Соединение деталей посадкой с натягом (прессовое соединение)
Понятие натяга. Нагрузочная способность прессового соединения и способы его сборки. Расчет прочности соединения, деформаций деталей и эквивалентных напряжений. Уменьшение эффекта концентрации напряжений. Достоинства и недостатки прессового соединения.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 18.03.2014 |
Размер файла | 463,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Курсовая работа
Соединение деталей посадкой с натягом (прессовое соединение)
1.1 Общие сведения
Соединение двух деталей по круговой цилиндрической поверхности можно осуществить непосредственно без применения болтов, шпонок и т. д. Для этого достаточно при изготовлении деталей обеспечить натяг посадки, а при сборке запрессовать одну деталь в другую.
Натягом N называют положительную разность диаметров вала и отверстия,
N=B--А.
Перед запрессовкой После запрессовки
После сборки вследствие упругих и пластических деформаций диаметр d посадочных поверхностей становится общим. При этом на поверхности посадки возникают удельное давление р и соответствующие ему силы трения. Силы трения обеспечивают неподвижность соединения и позволяют воспринимать как крутящие, так и осевые нагрузки. Защемление вала во втулке позволяет, кроме того, нагружать соединение изгибающим моментом. В инженерной практике такое соединение называют прессовым.
Нагрузочная способность прессового соединения прежде всего зависит от натяга, значение которого устанавливают в соответствии с нагрузкой. Практически расчетный натяг очень невелик, он измеряется микрометрами и не может быть выполнен точно. Неизбежные погрешности производства приводят к рассеиванию натяга и следовательно к рассеиванию нагрузочной способности соединения. Рассеивание натяга регламентируется стандартом допусков и посадок. Изучение допусков и посадок является предметом курса «Взаимозаменяемость и технические измерения». В курсе «Детали машин» излагается расчет прочности соединения.
Сборку любого прессового соединения выполняют одним из трех способов: прессованием, нагревом втулки, охлаждением вала.
Прессование -- распространенный и несложный способ сборки. Однако этому способу свойственны недостатки; смятие и частичное срезание (шабровка) шероховатостей посадочных поверхностей, возможность неравномерных деформаций деталей и повреждения их торцов. Шабровка и смятие шероховатостей приводят к ослаблению прочности соединения до полутора раз по сравнению со сборкой нагревом или охлаждением. Для облегчения сборки и уменьшения шабровки концу вала и краю отверстия рекомендуют придавать коническую форму.
Шабровка поверхностей контакта устраняется полностью при сборке по методу нагревания втулки (до 2ОО...400°С) или охлаждения вала (твердая углекислота -79C0 , жидкий воздух-- 196°С). Недостатком метода нагревания является возможность изменения структуры металла, появление окалины и коробления. Метод охлаждения свободен от этих недостатков.
Необходимую разность температур t нагрева втулки или охлаждения вала, обеспечивающую свободную сборку, подсчитывают по формуле
прессовое соединение натяг
,
где Nmax -- наибольший натяг посадки; So -- минимально необходимый зазор, обеспечивающий свободную сборку (рекомендуется принимать равным минимальному зазору посадки H7/g6); a -- температурный коэффициент линейного расширения (для стали и чугуна ; d -- номинальный диаметр посадки.
1.2. Прочность соединения
Как было указано в разделе 2.1, стандартную посадку выбирают по условиям неподвижности соединения при заданной нагрузке без каких-либо дополнительных скреплений. Однако возможны случаи, когда назначенная посадка недопустима по условиям прочности сопрягаемых деталей, т. к. её натяг вызывает их разрушение или чрезмерные деформации. Поэтому при расчёте прочности прессовых посадок необходимо рассматривать как условия прочности (неподвижности) соединения, так и условия прочности деталей.
Расчет прочности деталей является проверкой возможности применения намеченной посадки.
Расчет прочности соединения.
На рис. приведена расчетная схема прессового соединения. Условие прочности соединения при нагружении осевой силой
KFa<,fpndl,
где р-- давление на поверхность контакта; К -- коэффициент запаса = 1,5...2 .
Условие прочности соединения при погружении крутящим моментом
.
При совместном действии Т и Fa
где Ft=2T/d -- окружная сила.
По теории расчета толстостенных цилиндров, изучаемой в курсе сопротивления материалов, удельное давление на поверхности контакта связано с натягом зависимостью
p = ,
где N -- расчетный натяг; С1 и С2 -- коэффициенты:
; ,
Ei и Е2, м1 и м2 -- модули упругости и коэффициенты Пуассона материалов вала и втулки:
для стали Е = (21...22)*104 МПа и м = 0,3,
для чугуна Е =(12...14)*104 МПа и м = О,25,
для бронзы Е = (10...11)*104 МПа и м = 0,33.
При расчете прочности соединения расчетный натяг N определяют по минимальному табличному или вероятностному натягу с поправкой и на срезание и сглаживание шероховатости поверхности при запрессовке (если сборку выполняют нагреванием или охлаждением, и =0):
N = Nmin -u , u = 1.2(Rz1 + Rz2 ),
Где Rz1 и Rz2 -- высоты шероховатостей посадочных поверхностей.
Наиболее распространенные значения Rz для поверхностей прессовых соединений: 10...6,3; 3,2...1,6 мкм, что соответствует 6...8-му классам шероховатости.
Экспериментальные исследования показали, что значение коэффициентов трения на контактной поверхности зависит от многих факторов: способа сборки, удельного давления р, шероховатости поверхности, рода смазки поверхностей, применяемой при запрессовке деталей, скорости запрессовки и пр. Поэтому точное значение коэффициента трения может быть определено только испытаниями при заданных конкретных условиях. В приближенных расчетах прочности соединения стальных и чугунных деталей принимают: 0,08...0,1 -- сборка прессованием; О,12. ..0,14 -- сборка с нагревом или охлаждением.
Изгибающий момент, которым может быть нагружено соединение, определяют на основе следующих расчетов (рис. 2.4). Действие момента (M=FL) вызывает в соединении такое перераспределение давления р, при котором внешняя нагрузка уравновешивается моментом внутренних сил MR=Rx.
Составляя расчетные зависимости, полагают, что поворот шипа происходит вокруг центра тяжести соединения -- точки О, а первоначальная равномерная эпюра давлений (на чертеже показана штриховой линией) переходит в треугольную, как показано на рис. 2/4, или трапецеидальную. Кроме того, не учитывают действие силы F, перенесенной в точку О, как малое в сравнении с действием момента М. Максимально давление изменяется в плоскости действия нагрузки. При некотором значении нагрузки эпюра давления из трапеции превращается в треугольник с вершиной у края отверстия и основанием, равным 2р. Этот случай является предельным, так как дальнейшее увеличение нагрузки приводит к появлению зазора (раскрытие стыка). Учитывая принятые положения, можно написать:
M = FL = Rx,
где R -- равнодействующая давлений на поверхностях верхнего и нижнего полуцилиндров. Значение этой равнодействующей определяется давлением р прессовой посадки и не изменяется от действия изгибающего момента
R = pld.
Плечо пары х=l /3. Подставляя, получаем
M = pdl2 /3
Для обеспечения необходимого запаса прочности соединения на практике принимают
M<0,2pdl2.
При этом давление в наиболее нагруженных точках соединения не должно вызывать пластических деформаций.
Изменение давлений, вызванное действием изгибающего момента, не отражается на способности соединения воспринимать осевую силу и крутящий момент, так как суммарное значение сил трения остается постоянным.
Расчет прочности и деформаций деталей прессового соединения выполняют по формулам для толстостенных цилиндров. Эпюры напряжений в деталях 1 и 2 показаны на рис. 2.5, где уr -- напряжения сжатия в радиальном направлении; уt1 и уt2 -- напряжения сжатия и растяжения в тангенциальном направлении (осевые напряжения малы, их не учитывают). Давление р при расчете прочности деталей определяют по максимальному натягу
N = Nmax -- u.
Приведенные зависимости справедливы только в пределах упругих деформаций. Условие, при котором в деталях не будет пластических деформаций (по теории наибольших касательных напряжений):
уэк =у1 - у3 ,
где у1--максимальное, а у3--минимальное нормальные напряжения, считая растяжение положительным; уТ--предел текучести материала.
Нетрудно установить, что наибольшие эквивалентные напряжения уэк имеют место в точках внутренних поверхностей втулки и вала. При этом для втулки у1= уt2; уt3 = - уr = -р и условия отсутствия пластических деформаций
,
где ут2--предел текучести материала втулки; для вала у1 == 0 , у3 =- уt1 и уэкв1 = уt1 или
Появление пластических деформаций не является во всех случаях недопустимым. Опыт применения прессовых посадок свидетельствует о том, что надежные соединения могут быть получены и при наличии некоторой кольцевой пластической зоны вблизи внутренней поверхности втулки. Давление на поверхности контакта при наличии пластических деформаций можно определять по приближенным формулам:
p = pT (2NT - N/NT)
;
p=0.5pT.
где NT и рТ --расчетный натяг и давление, соответствующие пределу текучести.
Давление рТ определяют как меньшее из двух значений при знаке равенства в формулах (2.9) и (2.10). При известном рТ по формуле (2.5) определяют NT.
Увеличение наружного диаметра втулки, вызванное растяжением от посадки, можно оценить по формуле
Дополнительные указания к расчетам
1. Приведенные выше формулы для расчета прочности деталей основаны на предположении, что давление распределяется равномерно по поверхности контакта. Действительная эпюра давлений в направлении длины втулки представляется некоторой кривой, приближенный характер которой изображен на рис. Здесь наблюдается концентрация давлений (напряжений) у краев отверстия, вызванная вытеснением сжатого материала от середины отверстия в обе стороны.
Эффект концентрации напряжений можно уменьшить изготовлением деталей специальной формы. Примеры специальной формы вала и втулки показаны на рис. 2.7. Значение коэффициента концентрации напряжений Ка в прессовом соединении зависит от многих факторов: характеристик механической прочности материалов, размеров деталей, давления, рода нагрузки и т. д. В качестве примера на рис. 2.6 и 2.7 указаны значения К у при d=50 мм, у в=500 МПа, р>30 МПа.
2. Расчеты по наименьшему и наибольшему табличным натягам приводят в большинстве случаев к чрезмерно большим запасам прочности соединения и деталей -- формулы (2.6) и (2.8). Так, например, для посадки диаметра 60Н7/u7 (см. рис. 2.10 и пример расчета) наибольший натяг (105 мкм) в два с лишним раза превышает наименьший натяг (45 мкм). Во столько же раз могут изменяться действительные нагрузочные способности соединения и напряжений деталей. Пределы рассеивания натяга уменьшаются с повышением классов точности изготовления деталей.
Вероятность минимальных и максимальных отклонений размеров мала. Поэтому в массовом производстве выгодно применять вероятностные методы расчета, допуская ту или иную вероятность отказа. В индивидуальном и мелкосерийном производстве целесообразно проверять расчет) по замеренному натягу.
Так же, как и в зубчатом соединении, в прессовом соединении наблюдается коррозионно-механическое изнашивание, связанное с циклическими относительными микроперемещениями поверхностей посадки. Не трудно понять, что изгиб вала моментом М и кручение вала моментом Т распространяются внутрь ступицы, как изображено на эпюрах М и Т. При вращении вала деформации изгиба -- растяжения (+) и сжатия (--) поверхностных слоев вала циклически изменяются (при повороте на 180° знаки меняются на обратные) и сопровождаются микросдвигами относительно поверхности ступицы. Кручение вала также вызывает микросдвиги, но в отличие от изгиба эти микросдвиги цикличны только при переменном крутящем моменте.
Расчет прессовых соединений на коррозионно-механическое изнашивание пока не разработан, но известны методы снижения или даже устранения этого вида изнашивания: повышение твердости поверхностей посадки; уменьшение напряжений а и т путем увеличения диаметра в месте посадки; увеличение давления посадки р, а следовательно, и сил трения, которое сокращает распространение деформаций внутрь ступицы и уменьшает относительные перемещения; образование кольцевых проточек по торцам ступицы (см. рис. 2.8). Эти проточки увеличивают податливость ступицы, позволяют ей деформироваться вместе с валом и уменьшают микросдвиги.
1.3 Оценка и область применения
Из рассмотренного следует, что прессовое соединение относится к группе неразъемных и предварительно напряженных. Разборка соединения затруднена, связана с применением специальных приспособлений и сопровождается повреждением посадочных поверхностей. Однако в зависимости от натяга и технологии сборки могут быть получены соединения, сохраняющие свою работоспособность при повторных сборках.
Основное положительное свойство прессового соединения -- его простота и технологичность. Это обеспечивает сравнительно низкую стоимость соединения и возможность его применения в массовом производстве. Хорошая центровка деталей и распределение нагрузки по всей посадочной поверхности позволяют использовать прессовое соединение для скрепления деталей современных высокоскоростных машин.
Существенный недостаток прессового соединения -- зависимость его нагрузочной способности от ряда факторов, трудно поддающихся учету: широкого рассеивания значений коэффициента трения и натяга, влияния рабочих температур на прочность соединения и т. д. К недостаткам соединения относится также наличие высоких сборочных напряжений в деталях и уменьшение их сопротивления усталости вследствие концентрации давлений у краев отверстия. Влияние этих недостатков снижается по мере накопления результатов экспериментальных и теоретических исследований, позволяющих совершенствовать расчет, технологию и конструкцию прессового соединения. Развитие технологической культуры и особенно точности производства деталей обеспечивает этому соединению все более широкое применение. С помощью прессовых посадок с валом соединяют зубчатые колеса, маховики, подшипники качения, роторы электродвигателей, диски турбин и т. п. Прессовые посадки используют при изготовлении составных коленчатых валов, червячных колес и пр.
На практике часто применяют комбинацию прессового соединения со шпоночным. При этом прессовое соединение может быть основным или вспомогательным. В первом случае большая доля нагрузки воспринимается прессовой посадкой, а шпонка только гарантирует прочность соединения. Во втором случае прессовую посадку используют для частичной разгрузки шпонки и центровки деталей. Точный расчет комбинированного соединения еще не разработан. Сложность такого расчета заключается в определении доли нагрузки, которую передает каждое из соединений. Поэтому в инженерной практике используют приближенный расчет, в котором полагают, что вся нагрузка воспринимается только основным соединением -- прессовым или шпоночным. Неточность такого расчета компенсируют выбором повышенных допускаемых напряжений для шпоночных соединений при прессовых посадках.
1.4 Соединение посадкой на конус
Такие соединения применяют для закрепления деталей на концах валов. Давление на конической поверхности образуется в результате затяжки гайки. В остальном соединение подобно прессовому. В отличие от прессового соединение легко монтируется и демонтируется без применения специального оборудования (например, прессов). Это удобно для соединений узлов, монтаж и демонтаж которых производят не только при сборке изделия на заводе, но и в процессе эксплуатации.
Задачей расчета является определение момента Т, который может передавать соединение при заданных размерах и силе F3ат затяжки гайки:
Обычно принимают стандартную конусность 1/10. При этом а = 2°51'40"; коэффициент трения 0,11.. .0,13; коэффициент запаса К1,3. .. 1,5. За расчетный момент Т принимают максимальный; Fзат-- определяют по формуле , в которой
Тзав = FKlK,
где --длина стандартного ключа (d--диаметр резьбы),
150..200 Н--сила на ключе.
Если условие (2.13) не соблюдается, соединение усиливают шпонкой. Расчет шпоночного соединения выполняют по полному моменту нагрузки Т. Влияние посадки на конус учитывают, как и в прессовых посадках, при выборе допускаемых напряжений [у см].
1.5 Клеммовые соединения
Конструкция и применение. Клеммовые соединения применяют для закрепления деталей на валах и осях, цилиндрических колоннах, кронштейнах и т. д.
По конструктивным признакам различают два основных типа клеммовых соединений: со ступицей, имеющей прорезь с разъемной ступицей. Разъемная ступица несколько увеличивает массу и стоимость соединения, но при этом становится возможным устанавливать клемму в любой части вала независимо от формы соседних участков и других расположенных на валу деталей.
При соединении деталей с помощью клемм используют силы трения, которые возникают от затяжки болтов. Эти силы трения позволяют нагружать соединение как моментом (T=Fl), так и осевой силой Fа. Ранее отмечалось, что передача нагрузки только силами трения недостаточно надежна. Поэтому не рекомендуют применять клеммовые соединения для передачи больших нагрузок.
К достоинствам клеммового соединения относятся простота монтажа и демонтажа, самопредохранение от перегрузки, а также возможность перестановки и регулировки взаимного расположения.
В зависимости от выполнения соединения при расчете можно рассмотреть два предельных случая.
Первый случай. Клемма обладает большой жесткостью, а посадка деталей выполнена с большим зазором (рис. 2.5.2, а). При этом можно допустить, что контакт деталей происходит по линии, а условие прочности соединения выражается в виде
Ftd=Fnfa>T, 2Fnf Fa
где Fn -- реакция в месте контак та; f -- коэффициент трения. По условию равновесия любой половины клеммы , где Fзaт -- сила затяжки болтов.
Fзат
Подставив значение Fn в формулы, найдем ,
Второй случай. Клемма достаточно гибкая, форма сопрягаемых деталей строго цилиндрическая, зазор в соединении близок к нулю (рис. 2.5.2, б). В этом случае можно полагать, что давление р распределено равномерно по поверхности соприкосновения деталей, а условия прочности соединения выражаются в виде
Рассматривая равновесие полуклеммы, записываем
После подстановки и сокращения получаем
Таким образом, нагрузочные способности для двух предельных случаев относятся как 2/. Первый случай является самым неблагоприятным, а второй -- наиболее рациональным с точки зрения требуемой затяжки болтов.
Следует заметить также, что наличие больших зазоров в соединении может привести к разрушению клеммы от напряжений изгиба. Практически конструкция с большими зазорами является дефектной.
В современном машиностроении размеры деталей клеммового соединения выполняют под посадку типа Н8/h8. При такой посадке обеспечивается свободная сборка деталей без излишних зазоров.
Это дает основание рассматривать условия работы практически выполняемых клеммовых соединений как средние между двумя рассмотренными выше крайними случаями и рассчитывать их прочность по формулам
2,5Fзатfd>t, 5Fзат>Fa.
Расчет клеммового соединения с односторонним расположением болтов принято выполнять по тем же формулам. При этом условно полагают, что функции второго болта соединения выполняет сам материал рычага. Действительно, если верхний болт в конструкции приварить к деталям, то условия работы клеммы и нижнего болта не изменятся.
Для определения потребной силы затяжки болтов преобразуем формулы к виду
Fзат = KT/(2,5zfd), Fзат= KFa/(5zf).
При совместном действии Т и Fа, сдвигающей силой на поверхности контакта будет равнодействующая осевой Fa и окружной
Ft= 2T/d
Для такого случая
По найденной Fзлт выполняем расчет болтов на прочность.
Размещено на Allbest.ru
...Подобные документы
Виды разъемного соединения, основные типы крепежных деталей, способы стопорения резьбовых соединений. Особенности соединения пайкой и склеиванием. Оценка соединений призматическими шпонками и их применение. Соединение деталей посадкой с натягом.
реферат [3,0 M], добавлен 10.12.2010Способы соединения деталей и сборочных единиц. Разъемные соединения: подвижные и неподвижные. Достоинства резьбовых соединений. Назначение крепежной, крепежно-уплотнительной и ходовой резьбы. Штифтовые, шпоночные, шлицевые и профильные соединения.
реферат [1,7 M], добавлен 17.01.2009Неразъемным называют такое соединение деталей и узлов, разборка которого невозможна без повреждения деталей. Сварка процесс соединения металлических и пластмассовых деталей путем установления межатомных связей между соединяемыми частями при нагреве.
реферат [978,0 K], добавлен 17.01.2009Шпоночное соединение образуют вал, шпонка и ступица колеса. Достоинства шпоночных соединений. Соединения призматическими шпонками. Основные критерии работоспособности. Условие прочности на срез. Общие сведения и шлицевых соединениях и их разновидностях.
реферат [1,0 M], добавлен 15.03.2009Анализ стандартов на допуски и посадки типовых сопряжений. Расчет селективной сборки цилиндрического соединения. Назначение посадок подшипника качения, шпоночного, шлицевого и резьбового соединений, размерной цепи. Средства и контроль точности соединений.
курсовая работа [1,4 M], добавлен 25.12.2015Суть и понятие о соединениях, общие сведения о соединениях. Клеммовые, клеевые, заклепочные, конические, клиновые, профильные, сварные, паяные, шлицевые, штифтовые, шпоночные соединения. Соединения с натягом. Общие тенденции развития соединений.
реферат [3,1 M], добавлен 03.12.2008Соединение деталей как конструктивное обеспечение их контакта с целью кинематического и силового взаимодействия, их классификация и типы. Общая характеристика основных разновидностей соединений деталей: заклепочные, сварные, а также паяные и клеевые.
презентация [435,7 K], добавлен 25.08.2013Расчет и выбор посадки с зазором для гладкого цилиндрического соединения. Расчет посадок подшипника качения. Построение схемы расположения полей допусков деталей резьбового соединения. Расчет размерной цепи А-А. Совершенствование стандартизации в России.
курсовая работа [3,2 M], добавлен 08.06.2010Гладкие сопряжения и калибры, шероховатость, отклонение формы и расположения поверхностей. Резьбовые соединения, подшипники качения, шпоночные и шлицевые соединения. Составление схемы подетальной размерной цепи, ее расчет методом максимума и минимума.
курсовая работа [1,0 M], добавлен 16.09.2010Описание шпонки и ее соединений, параметры стандартизации. Соединения призматическими шпонками: плюсы и минусы. Конструкция соединения с цилиндрической шпонкой. Характерные признаки резных клиновых шпонок. Материал шпонок и выбор допускаемых напряжений.
методичка [590,6 K], добавлен 07.02.2012Недостатки резьбовых соединений. Стандартизованные элементы детали. Передача вращательного движения от одного вала к другому. Ориентировочные соотношения размеров зубчатого колеса. Соединение с помощью призматической шпонки. Эскиз зубчатого колеса.
реферат [1,2 M], добавлен 15.04.2014Назначение и анализ посадок для шпоночного соединения. Выбор посадок для соединения подшипника качения с валом и корпусом. Соединение зубчатого колеса с валом. Расчёт исполнительных размеров калибров для контроля отверстия и вала, образующих посадку.
курсовая работа [177,7 K], добавлен 20.11.2012Общее понятие и сущность соединений. Особенности и примеры разъемных и неразъемных соединений деталей. Резьбовые и зубчатые (шлицевые) соединения: сущность, достоинства, недостатки, основные крепежные детали, сборка, назначение и область применения.
контрольная работа [1,0 M], добавлен 12.03.2011Геометрия и кинематика резьбовых соединений. Силы в резьбовых соединениях, передача энергии и стопорение. Применение резьбовых крепежных деталей. Достоинства и недостатки резьбовых соединений. Основные геометрические параметры метрической резьбы.
презентация [764,3 K], добавлен 25.08.2013Назначение посадок для всех сопрягаемых размеров и обозначить их на выданном узле. Расчет посадок для гладких цилиндрических соединений с натягом для заданного соединения. Определение калибров деталей. Схемы расположения допусков резьбового соединения.
курсовая работа [2,2 M], добавлен 28.02.2015Расчет и выбор посадки для гладкого, цилиндрического соединения с гарантированным натягом или зазором. Конструирование предельных калибров для контроля соединения. Порядок проведения расчета и нормирование точности и вида сопряжения зубчатой передачи.
курсовая работа [4,5 M], добавлен 28.10.2013Механические соединения полимеров. Использование заклепочных соединений при работе с полимерными изделиями, не подлежащими сварке. Резьбовые соединения, схема "винт-гайка". Принцип нажимной кнопки (соединение защелкиванием). Варианты обработки резанием.
курсовая работа [1,1 M], добавлен 27.06.2012Определение резьбы, ее строение и применение как самого распространенного вида разъемных соединений. Способы изготовления и недостатки резьбовых деталей. Стандартизация диаметров стержней под накатывание и нарезание, сбегов, недорезок, проточек и фасок.
реферат [1,9 M], добавлен 16.11.2010Анализ основных норм взаимозаменяемости соединений. Стандартные посадки для подшипниковых соединений. Соединение внутреннего кольца с валом при циркуляционном нагружении. Контроль деталей соединения узла редуктора с гладкими предельными калибрами.
контрольная работа [436,5 K], добавлен 20.02.2014Расчёт гладкого цилиндрического соединения 2 – шестерня – вал. Вычисление калибров для контроля гладких цилиндрических соединений. Выбор нормальной геометрической точности. Определение подшипникового соединения, посадок шпоночного и шлицевого соединения.
курсовая работа [694,8 K], добавлен 27.06.2010