительного периода шлак стараются полностью убирать из печи, скачивая его с поверхности металла.
2.5 Восстановительный период плавки
После скачивания окислительного шлака начинается восстановительный период плавки. Задачами восстановительного периода плавки являются: раскисление металла, удаление серы, корректирование химического состава стали, регулирование температуры ванны, подготовка жидкоподвижного хорошо раскисленного шлака для обработки металла во время выпуска из печи в ковш. Раскисление ванны, т. е. удаление растворенного в ней кислорода, осуществляют присадкой раскислителей в металл и на шлак. В начале восстановительного периода металл покрывается слоем шлака. Для этого в печь присаживают шлакообразующие смеси на основе извести с добавками плавикового шпата, шамотного боя, кварцита. В качестве раскислителей обычно используют ферромарганец, ферросилиций, алюминий. При введении раскислителей происходят следующие реакции:
[Mn]+[O]=(MnO); [Si]+2 [О] = (SiO2); 2[Al]+ 3[O]=(Al2O3).
В результате процессов раскисления большая часть растворенного кислорода связывается в оксиды и удаляется из ванны в виде нерастворимых в металле неметаллических включений. Процесс этот протекает достаточно быстро и продолжительность восстановительного периода в основном определяется временем, необходимым для образования подвижного шлака. В малых и средних печах при выплавке ответственных марок сталей продолжают применять метод диффузионного раскисления стали через шлак, когда раскислители в виде молотого электродного боя, порошка ферросилиция присаживают на шлак. Содержание кислорода в шлаке понижается и в соответствии с законом распределения кислород из металла переходит в шлак. Метод этот, хотя и не оставляет в металле оксидных неметаллических включений, требует значительно большей затраты времени. В восстановительный период плавки, а также при выпуске стали под слоем шлака, когда происходит хорошее перемешивание металла со шлаком, активно происходит десульфурация металла по уравнению FeS + CaO=FeO+ CaS. Этому способствует хорошее раскисление стали и шлака, высокое содержание извести в шлаке и высокая температура.
В ходе восстановительного периода вводят легирующие - ферротитан, феррохром и др., а некоторые, например никель, присаживают вместе с шихтой. Никель не окисляется и не теряется при плавке. Добавки тугоплавких ферровольфрама, феррониобия производят в начале рафинирования, так как нужно значительное время для их расплавления.
В настоящее время большинство операций восстановительного периода переносят из печи в ковш. Присаживают по ходу выпуска раскислители. Целью восстановительного периода является обеспечение нагрева стали до заданной температуры и создание шлака, десульфурирующая способность которого используется при совместном выпуске из печи вместе со сталью.
2.6 Порядок легирования
При выплавке легированных сталей в электродуговых печах порядок легирования зависит от сродства легирующих элементов к кислороду. Элементы, обладающие меньшим сродством к кислороду, чем железо (никель, молибден) во время плавки не окисляются и их вводят в начальные периоды плавки - никель в завалку, а молибден в конце плавления или в начале окислительного периода.
Хром и марганец обладают большим сродством к кислороду чем железо. Поэтому металл легируют хромом и марганцем после слива окислительного шлака в начале восстановительного периода.
Вольфрам обладает большим сродством к кислороду, чем железо и его обычно вводят в начале восстановительного периода. Он очень тугоплавкий и поэтому ферровольфрам можно присаживать в ванну не позднее, чем за 30 мин. до выпуска.
2.7 Одношлаковый процесс
В связи с интенсификацией процесса электроплавки в последние годы получил большое распространение метод плавки в дуговой печи под одним шлаком. Сущность этого метода заключается в следующем: дефосфорация металла совмещается с периодом расплавления. Во время расплавления из печи скачивают шлак и производят добавки извести. В окислительный период выжигают углерод. По достижении в металле Р<< 0,035 % производят раскисление стали без скачивания шлака ферросилицием и ферромарганцем. Затем присаживают феррохром и проводят сокращенный (50--70 мин) восстановительный период с раскислением шлака порошками ферросилиция и кокса и раскисле-нием металла кусковыми раскислителями. Окончательное раскисление производят в ковше ферросилицием и алюминием. В некоторых случаях вообще не проводят раскисления шлака в печи порошкообразными раскислителями.
2.8 Применение синтетического шлака
Этот метод предусматривает перенесение рафинирования металла из электропечи в разливочный ковш. Для рафинирования металла выплавляют синтетический шлак на основе извести (52-55%) и глинозема (40%) в специальной электродуговой печи с угольной футеровкой. Порцию, жидкого, горячего, активного шлака (4-5 % от массы стали, выплавленной в электропечи) наливают в основной сталеразливочный ковш. Ковш подают к печи и в него выпускают сталь. Струя стали, падая с большой высоты, ударяется о поверхность жидкого шлака, разбивается на мелкие капли и вспенивает шлак. Происходит перемешивание стали со шлаком. Это способствует активному протеканию обменных процессов между металлом и синтетическим шлаком. В первую очередь протекают процессы удаления серы благодаря низкому содержанию FeO в шлаке и кислорода в металле; повышенной концентрации извести в шлаке, высокой температуре и перемешиванию стали со шлаком. Концентрация серы может быть снижена до 0,001 %. При этом происходит значительное удаление оксидных неметаллических включений из стали благодаря ассимиляции, поглощению этих включений синтетическим шлаком и перераспределению кислорода между металлом и шлаком.
2.9 Обработка металла аргоном
После выпуска стали из печи через объем металла в ковше продувают аргон, который подают либо через пористые пробки, зафутерованные в днище, либо через швы кладки подины ковша.
Большое распространение получил способ продувки стали инертными газами через устанавливаемые в днище ковша пористые огнеупорные вставки или пробки (рис. 7)
Рис. 7. Конструкция пористой пробки (вставки) для продувки стали аргоном: 1 -- вставка с каналами для прохода газов; 2 -- огнеупорный корпус; 3 -- гнездовой кирпич.
Рис. 8. Схема САВ-процесса: 1 -- ковш с металлом; 2 -- крышка ковша; 3 -- устройство для загрузки ферросплавов; 4 -- отверстие для отбора проб; 5 -- синтетический шлак; 6 -- шиберный затвор; 7 -- пористая пробка для введения в сталь аргона.
Во многих случаях продувку инертным газом проводят одновременно с обработкой металла вакуумом. В этом случае расход инертного газа может быть существенно уменьшен. Совмещение продувки инертным газом обработкой шлаком способствует повышению эффективности использования шлаковых смесей, так как интенсивное перемешивание при продувке увеличивает продолжительность и поверхность контакта сталь-шлак. Если при этом ковш, в котором осуществляется такая обработка, накрыт крышкой, то наличие в пространстве между крышкой и поверхностью шлака атмосферы инертного газа предохраняет сталь от окисления, а снижение потерь тепла позволяет увеличить продолжительность контакта металла с жидким шлаком. На этом принципе основана разработанная на одном из металлургических заводов Японии технология так называемого САВ-процесса (от слов Capped--Argon--Bubb-ling) (рис. 8 слева); данная технология предусматривает наличие на поверхности сплава в ковше синтетического шлака заданного состава. В тех случаях, когда из плавильного агрегата в ковш попадает в месте со сталью какое-то количество конечного окисленного шлака (например, при выпуске плавки из конвертера), используют метод, названный металлургами Японии SAB-процессом (рис. 8 справа).
В результате продувки интертными газами сталь получается более высококачественной, из которой можно изготавливать металлоконструкции ответственного назначения: высококачественные профильные трубы, швелера, уголки стальные, балки двутавровые, лист стальной, арматурный прокат (т.е. арматура), профнастил и другой металлопрокат.
2.10 Применение порошкообразных материалов
Продувка стали в дуговой электропечи порошкообразными материалами в токе газаносителя (аргона или кислорода) позволяет ускорить важнейшие процессы рафинирования стали: обезуглероживание, дефосфорацию, десульфурацию, раскисление металла.
В струе аргона или кислорода в ванну вдуваются порошки на основе извести, плавикового шпата. Для раскисления металла используют порошкообразный ферросилиций. Для окисления ванны и для ускорения удаления углерода и фосфора добавляют оксиды железа. Мелко распыленные твердые материалы, попадая в ванну металла, имеют большую поверхность контакта с металлом, во много раз превышающую площадь контакта ванны со шлаковым слоем. При этом происходит интенсивное перемешивание металла с твердыми частицами. Все это способствует ускорению реакций рафинирования стали. Кроме того, порошкообразные флюсы могут использоваться для более быстрого наведения шлака.
2.11 Выплавка стали в кислых дуговых печах
Электрические печи с кислой футеровкой обычно используют в литейных цехах при выплавке стали для фасонного литья. Преимуществом кислых печей по сравнению с основными является более высокая стойкость футеровки; наряду с этим стоимость кислых огнеупоров примерно в 2.5 раза ниже стоимости основных. Поскольку при плаке стали для фасонного литья восстановительный период обычно отсутствует, длительность плавки в кислой печи меньше, чем в основной той же емкости; по этой причине, а также в связи с меньшей теплопроводностью кислой футеровки, более низким является и расход электроэнергии.
Основным недостатком кислых печей является то, что во время плавки из металла не удаляется сера и фосфор.
Завалка и расплавление шихты
Шихту составляют таким образом, чтобы содержание углерода после
расплавления на 0.15-0.20% превышало содержание углерода в выплавляемой стали. Для повышения содержания углерода в шихту, наряду со стальным ломом, вводят кокс, электродный бой или чугун. Поскольку фосфор и сера под кислым шлаком не удаляются, используемый стальной лом должен содержать фосфора и серы примерно на 0.01% меньше, чем допускается в выплавляемой стали.
Металлический лом не должен быть ржавым, так как окислы железа, растворяя кремнезем футеровки пода, разрушают её. В остальном требования к шихтовым материалам и порядку загрузки в печь такие же, как и при основном процессе.
Плавление в кислой печи длится 50-70 мин и протекает примерно так же,
как и в основной печи. В период плавления происходит окисление кремния, марганца, железа, углерода. Образующиеся окислы принимают участие в формировании шлака. Поскольку количество этих окислов сравнительно невелико, в печь во время плавления забрасывают шлак от предыдущей плавки, сухой песок, формовочную землю и известняк, чтобы покрыть металл шлаком и уменьшить угар составляющих шихты.
К моменту расплавления шихты шлак имеет следующий состав, %: 40-50 SiO2; 15-30 FeO; 10-30 MnO; 2-6 Al2O3; 5-15 прочие окислы.
2.12 Плавка с использованием металлизованных окатышей
сталеплавильный процесс дуговая печь
Основу окатышей (губки) составляет железо с содержанием углерода от 0.2-0.5 до 2%, они содержат также некоторое количество невосстановленных окислов железа и пустую породу (в основном SiO2 и Al2O3), количество которой должно быть не более 3-7% от массы окатышей. Отличительная особенность этого сырья - малое содержание серы, фосфора, меди, никеля, хрома и других примесей, обычно содержащихся в стальном ломе (Pb, Sn, Bi, Zn, As, Sb). Это облегчает и упрощает процесс выплавки и получение стали высокого качества, высокой степени чистоты (суммарное содержание примесей в стали получается в 3-10 раз меньше, чем при выплавке из стального лома).
Если содержание металлизованных окатышей в шихте не превышает 25-30% от её массы, то технология электроплавки существенно не отличается от обычной. Переработка шихты, основу которой составляют металлизованные окатыши требует применения специфической технологии. Особенностями этой технологии являются:
- непрерывная загрузка окатышей со скоростью, пропорциональной
подводимой в печь электрической мощности, причем загрузка должна
начинаться после сформирования в печи ванны жидкого металла;
- совмещение периода плавления с окислительным (обезуглероживанием);
- упрощение технологии плавки в связи с малым содержанием в шихте
вредных примесей - серы и фосфора.
Степень металлизации окатышей должна находиться в определенных
пределах, обеспечивающих кипение ванны в процессе их загрузки и плавления.
Оптимальной содержание окатышей в шихте составляет 60-70% от её массы - при большем их содержании возрастает длительность расплавления и плавки в целом.
Плавку начинают с загрузки стального лома, который в количестве 30-40% от массы металлической шихты заваливают в печь одной порцией. Далее подают напряжение и после расплавления лома в сформировавшуюся жидкую ванну начинают непрерывную загрузку окатышей; обычно их загружают в зону электрических дуг с помощью автоматизированной системы через отверстие в своде печи. Скорость подачи окатышей согласуют с подводимой в печь электрической мощностью так, чтобы температура ванны был на 30-40 (С выше температуры плавления металла, поскольку при более низкой величине перегрева плавление затягивается.
Период загрузки и расплавления совмещают с окислительным, т.е. проводят его так, чтобы обеспечить непрерывное окисление углерода (кипение ванны). При этом благодаря перемешиванию ускоряется плавление окатышей, обеспечиваются дегазация ванны и получение в конце периоде заданного содержания углерод в металле. Для обеспечения кипения степень металлизации окатышей должна находиться в пределах 90-97%, что соответствует остаточному содержанию кислорода в окатышах от 1.2 до 0.6% (при более низком содержании остаточного кислорода не будет кипения ванны.). При недостаточной степени металлизации существенно возрастает расход электроэнергии из-за протекания эндотермической реакции восстановления окислов железа. Для обеспечения кипения ванны металлизованное сырье должно содержать определенное количество углерода, если содержание углерода недостаточно для обеспечения кипения, то в ванну вдувают карбюризаторы.
По ходу плавления в печь загружают известь для ошлакования кислой пустой породы (SiO2 иAl2O3) окатышей. Основность шлака в связи с низким содержанием в окатышах серы и фосфора может быть меньшей, чем при плавке на шихте из стального лома и составлять 1.5-2.0. В конце периода плавления необходимо получить требуемое в выплавляемой стали содержание углерода; при недостатке углерода прибегают к вдуванию в ванну карбюризаторов, избыточный углерод окисляют путем кратковременной продувки кислородом.
После окончания плавления применяют различные варианты ведения заключительной части плавки. Один их них - нагрев металла до требуемой температуры и выпуск в ковш, где производят внепечную доводку стали и рафинирование; другой - проведение в печи кратковременной доводки, в течение которой проводят нагрев, раскисление и легирование.
2.13 Автоматизированное управление процессом плавки
Дуговая электросталеплавильная печь является мощным трехфазным агрегатом с соответствующим силовым электрическим оборудованием. Высокотемпературные дуги обеспечивают расплавление шихты и нагрев ванны до нужной температуры. Каждая плавка может быть подразделена на три основных периода:
расплавление загруженной в печь твердой шихты;
окисление (кипение) жидкой ванны;
раскисление ванны (восстановительный период).
Периоды плавки обуславливаются особенностями протекания физико-химических процессов и определяют различия задач системы автоматического контроля.
Управляющими воздействиями на процесс плавки в дуговой печи являются:
электрическая мощность;
напряжение питающего тока (длина дуги);
состав шихты, количество и состав присадок;
расход кислорода на продувку металла;
электромагнитное перемешивание ванны.
Возмущающие воздействия, прежде всего можно подразделить на две группы: а) возмущения электрического режима и б) возмущения технологического и теплотехнического режима.
Возмущения электрического режима возникают из-за обвалов шихты в период плавления, кипения металла в периоды с жидкой ванной, обгорания электродов, подъема уровня металла по мере плавления, колебаний сопротивления дугового промежутка, вызванных изменениями температурных условий в зоне дугового разряда. Возмущения технологического и теплотехнического характера связаны с нестабильностью состава шихты, нестационарностью протекания физико-химических реакций в ванне, введением присадок, износом кладки, выбиваниями и подсосом газов в печь.
К основным задачам автоматизированного управления процессом плавки в ДСП можно отнести следующие:
Централизованный контроль за ходом технологического процесса с сигнализацией и регистрацией отклонений от заданных параметров.
Управление металлургическим процессом:
расчет оптимального состава шихты, исходя из планируемых заданий и наличия исходных сырьевых материалов;
управление загрузкой печи в соответствии с рассчитанным составом шихты;
расчет кислорода, легирующих и шлакообразующих, обеспечивающих получение металла заданного состава и качества и экономию материалов;
прогнозирование момента окончания технологических периодов с обеспечением заданных значений температуры и химического состава металла.
Управление энергетическим режимом, обеспечивающее:
введение электроэнергии с учетом теплового состояния печи и тепловой энергии, вводимой в печь другими источниками;
максимальное использование мощности печи;
минимальные удельные расходы энергоносителей;
нормальную эксплуатацию электрического и другого печного оборудования.
Управление вспомогательными операциями (отбором проб, замером температуры металла и др.).
Сбор и обработку информации с выдачей необходимой документации, в том числе учет и регистрацию расходов шихтовых материалов, электроэнергии, кислорода и других энергоносителей, распечатка протоколов плавки.
Контроль за работой оборудования с сигнализацией и регистрацией неисправностей и непредвиденных остановок.
Предусматриваемый на ДСП объем средств автоматического контроля и управления должен обеспечивать поддержание с требуемой точностью заданных технологией режимов и параметров процесса электроплавки, а также безопасность эксплуатации агрегата.
Рациональный объем автоматизации новых и реконструируемых печей определяется с учетом технологически требований к управлению процессом выплавки различных марок сталей, развития электросталеплавильного производства в направлении повышения удельной мощности трансформаторов, использования данных о передовом зарубежном опыте и научных разработок в области автоматизации процесса электроплавки.
ДСП необходимо оснащать современными быстродействующими регуляторами мощности, обеспечивающими высокие технико-экономические показатели и имеющими высокую надежность. Автоматический регулятор должен поддерживать заданное соотношение между силой тока и напряжением дуги в данной фазе печи при наименьших дисперсиях, обеспечить скорость перемещения электрода не менее 5-6 м/мин. Системы управления весовым дозированием компонентов металлошихты и дозированием ферросплавов и шлакообразующих материалов должны обеспечить подачу металлошихты в бадью и ферросплавов для загрузки в печь с погрешностью не долее 0.3%.
Система управления электрической мощностью должна обеспечить программное изменение мощности и ступени напряжения трансформатора в соответствии с заданным электрическим режимом плавки, поддержание заданной мощности трех фаз с погрешностью не более 2.0% и заданного температурного графика металла по ходу плавки с отклонениями, не превышающими 15 С. Система управления химическим составом металла должна обеспечить получение заданного состава стали в соответствии с требованиями ГОСТ или ТУ.
Группа печей емкостью 50-200 т должна оснащаться АСУ ТП плавки с использованием УВМ.
Рис. 9. Рациональный объем автоматизации ДСП. 1 -- устройство для измерения расхода активной энергии; 2 -- устройство для измерения среднеквадратичных токов; 3 -- устройства для измерения расхода, температуры и состава отходящих газов; 4 -- устройство для измерения положения кислородной фурмы; 5 -- устройство для определения состава стали и шлака; 6 -- устройство дли измерения расхода газа и кислорода на горелки; 7 -- устройство для измерения температуры футеровки; 8 -- устройство для измерения температуры металла в ванне печи; 9 -- устройства для измерения расхода, давления и температуры воды; 10 - устройство для измерения положения электродов; 11 -- устройство для измерения расхода реактивной энергии; 12 -- устройство для измерения коэффициента мощности; 13 -- устройства для измерения активной и реактивной мощности; 14 -- устройства для измерения расхода, давления и количества кислорода; 15 -- устройство для взвешивания ферросплавов; 16 -- устройство для измерения перепада температур воды на входе и выходе охлаждаемых элементов; 17 -- устройство для измерения давления и расхода газа; 18 -- устройство для взвешивания металлизованных окатышей; 19 -- весы для взвешивания скрапа; 20 -- устройство для взвешивания шлакообразующих и заправочных материалов; 21 -- устройство для взвешивания жидкого металла в ковше; 22 -- система автоматического управления (САУ) электрическим режимом; 23 -- регулятор мощности; 24 -- САУ весовым дозированием металлизованных окатышей; 25 -- САУ весовым дозированном ферросплавов и шлакообразующих; 26 -- САУ продувкой ванны кислородом; 27 -- система регулирования давления газов под сводом печи; 28 -- САУ весовым дотированием компонентов металлошихты; 29 -- САУ химическим составом металла и шлака; 30 -- система измерения времени плавки и технологических интервалов; 31 -- система сбора и обработки информации; 32 -- УВМ.
АСУ ТП выплавки стали в ДСП выполняет следующие функции:
расчет шихты, кислорода, легирующих и шлакообразующих материалов;
расчет параметров электрического режима;
выдачу и коррекцию заданий локальным системам управления;
регистрацию и сигнализацию отклонения текущих параметров от заданных значений, регистрацию неисправностей оборудования и нарушений технологического режима;
централизованный контроль основных технико-экономических показателей работы печи;
выдачу информации на печь;
выдачу оперативной технологической информации оператору.
Автоматизация дуговых сталеплавильных печей в рациональном объеме должна обеспечить:
увеличение производительности электропечей на 3-5%, сокращение расхода электроэнергии на 2-4%, повышение стойкости футеровки на 5-8% за счет оптимизации энергетического режима плавки и повышения точности поддержания заданного режима;
снижение затрат на металлошихту, легирующие и шлакообразующие материалы на 1-2% за счет рационального их использования;
снижение себестоимости выплавляемого металла не менее, чем на 1.5%.
В последние годы производство электростали характеризуется увеличением емкости печей, повышением мощности печных трансформаторов, совершенствованием технологии и методов управления рабочим процессом, причем для управления процессом электроплавки все шире применяют автоматизированные системы управления технологическим процессом (АСУ ТП) с применением электронно-вычислительных машин (ЭВМ). Эти системы выполняют следующие функции:
а) расчет оптимального состава шихты, исходя из планируемых заданий и наличия исходных сырьевых материалов;
б) расчет количества электроэнергии, кислорода, легирующих и шлакообразующих материалов;
в) выбор оптимального режима процесса плавки и выдача управляющих сигналов в локальные системы автоматического управления;
г) контроль запасов лома, легирующих отходов, ферросплавов и других материалов;
д) выдача оперативной технологической информации оператору печи и на печать;
е) контроль за работой оборудования, сигнализацию и регистрацию неисправностей;
ж) автоматизированный централизованный контроль основных технико-экономических показателей работы печи.
В состав АСУ ТП выплавки стали в ДСП входят локальные системы управления электрической мощностью, продувкой ванны кислородом, давлением под сводом печи, дозированием шихты и легирующих материалов, присаживаемых в печь. АСУ ТП снабжена устройствами контроля массы металлошихты, ферросплавов, жидкого металла; электрических и теплотехнических параметров (мощности, расхода электроэнергии, тока и напряжения печи, расхода и давления кислорода и др.); физико-химических параметров процесса плавки; температуры металла и футеровки печи и контроля состояния и работы оборудования.
Внедренная на Донецком металлургическом заводе АСУ ТП выплавки стали в ДСП-100 имеет двух уровневую структуру. Верхний уровень представлен специализированной УВК с дополнительными модулями устройств связи с объектом (УСО) для приема и выдачи аналоговых и дискретных сигналов. Нижний уровень представлен комплексом локальных САУ взвешиванием металлошихты 1, дозированием сыпучих и ферросплавов 2, дозированием заправочных материалов 3, подготовкой и загрузкой шихтовых материалов 4, электрическим режимом 5, продувкой ванны кислородом 6 и системами измерения положения электрода 7, передачи результатов химического анализа 8, измерения продолжительности плавки 9. Кроме того, на нижнем уровне обеспечивается формирование технологической информации устройством позиционных сигналов и приборами КИП печи. Все локальные САУ обеспечивают управление объектом в автономном и комбинированном режимах. Обмен информацией с УВК осуществляется кодированными сигналами.
...Подобные документы
Исследование особенностей сварки и термообработки стали. Технология выплавки стали в дуговых сталеплавильных печах. Анализ порядка легирования сталей. Применение синтетического шлака и порошкообразных материалов. Расчёт ферросплавов для легирования стали.
курсовая работа [201,2 K], добавлен 16.11.2014Металлургия стали как производство. Виды стали. Неметаллические включения в стали. Раскисление и легирование стали. Шихтовые материалы сталеплавильного производства. Конвертерное, мартеновское производство стали. Выплавка стали в электрических печах.
контрольная работа [37,5 K], добавлен 24.05.2008Механическое оборудование печи. Форма и размеры плавильного пространства электродуговой печи. Футеровка основной электродуговой печи. Электрооборудование печи. Выплавка стали методом полного окисления. Жаропрочные стали и сплавы. Системы газоотвода.
реферат [1,4 M], добавлен 28.01.2009Химический состав стали 35 ХГСЛ. Выбор плавильного агрегата. Отбор и обработка пробы. Подбор состава шихты. Окончательное раскисление стали. Емкость заливочного ковша. Температура заливки форм. Плавление, восстановительный период, выпуск плавки.
реферат [30,7 K], добавлен 14.12.2012Плавка стали в электрических печах. Очистка отходящих газов. Устройство для электромагнитного перемешивания металла. Плавка стали в основной дуговой электропечи. Методы интенсификации электросталеплавильного процесса. Применение синтетического шлака.
курсовая работа [74,8 K], добавлен 07.06.2009Механические свойства стали при повышенных температурах. Технология плавки стали в дуговой печи. Очистка металла от примесей. Интенсификация окислительных процессов. Подготовка печи к плавке, загрузка шихты, разливка стали. Расчет составляющих завалки.
курсовая работа [123,5 K], добавлен 06.04.2015История развития выплавки стали в дуговых электропечах. Технология плавки стали на свежей углеродистой шихте с окислением. Выплавка стали в двухванном сталеплавильном агрегате. Внеагрегатная обработка металла в цехе. Разливка стали на сортовых МНЛЗ.
отчет по практике [86,2 K], добавлен 10.03.2011Технология плавки, расчет ее материального и теплового баланса. Режим дутья в кислородном конверторе. Раскисление стали присадками ферромарганца и ферросилиция. Расход раскислителей. Выход стали после легирования феррохромом. Параметры шлакового режима.
курсовая работа [68,8 K], добавлен 06.04.2015Строение и свойства стали, исходные материалы. Производство стали в конвертерах, в мартеновских печах, в дуговых электропечах. Выплавка стали в индукционных печах. Внепечное рафинирование стали. Разливка стали. Специальные виды электрометаллургии стали.
реферат [121,3 K], добавлен 22.05.2008Классификация и маркировка стали. Характеристика способов производства стали. Основы технологии выплавки стали в мартеновских, дуговых и индукционных печах. Универсальный агрегат "Conarc". Отечественные агрегаты ковш-печь для внепечной обработки стали.
курсовая работа [2,1 M], добавлен 11.08.2012Свойства термообработки металла. Подготовка шихтовых материалов к плавке, заправка печи, загрузка шихты в печь. Восстановительный период плавки. Расчёты угара и необходимого количества ферросплавов. Выбор источника питания печи. Расчёт тепловых потерь.
курсовая работа [1,6 M], добавлен 18.07.2014Особенности технологии выплавки стали. Разработка способов получения стали из чугуна. Кислородно-конвертерный процесс выплавки стали. Технологические операции кислородно-конверторной плавки. Производство стали в мартеновских и электрических печах.
лекция [605,2 K], добавлен 06.12.2008Определение параметров процесса плавки стали в конвертере с верхней подачей дутья: расчет расход лома, окисления примесей металлической шихты, количества и состава шлака. Выход жидкой стали перед раскислением; составление материального баланса плавки.
курсовая работа [103,4 K], добавлен 19.08.2013Описание электропечи и установки внепечной обработки. Определение производительности участка. Изучение технологии выплавки и разливки шарикоподшипниковой стали. Подготовка печи к плавке. Расчет металлошихты, расхода ферросплавов для легирования стали.
курсовая работа [760,3 K], добавлен 21.03.2013Производство чугуна и стали. Конверторные и мартеновские способы получения стали, сущность доменной плавки. Получение стали в электрических печах. Технико-экономические показатели и сравнительная характеристика современных способов получения стали.
реферат [2,7 M], добавлен 22.02.2009Выбор плавильного агрегата. Подготовка шихтовых материалов. Исследование порядка загрузки шихты. Анализ состава неметаллической части шихты и кладки. Расчет количества шлака без присадок извести, чугуна в шихте, остаточной концентрации кремния и магния.
практическая работа [164,0 K], добавлен 11.12.2012Устройство доменной сталеплавильной печи. Подача и нагрев дутья. Продукты доменной плавки. Технология выплавки стали в электродуговых печах. Внепечная обработка металла на участке ковш-печь. Непрерывная разливка стали для отливки блюмов и слябов.
отчет по практике [3,1 M], добавлен 12.10.2016Расчет шихты для плавки, расхода извести, ферросплавов и феррованадия. Материальный баланс периода плавления. Количество и состав шлака, предварительное определение содержания примесей металла и расчет массы металла в восстановительном периоде плавки.
курсовая работа [50,9 K], добавлен 29.09.2011Выбор и обоснование футеровки сталеразливочного ковша. Выбор дутьевых продувочных устройств. Расчет основных параметров обработки стали: раскисление и легирование; процесс десульфурации стали в ковше. Технологические особенности внепечной обработки стали.
курсовая работа [423,1 K], добавлен 21.04.2011Характеристика заданной марки стали и выбор сталеплавильного агрегата. Выплавка стали в кислородном конвертере. Материальный и тепловой баланс конвертерной операции. Внепечная обработка стали. Расчет раскисления и дегазации стали при вакуумной обработке.
учебное пособие [536,2 K], добавлен 01.11.2012