Порошковая металлургия

Определение понятия порошковой металлургии, преимущества ее использования. Способы изготовления металлических порошков: физико-механический и химико-металлургический. Изучение истории возникновения порошковой металлургии. Свойства металлических порошков.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 19.03.2014
Размер файла 52,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http:www.allbest.ru/

Федеральное агентство по образованию РФ

Филиал

Санкт-Петербургского государственного института им. Г.В. Плеханова

(технического университета)

«Воркутинский горный институт»

КОНТРОЛЬНАЯ РАБОТА

По дисциплине: Основы металлургии

Тема: Порошковая металлургия

Порошковая металлургия

Порошковой металлургией называют область техники, охватывающую совокупность методов изготовления порошков металлов и металлоподобных соединений, полуфабрикатов и изделий из них или их смесей с неметаллическими порошками без расплавления основного компонента.

Из имеющихся разнообразных способов обработки металлов порошковая металлургия занимает особое место, так как позволяет получать не только изделия различных форм и назначений, но и создавать принципиально новые материалы, которые другим путем получить или очень трудно или невозможно. У таких материалов можно получить уникальные свойства, а в ряде случаев существенно повысить экономические показатели производства. При этом способе в большинстве случаев коэффициент использования материала составляет около 100%.

Порошковая металлургия находит широчайшее применение для различных условий работы деталей изделий. Методами порошковой металлургии изготавливают изделия, имеющие специальные свойства: антифрикционные детали узлов трения приборов и машин, конструкционные и фрикционные детали, инструментальные материалы, электротехнические детали для электронной и радиотехнической промышленности, композиционные (жаропрочные и др.) материалы.

Основные преимущества использования порошковой металлургии:

– снижает затраты на дальнейшую механическую обработку, которая может быть исключена или существенно уменьшена, получает готовое изделие точное по форме и размерам, обеспечивает высокое качество поверхности изделия;

– использует энерго- и ресурсосберегающие технологии, уменьшает количество операций в технологической цепи изготовления продукта, использует более чем 97% стартового сырья, реализует многие последующие сборочные этапы еще на стадии спекания;

– позволяет получать изделия с уникальными свойствами, используя многокомпонентные смеси, объединяя металлические и не металлические компоненты: изделия различной пористости (фильтры) с регулируемой проницаемостью, подшипники скольжения с эффектом самосмазывания;

– получает более высокие экономические, технические и эксплуатационные характеристики изделий по сравнению с традиционными технологиями;

– упрощает зачастую изготовление изделий сложной формы;

– обеспечивает прецизионное производство, соответствие размеров в серии изделий.

Порошки металлов применяли и в древнейшие времена. Порошки меди, серебра и золота применяли в красках для декоративных целей в керамике, живописи во все известные времена. При раскопках найдены орудия из железа древних египтян (за 3000 лет до нашей эры), знаменитый памятник из железа в Дели относится к 300 году нашей эры. До 19 века не было известно способов получения высоких температур (около 1600-1800°С). Указанные предметы из железа были изготовлены кричным методом: сначала в горнах при температуре 1000°С восстановлением железной руды углем получали крицу (губку), которую затем многократно проковывали в нагретом состоянии, а завершали процесс нагревом в горне для уменьшения пористости. С появлением доменного производства от крицы отказались и о порошковой металлургии забыли.

Заслуга возрождения порошковой металлургии и превращения в особый технологический метод обработки принадлежит русским ученым П.Г.Соболевскому и В.В.Любарскому, которые в 1826 г., за три года до работ англичанина Воллстана, разработали технологию прессования и спекания платинового порошка. металлургия порошковый изготовление

После первых работ П.Г.Соболевского по разработке процесса изготовления монет из порошка платины, выполненных в России в 1826 - 1827 гг. стало развиваться новое направление в науке - порошковая металлургия. В 1924 г. Т.М.Алексеенко-Сербиным была организована первая лаборатория тугоплавких металлов на Московском электроламповом заводе, а затем создана мощная сеть научных учреждений. После организации Г.А.Меерсоном в 1923 г. на Московском кабельном заводе производства порошка вольфрама и получения в 1932 г. на Ленинградском механическом заводе первых промышленных партий порошка электролитического железа, работы ученых привели к созданию ряда оригинальных процессов изготовления металлических порошков.

Процесс получения железного порошка комбинированным восстановлением окалины газом и сажей в 1948 - 1958 гг. был положен в основу строительства Броварского завода порошковой металлургии (Украина). В 1953 - 1957 гг. организовано производство порошков сложнолегированных сталей и сплавов методом металлотермического восстановления. Разработан метод получения легированных порошков железа диффузионным насыщением. Получены порошки карбонильным методом, механическим измельчением, исследуются процессы получения порошков восстановлением окислов, электролизом водных растворов и расплавленных сред. Внедрены методы получения металлических порошков распылением расплавов.

В настоящее время изготавливаются в промышленном масштабе порошки таких металлов, как железо и его сплавы, никель, медь, кобальт, алюминий, титан, олово, цинк, свинец, магний, вольфрам, молибден, тантал, ниобий и другие. Существенные успехи достигнуты в разработке теоретических основ и технологии процессов прессования и формования изделий из порошков.

Первыми видами изделий из порошков, производство которых было организовано в 1918 г., были медно-графитовые щетки. В дальнейшем создано большое количество электроконтактных материалов на основе серебра с добавками никеля, окиси кадмия, графита; на основе вольфрама с пропиткой медью и ряд других.

В 60-х годах широко развились работы по созданию спеченных конструкционных материалов на железной основе, с пропиткой прессовок медью и ее сплавами, с введением в состав материала углерода в виде графита или порошка белого чугуна, с заполнением пор материала стеклом, что дало повышение прочности до 75 - 80 кг/мм2. Применение легированных порошков в сочетании с горячей штамповкой или высокоскоростным холодным прессованием с последующим спеканием позволило получить материалы с прочностью выше 200 кг/мм2.

Типовая технология производства заготовки изделий методом порошковой металлургии включает четыре основные операции:

– получение порошка исходного материала;

– формование заготовок;

– спекание;

– окончательная обработка.

Каждая из указанных операций оказывает значительное влияние на формирование свойств готового изделия. В настоящее время используют большое количество методов производства металлических порошков, что позволяет варьировать их свойства, определяет качество и экономические показатели.

Условно различают два способа изготовления металлических порошков:

1. физико-механический;

2. химико-металлургический.

При физико-механическом способе изготовления порошков превращение исходного материала в порошок происходит путем механического измельчения в твердом или жидком состоянии без изменения химического состава исходного материала. К физико-механическим способам относят дробление и размол, распыление, грануляцию и обработку резанием измельчаемого материала.

При химико-металлургическом способе изменяется химический состав или агрегатное состояние исходного материала. Основными методами при химико-металлургическом производстве порошков являются: восстановление окислов, электролиз металлов, термическая диссоциация карбонильных соединений.

Измельчение твердых материалов - уменьшение начальных размеров частиц путем разрушения их под действием внешних усилий. Различают измельчение дроблением, размолом или истиранием. Наиболее целесообразно применять механическое измельчение хрупких металлов и их сплавов таких, как кремний, сурьма, хром, марганец, ферросплавы, сплавы алюминия с магнием. Размол вязких пластичных металлов (медь, алюминий и др.) затруднен. В случае таких металлов наиболее целесообразно использование в качестве сырья отходов образующихся при обработке металлов (стружка, обрезка и др.).

Для грубого размельчения используют щековые, валковые и конусные дробилки и бегуны; при этом получают частицы размером 1-10 мм, которые являются исходным материалом для тонкого измельчения, обеспечивающего производство требуемых металлических порошков. Исходным материалом для тонкого измельчения может быть и стружка. Окончательный размол полученного материала проводится в шаровых вращающихся, вибрационных или планетарных центробежных, вихревых и молотковых мельницах.

Распыление и грануляция жидких металлов является наиболее простым и дешевым способом изготовления порошков металлов с температурой плавления до 1600°С: алюминия, железа, сталей, меди, цинка, свинца, никеля и других металлов и сплавов. Сущность измельчения расплава состоит в дроблении струи расплава либо высокоэнергонасыщенным газом или жидкостью, либо механическим распылением, либо сливанием струи расплава в жидкую среду (например, воду).

Для распыления металл плавят в электропечах. В зависимости от свойств расплава и требований к качеству порошка распыление осуществляют воздухом, азотом, аргоном, гелием, а для защиты от окисления - инертным газом. Распыление воздухом - самый экономичный способ изготовления порошков. Основные параметры процесса распыления: давление и температура газового потока, температура расплава. Охлаждающей средой для распыленной струи может быть вода, газ, органическая жидкость.

Химико-металлургический метод - восстановление металлов из окислов и солей. Простейшая реакция восстановления может быть представлена так:

МеА+Х=Ме+ХА±Q;

где Ме - любой металл, А - неметаллическая составляющая (кислород, хлор, фтор, солевой остаток и др.) восстанавливаемого химического соединения металла, Х - восстановитель, Q - тепловой эффект реакции.

В качестве восстановителей используют водород, окись углерода, кокс, древесный уголь, диссоциированный аммиак, конвертированный природный газ, эндотермический и природные газы, металлы (кальций, магний, алюминий, натрий, кадмий и др.). Прочность химической связи соединения МеА и образующегося соединения восстановителя ХА позволяет оценить возможность протекания реакции восстановления. Количественной мерой («мерой химического сродства») является величина свободной энергии, высвобождающейся при образовании соответствующего химического соединения. Чем больше выделяется энергии, тем прочнее химическое соединение. В реакции восстановления всегда должна выделяться тепловая энергия.

Железные порошки получают восстановлением окисленной руды или прокатной окалины. Железо в указанных материалах находится в виде окислов: Fe2O3, Fe3O4, FeO. Медные, никелевые и кобальтовые порошки легко получают восстановлением окислов этих металлов, так как они обладают низким сродством к кислороду. Сырьем для производства порошков этих металлов служат либо окись меди Cu2O, CuO, закись никеля NiO, окись-закись кобальта Co2O3, Co3O4, либо окалина от проката проволоки, листов. Восстановление проводят в муфельных или в трубчатых печах водородом, аммиаком или конвертированным природным газом. Температура восстановления сравнительно низка: меди - 400...500°С, никеля - 700...750°С, кобальта - 520…570°С. Длительность процесса восстановления 1...3 ч при толщине слоя окисла 20…25 мм. После восстановления получают губку, которая легко растирается в порошок. Порошок вольфрама получают из вольфрамового ангидрида, являющегося продуктом разложения вольфрамовой кислоты Н2WO4 (прокаливание при 700...800°С). Восстановление проводят либо водородом при температуре 850…900°С, либо углеродом при температуре 1350…1550°С в электропечах. Этим методом (восстановления) получают порошки молибдена титана, циркония, тантала, ниобия, легированных сталей и сплавов.

Способ электролиза наиболее экономичен при производстве химически чистых порошков меди. Физическая сущность электролиза состоит в том, что при прохождении электрического тока водный раствор или расплав соли металла, выполняя роль электролита, разлагается, металл осаждается на катоде, где его ионы разряжаются. Сам процесс электрохимического превращения происходит на границе электрод (анод или катод) - раствор. Источником ионов выделяемого металла служат, как правило, анод, состоящий из этого металла, и электролит, содержащий его растворимое соединение. Такие металлы как никель, кобальт, цинк выделяются из любых растворимых в виде однородных плотных зернистых осадков. Серебро и кадмий осаждаются из простых растворов в форме разветвленных кристаллитов, а из растворов цианистых солей - в виде плотных осадков. Размеры частиц осаждаемого порошка зависят от плотности тока, наличия коллоидов и поверхностно активных веществ. Очень большое влияние на характер осадков оказывает чистота электролита, материал электрода и характер его обработки.

Карбонилы - это соединения металлов с окисью углерода Me(CO)C, обладающие невысокой температурой образования и разложения. Процесс получения порошков в карбонильном процессе состоит из двух главных этапов:

– получение карбонила из исходного соединения

MeаXb+cCO=bX+Mea(CO)c,

– образование металлического порошка

Меа(СО)с= аМе+сСО.

Основным требованием к таким соединениям является их легколетучесть и небольшие температуры образования и термического разложения (кипения или возгонки). На первой операции - синтеза карбонила - отделение карбонила от ненужного вещества Х достигается благодаря летучести карбонила. На втором этапе происходит диссоциация (разложение) карбонила путем его нагрева. При этом возникающий газ СО может быть использован для образования новых порций карбонилов. Для синтеза карбонилов используют металлсодержащее сырье: стружку, обрезки, металлическую губку и т.п. Карбонильные порошки содержат примеси углерода, азота, кислорода (1...3%). Очистку порошка производят путем нагрева в сухом водороде или в вакууме до температуры 400...600°С. Этим методом получают порошки железа, никеля, кобальта, хрома, молибдена, вольфрама.

Металлические порошки характеризуются химическими, физическими и технологическими свойствами. Химические свойства металлического порошка зависят от химического состава, который зависит от метода получения порошка и химического состава исходных материалов. Содержание основного металла в порошках составляет 98...99%. Допустимое количестве примесей в порошке определяется допустимым их количеством в готовой продукции. Исключение сделано для окислов железа, меди, никеля, вольфрама и некоторых других, которые при нагреве в присутствии восстановления легко образуют активные атомы металла, улучшающие спекаемость порошков. В металлических порошках содержится значительное количество газов (кислород, водород, азот и др.), как адсорбированных на поверхности, так и попавших внутрь частиц в процессе изготовления или при последующей обработке. Газовые пленки на поверхности частиц порошка образуются самопроизвольно из-за ненасыщенности силовых полей в поверхностных слоях. С уменьшением частиц порошка увеличивается адсорбция газов этими частицами.

При восстановлении химических соединений часть газов - восстановителей и газообразных продуктов реакции не успевает выйти наружу и находится либо в растворенном состоянии, либо в виде пузырей. Электролитические порошки содержат водород, выделяющийся на катоде одновременно с осаждением на нем металла. В карбонильных порошках присутствуют растворенные кислород, окись и двуокись углерода, а в распыленных порошках - газы, механически захваченные внутрь частиц.

Большое количество газов увеличивает хрупкость порошков и затрудняет прессование. Интенсивное выделение газов из спрессованной заготовки при спекании может привести к растрескиванию изделий. Поэтому перед прессованием или в его процессе применяют вакуумирование порошка, обеспечивающее удаление значительного количества газов.

При работе с порошками учитывают их токсичность и пирофорность. Практически все порошки оказывают вредное воздействие на организм человека, однако и в компактном виде (в виде мелких частичек порошка) большинство металлов безвредно. Пирофорность, т.е. способность к самовозгоранию при соприкосновении с воздухом, может привести к воспламенению порошка и даже взрыву. Поэтому при работе с порошками строго соблюдают специальные меры безопасности. Физические свойства частиц характеризуют форма, размеры и гранулометрический состав, удельная поверхность, плотность и микротвердость.

В зависимости от метода изготовления порошка получают соответствующую форму частиц: сферическая - при карбонильном способе в распылении, губчатая - при восстановлении, осколочная - при измельчении в шаровых мельницах, тарельчатая - при вихревом измельчении, дендритная - при электролизе, каплевидная - при распылении. Эта форма частиц может несколько изменяться при последующей обработке порошка (размол, отжиг, грануляция). Форма частиц значительно влияет на плотность, прочность и однородность свойств прессованного изделия. Действительная плотность порошковой частицы, носящая название пикнометрической, в значительной мере зависит от наличия примесей закрытых пор, дефектов кристаллической решетки и других причин и отличается от теоретической. Наибольшее отклонение плотности порошковых частиц от теоретической плотности наблюдают у восстановленных порошков из-за наличия остаточных окислов, микропор, полостей. Микротвердость порошковой частицы характеризует ее способность к деформированию. Способность к деформированию в значительной степени зависит от содержания примесей в порошковой частице и дефектов кристаллической решетки.

Технологические свойства порошка: насыпная плотность, текучесть, прессуемость и формуемость. Насыпная плотность - это масса единицы объема порошка при свободном заполнении объема. Текучесть порошка характеризует скорость заполнения единицы объема и определяется массой порошка высыпавшегося через отверстие заданного диаметра в единицу времени. От текучести порошка зависит скорость заполнения инструмента и производительность при прессовании. Под прессуемостью порошка понимают свойство порошка приобретать при прессовании определенную плотность в зависимости от давления, а под формуемостью - свойство порошка сохранять заданную форму, полученную после уплотнения при минимальном давлении. Количественно прессуемость определяется плотностью спрессованного брикета, формуемость оценивают качественно, по внешнему виду спрессованного брикета, или количественно - величиной давления, при котором получают неосыпающийся прочный брикет.

Целью формования порошка является придание заготовкам из порошка формы, размеров, плотности и механической прочности, необходимых для последующего изготовления изделий. Формование включает следующие операции: отжиг, классификацию, приготовление смеси, дозирование и формование.

Отжиг порошков применяют с целью повышения их пластичности и прессуемости за счет восстановления остаточных окислов и снятия наклепа. Нагрев осуществляют в защитной среде (восстановительной, инертной или вакууме) при температуре 0,4...0,6 абсолютной температуры плавления металла порошка. Наиболее часто отжигают порошки, полученные механическим измельчением, электролизом и разложением карбонилов.

Классификация порошков - это процесс разделения порошков по величине частиц. Порошки с различной величиной частиц используют для составления смеси, содержащей требуемый процент каждого размера. Классификация частиц размером более 40 мкм производят в проволочных ситах. Если свободный просев затруднен, то применяют протирочные сита. Более мелкие порошки классифицируют на воздушных сепараторах.

В производстве для изготовления изделий используют смеси порошков разных металлов. Смешивание порошков есть одна из важных операций и задачей ее является обеспечение однородности смеси, так как от этого зависят конечные свойства изделий. Наиболее часто применяют механическое смешивание компонентов в шаровых мельницах и смесителях. Соотношение шихты и шаров по массе 1:1. Смешивание сопровождается измельчением компонентов. Смешивание без измельчения проводят в барабанных, шнековых, лопастных, центробежных, планетарных, конусных смесителях и установках непрерывного действия.

При приготовлении шихты некоторых металлических порошков высокой прочности (вольфрама, карбидов металлов) для повышения формуемости в смесь добавляют пластификаторы - вещества смачивающие поверхность частиц. Они должны удовлетворять требованиям: обладать высокой смачивающей возможностью, выгорать при нагреве без остатка, легко растворяться в органических растворителях.

Дозирование - это процесс отделения определенных объемов смеси порошка. Различают объемное дозирование и дозирование по массе. Объемное дозирование используют при автоматизированном формовании изделий. Дозирование по массе наиболее точный способ, этот способ обеспечивает одинаковую плотность формования заготовок.

Для формования изделий из порошков применяют следующие способы: прессование в стальной прессформе, изостатическое прессование, прокатку порошков, мундштучное прессование, шликерное формование, динамическое прессование.

При прессовании, происходящем в закрытом объеме (стальной прессформе), возникает сцепление частиц, и получают заготовку требуемых формы и размеров. Такое изменение объема происходит в результате смещения и деформации отдельных частиц и связано с заполнением пустот между частицами порошка и заклинивания - механического сцепления частиц. У пластичных материалов деформация возникает вначале у приграничных контактных участков малой площади под действием огромных напряжений, а затем распространяется вглубь частиц.

Изостатическое прессование - это прессование в эластичной оболочке под действием всестороннего сжатия. Если сжимающее усилие создается жидкостью, прессование называют гидростатическим. Из-за практического отсутствия трения между оболочкой и порошком спрессованное изделие получают с равномерной плотностью по всем сечениям, а давление прессования в этом случае меньше, чем при прессовании в стальных прессформах. Недостатком является невозможность получения прессованных деталей с заданными размерами и необходимость механической обработки при изготовлении изделий точной формы и размеров.

Мундштучное прессование - это формование заготовок из смеси порошка с пластификатором путем продавливания ее через отверстие в матрице. В качестве пластификатора применяют парафин, крахмал, поливиниловый спирт, бакелит. Этим методом получают трубы, прутки, уголки и другие изделия большой длины. Обычно мундштучное прессование выполняют при подогреве материала изделия и в этом случае пластификатор не используют; порошки алюминия и его сплавов прессуют при 400...600°C, меди - 800...900°С, никеля - 1000...1200°С, стали - 1050...1250°С. Для предупреждения окисления при горячей обработке применяют защитные среды (инертные газы, вакуум) или прессование в защитных оболочках.

Шликерное формование - представляет собой процесс заливки шликера в пористую форму с последующей сушкой. Шликер - это однородная концентрированная взвесь порошка металла в жидкости. Формирование изделия после заливки формы взвесью порошка заключается в направленном осаждении твердых частиц на стенках формы под действием направленных к ним потоков взвеси (порошка в жидкости). После удаления изделия из формы его сушат при 110...150°С в сушильных шкафах. Этим способом изготовляют трубы, сосуды и изделия данной формы.

Динамическое прессование - это процесс прессования с использованием импульсных нагрузок. Процесс имеет ряд преимуществ: уменьшаются расходы на инструмент, уменьшается упругая деформация, увеличивается плотность изделий. Отличительной чертой процесса является скорость приложения нагрузки. Источником энергии являются: взрыв заряда взрывчатого вещества, энергия электрического разряда в жидкости, импульсное магнитное поле, сжатый газ, вибрация. В зависимости от источника энергии прессование называют взрывным, электрогидравлическим, электромагнитным, пневмомеханическим и вибрационным.

Спеканием называют процесс развития межчастичного сцепления и формирования свойств изделия, полученных при нагреве сформованного порошка. Плотность, прочность и другие физико-механические свойства спеченных изделий зависят от условий изготовления. В зависимости от состава шихты различают твердофазное спекание (т.е. спекание без образования жидкой фазы) и жидкофазное, при котором легкоплавкие компоненты смеси порошков расплавляются.

При твердофазном спекании протекают следующие основные процессы: поверхностная и объемная диффузия атомов, усадка, рекристаллизация, перенос атомов через газовую среду. Все металлы имеют кристаллическое строение. С повышением температуры энергия и амплитуда колебательных движений атомов увеличивается и возможен переход атома в новое положение, где его энергия и амплитуда снова увеличиваются и возможен новый переход в другое положение. Такое перемещение атомов носит название диффузии и может совершаться как по поверхности (поверхностная диффузия), так и в объеме тела (объемная диффузия). Сокращение суммарного объема пор возможно только при объемной диффузии. При этом происходит изменение геометрических размеров изделия - усадка. Усадка при спекании может проявляться в изменении размеров и объема, и поэтому различают линейную и объемную усадку. Рекристаллизация при спекании приводит к росту зерен и уменьшению суммарной поверхности частиц, что энергетически выгодно. Однако рост зерен ограничен тормозящим влиянием посторонних включений на поверхностях зерен: порами, пленками, примесями. Различают рекристаллизацию внутризеренную и межчастичную. Перенос атомов через газовую среду наблюдают при испарении вещества и конденсации его на поверхности других частиц, что происходит при определенной температуре. Перенос вещества увеличивает межчастичные связи и прочность сцепления частиц, способствует изменению формы пор, но не изменяет плотности при спекании.

При жидкофазном спекании в случае смачивания жидкой фазой твердой фазы увеличивается сцепление твердых частичек, а при плохой смачиваемости жидкая фаза тормозит процесс спекания, препятствуя уплотнению. Смачивающая жидкая фаза приводит к увеличению скорости диффузии компонентов и облегчает перемещение частиц твердой фазы. При жидкофазном спекании можно получить практически беспористые изделия. Различают спекание с жидкой фазой, присутствующей до конца процесса спекания, и спекание с жидкой фазой, исчезающей вскоре после ее появления, когда конечный период спекания происходит в твердой фазе.

Благодаря структурным особенностям продукты порошковой металлургии более термостойки, лучше переносят воздействие циклических колебаний температуры и напряжения, а также ядерного облучения, что очень важно для материалов новой техники.

Порошковая металлургия имеет и недостатки, тормозящие ее развитие: сравнительно высокая стоимость металлических порошков; необходимость спекания в защитной атмосфере, что также увеличивает себестоимость изделий порошковой металлургии; трудность изготовления в некоторых случаях изделий и заготовок больших размеров; сложность получения металлов и сплавов в компактном состоянии; необходимость применения чистых исходных порошков для получения чистых металлов.

Недостатки порошковой металлургии и некоторые ее достоинства нельзя рассматривать как постоянно действующие факторы: в значительной степени они зависят от состояния и развития как самой порошковой металлургии, так и других отраслей промышленности. По мере развития техники порошковая металлургия может вытесняться из одних областей и, наоборот, завоевывать другие. Развитие дугового, электроннолучевого, плазменного плавления и электроимпульсного нагрева позволили получать не достижимые прежде температуры, вследствие чего удельный вес порошковой металлургии в производстве несколько снизился. Вместе с тем прогресс техники высоких температур ликвидировал такие недостатки порошковой металлургии, как, например, трудность приготовления порошков чистых металлов и сплавов: метод распыления дает возможность с достаточной полнотой и эффективностью удалить в шлак примеси и загрязнения, содержащиеся в металле до расплавления. Благодаря созданию методов всестороннего обжатия порошков при высоких температурах в основном преодолены и трудности изготовления беспористых заготовок крупных размеров.

В то же время ряд основных достоинств порошковой металлургии - постоянно действующий фактор, который, вероятно, сохранит свое значение и при дальнейшем развитии техники. С увеличением масштабов выпуска и совершенствованием методов изготовления порошков решатся такие проблемы порошковой металлургии как: дороговизна исходных материалов. При массовом производстве расходы, связанные с необходимостью изготовления индивидуальных приспособлений для каждого вида деталей сократятся до минимума. С исследованием и использованием на производстве получения чистых порошков распылением расплавленного железа решены такие проблемы как необходимость получения достаточно чистых исходных материалов.

Список использованной литературы

1. Бальшин М.Ю., Кипарисов С.С. - М.: Металлургия, 1978.

2. Бальшин М.Ю. Научные основы порошковой металлургии и металлургии волокна. - М.: Металлургия, 1982.

3. Еськов Б.Б., Лагунов Д.В., Лагунов В.С. Пористые материалы. - Воронеж, 1995.

4. Либенсон Г.А. Основы порошковой металлургии. - М.: Металлургия, 1985.

5. Раковский B.C., Саклинский В.В. Порошковая металлургия в машиностроении. - М.: Машиностроение, 1983.

Размещено на Allbest.ru

...

Подобные документы

  • Совокупность методов изготовления порошков металлов и сплавов. Преимущества порошковой металлургии. Изготовление пористых материалов. Получение материалов высокой чистоты. Использование продукции порошковой металлургии в других отраслях промышленности.

    презентация [495,7 K], добавлен 07.02.2011

  • Технический процесс, применение, спекание и окончательная обработка порошковых изделий. Технология производства и свойства металлических порошков. Особенности формования заготовок из порошковых материалов. Сущность и эффективность порошковой металлургии.

    контрольная работа [871,3 K], добавлен 30.03.2010

  • Порошковая металлургия. Основными элементами технологии порошковой металлургии. Методы изготовления порошковых материалов. Методы контроля свойств порошков. Химические, физические, технологические свойства. Основные закономерности прессования.

    курсовая работа [442,7 K], добавлен 17.10.2008

  • Основные понятия и технологические процессы порошковой металлургии. Сущность изготовления деталей и заготовок по этому методу. Экономическая целесообразность применения порошковой металлургии в промышленности, основные направления и перспективы развития.

    контрольная работа [1,1 M], добавлен 04.06.2009

  • Металлические порошки и порошки сплавов - основное сырьё для производства изделий методом порошковой металлургии. Смешивание, прессование, спекание порошков. Выбор порошков, химического состава и оборудования. Подготовка технологического процесса.

    контрольная работа [61,2 K], добавлен 15.01.2011

  • Исследование состава металлического лома, описание способов и оборудования для его переработки. Сравнительная характеристика достоинств и недостатков порошковой металлургии. Классификация механических и физико-химических методов получения порошков.

    реферат [407,4 K], добавлен 05.09.2011

  • Общие сведения о порошковой металлургии. Информация к проектированию технологического процесса, термическая обработка пресс-формы. Технология режима обработки резанием. Классификация детали по группе сложности. Расчет состава шихты аналитическим способом.

    курсовая работа [1,2 M], добавлен 25.05.2010

  • Классификация композиционных материалов, их геометрические признаки и свойства. Использование металлов и их сплавов, полимеров, керамических материалов в качестве матриц. Особенности порошковой металлургии, свойства и применение магнитодиэлектриков.

    презентация [29,9 K], добавлен 14.10.2013

  • Физические свойства марганца, его применение в металлургии. Производство порошка марганца с помощью дезинтегратора. Снижение взрывоопасности при производстве порошка. Механические методы получения порошков. Приготовление порошков в шаровой мельнице.

    реферат [651,9 K], добавлен 04.11.2013

  • Изготовление изделий из порошков металлов. Методы и средства технологии. Автоматизация всех технологических операций. Способы изготовления порошков. Одностороннее и двухстороннее прессование. Гидростатическое прессование. Защита деталей от коррозии.

    учебное пособие [1,6 M], добавлен 17.03.2009

  • Методы порошковой металлургии. Повышение износостойкости покрытий, полученных методом высокоскоростного воздушно-топливного напыления, из самофлюсующихся сплавов на никелевой основе путём введения в состав исходных порошков добавок диборида титана.

    статья [2,3 M], добавлен 18.10.2013

  • Понятие и общая характеристика порошковой металлургии, используемые в ней методы и инструменты, оценка преимуществ и недостатков. Получение порошка исходного материала. Принцип действия вибрационной мельницы. Этапы и значение процесса прессования.

    презентация [330,4 K], добавлен 16.04.2015

  • Производство деталей из жидких полимеров (композиционных пластиков). Приготовление смеси и формообразование заготовок. Общие сведения о порошковой металлургии. Способы формирования резиновых деталей. Переработка пластмасс в высокоэластичном состоянии.

    реферат [397,5 K], добавлен 03.07.2015

  • Порошковая металлургия как отрасль техники, занимающаяся получением металлических порошков. Анализ схемы строения композиционных материалов. Знакомство с основными функциями и назначением алюминиевой пудры. Особенности физико-химических свойств алюминия.

    дипломная работа [1,8 M], добавлен 22.11.2014

  • Разработка технологического процесса изготовления вольфрамовой нити методом порошковой металлургии. Достоинства и недостатки вольфрамовой нити, ее применение. Изготовление фюзеляжа самолета из композиционного материала. Описание конструкции фюзеляжа.

    контрольная работа [3,8 M], добавлен 02.02.2014

  • Металлургический комплекс России: чёрная металлургия, цветная металлургия. Структура черной металлургии. Системы технологий и промышленное производство цветной металлургии. Олово: классификация, свойства, сплавы и применение олова в других отраслях.

    контрольная работа [1,9 M], добавлен 22.10.2007

  • Исследование основ порошковой металлургии. Изучение основных способов получения и технологических свойств порошков. Изготовление металлокерамических деталей. Приготовление смеси, спекание и окончательная обработка заготовок. Формообразование деталей.

    курсовая работа [538,0 K], добавлен 11.10.2013

  • Двухкарбидные твердые сплавы. Основные свойства и классификация твердых сплавов. Метод порошковой металлургии. Спекание изделий в печах. Защита поверхности изделия от окисления. Сплавы на основе высокотвердых и тугоплавких карбидов вольфрама и титана.

    контрольная работа [17,9 K], добавлен 28.01.2011

  • Порошковая металлургия позволяет получать металлокерамические материалы с особыми физико-химическими, механическими и технологическими свойствами, которые невозможно получить методами литья, обработки давлением. Применение порошковых материалов.

    реферат [433,6 K], добавлен 04.04.2008

  • Прессование как одна из ключевых операций технологии получения изделий из металлических и других порошков. Аппроксимирующие кривые уплотнения порошков железа и меди. Метод горячего прессования. Методика определения кривых уплотнения порошковых материалов.

    контрольная работа [750,4 K], добавлен 21.02.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.