Основные технологии получения наноматериалов

Основные определения наноматериалов. Их классификация, свойства и методы получения. Полупроводниковые, магнитные, молекулярные наноструктуры, двумерные многослойные структуры из пленок нанометровой толщины, фуллереноподобные и конструкционные материалы.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 26.03.2014
Размер файла 30,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Наноматериалы

Если при уменьшении объема какого-либо вещества по одной, двум или трем координатам до размеров нанометрового масштаба возникает новое качество, или это качество возникает в композиции из таких объектов, то эти образования следует отнести к наноматериалам, а технологии их получения и дальнейшую работу с ними _ к нанотехнологиям. Подавляющее большинство новых физических явлений на наномасштабах проистекает из волновой природы частиц (электронов и т.д.), поведение которых подчиняется законам квантовой механики. Проще всего это пояснить на примере полупроводников. Когда по одной или нескольким координатам размеры становятся порядка и меньше длины волны де Бройля носителей заряда _ полупроводниковая структура становится резонатором, а спектр носителей заряда _ дискретным. То же самое с рентгеновскими зеркалами. Толщины слоев, способных отражать в фазе рентгеновское излучение, лежат в нанометровом диапазоне. В других случаях возникновение нового качества может быть связано с менее наглядными явлениями. Представляется, что такой подход позволяет составить достаточно полное представление о наноматериалах и возможных областях их использования.

Полупроводниковые наноструктуры

Используя методы "зонной инженерии" и "инженерии волновых функций" можно конструировать квантоворазмерные структуры с заданным электронным спектром и требуемыми оптическими, электрическими и другими свойствами. Поэтому они очень удобны для приборных применений. наноматериалы полупроводниковый молекулярный магнитный

Квантовые ямы. Этим термином обозначаются системы, в которых имеется размерное квантование движения носителей заряда в одном направлении. Первоначально основные исследования квантовых ям проводились на инверсионных каналах кремниевых МОП транзисторов, позднее и до настоящего времени широко исследуются свойства квантовых ям в гетероструктурах. Основные физические явления в квантовых ямах: размерное квантование электронного спектра, квантовый эффект Холла (целочисленный и дробный), при специальном приготовлении очень высокая подвижность электронов. Основные методы получения квантовых ям на гетероструктурах: металлоорганическая газовая эпитаксия и молекулярно-пучковая эпитаксия.

Приборные применения: высокочастотные полевые транзисторы с высокой подвижностью электронов, полупроводниковые гетеролазеры и светодиоды от ближнего ИК до голубого света, лазеры дальнего ИК диапазона, параметрические источники света среднего ИК диапазона, фотоприемники среднего ИК диапазона, примесные фотоприемники дальнего ИК диапазона, приемники дальнего ИК диапазона на квантовом эффекте Холла, модуляторы в ближнем ИК диапазоне.

Квантовые проволоки _ это системы, в которых движение носителей заряда квантовано в двух направлениях. Первые квантовые проволоки выполнялись на основе квантовых ям посредством создания потенциального рельефа с помощью двух затворов, расположенных над квантовой ямой. Основные физические явления в квантовых проволоках: квантование проводимости, сильно коррелированный электронный транспорт. Основные методы получения квантовых проволок те же, что и квантовых ям, плюс использование прецизионного травления или специальных затворов. Приборных применений пока нет.

Квантовые точки _ нанообъекты, в которых движение носителей заряда квантовано во всех трех направлениях. Имеют дискретный энергетический спектр (искусственный атом). Основные физические явления в квантовых точках: одноэлектронные и однофотонные явления. Методы получения те же, что и для квантовых ям, однако несколько иные режимы, если происходит спонтанный рост квантовых точек по механизму Странски-Крастанова. Или использование прецизионной литографии для создания квантовых точек из квантовых ям.

Приборные применения: лазеры и светодиоды в ближнем ИК диапазоне, фотоприемники для среднего ИК диапазона, однофотонные приемники, однофотонные генераторы, одноэлектронные транзисторы.

Структуры с туннельно-прозрачными барьерами (системы квантовых ям и сверхрешетки). Основные физические явления в таких системах: резонансное туннелирование; формирование минизонного спектра в сверхрешетках _ периодических системах, содержащих много квантовых ям, разделенных туннельно-прозрачными барьерами; нелинейные электрические и оптические явления в сверхрешетках. Методы выращивания этих структур те же, что и для квантовых ям.

Приборные применения: резонансно-туннельные диоды (генераторы и смесители в гигагерцовом и терагерцовом диапазонах); мощные генераторы и смесители на сверхрешетках: каскадные лазеры среднего и дальнего ИК диапазонов.

Фотонные кристаллы _ системы, в которых имеется зонный спектр для фотонов. Основные физические явления: отсутствие пропускания (полное отражение) света в определенном диапазоне частот, резонансные фотонные состояния. Существует несколько методов выполнения фотонных кристаллов, но все они пока несовершенны.

Возможные приборные применения: эффективные лазеры с низкими пороговыми токами, системы управления световыми потоками.

Магнитные наноструктуры

Развитие методов напыления сверхтонких пленок и нанолитографии привело в последнее десятилетие к активному изучению магнитных наноструктур. Стимулом этой активности является идея о создании новых магнитных наноматериалов для сверхплотной записи и хранения информации. При этом предполагается, что каждая частица несет один бит информации. Если расстояние между частицами составляет 100 нм, то ожидаемая плотность записи - 10 Гбит/см2. Принципиальными ограничениями плотности записи при таком подходе являются магнитостатическое взаимодействие частиц и значительные термические флуктуации. Последние имеют существенную специфику для малых ферромагнитных частиц, которая проявляется в экспоненциальном росте вероятности распада намагниченного состояния с уменьшением размера частицы (суперпарамагнетизм).

Достижением в исследовании магнетизма наноматериалов следует признать открытие эффекта гигантского магнитосопротивления. Суть эффекта заключается в изменении сопротивления (порядка нескольких десятков процентов) многослойной структуры из сверхтонких ферромагнитных и диамагнитных слоев (например, Со/Cu) при смене ферромагнитного упорядочения в структуре на антиферромагнитное. Можно сказать, что такие многослойные структуры представляют собой новый тип доменной структуры ферромагнетика, в котором роль доменов играют ферромагнитные пленки, а доменными стенками являются пленки диамагнетика. Этот эффект находит свое применение при создании новых датчиков магнитного поля, а также при разработке сред для сверхплотной записи информации.

Дальнейшее продвижение в область малых размеров привело к открытию нового явления _ туннелирования магнитного момента в сверхмалых ферромагнитных частицах. К этой группе наноматериалов относятся искусственные кристаллы, содержащие магнитные кластеры Мn12 и Fe3. Магнитный момент таких кластеров равен 10 магнетонам Бора, т.е. занимает промежуточное положение между магнитным моментом атомов и макроскопических частиц. Обменное взаимодействие между кластерами в кристалле отсутствует, а магнитная анизотропия весьма высока. Таким образом, появляется возможность квантовых переходов между магнитными равновесными состояниями в кластерах. Изучение этих процессов представляется интересным и важным с точки зрения разработки элементной базы квантовых компьютеров.

Двумерные многослойные структуры из пленок нанометровой толщины

В данном случае рассматриваются такие комбинации материалов, которые обеспечивают наиболее сильное отражение электромагнитных волн. Длина волны излучения, эффективно взаимодействующего с многослойной структурой, и ее период связаны соотношением , где _ это угол скольжения падающего луча. Диапазон длин волн, в котором эффективно использование этих устройств, простирается от экстремального ультрафиолетового излучения (нм) до жесткого рентгеновского (нм), т.е. диапазон, в котором наиболее длинные волны в 6000 раз больше самых коротких. Для видимого света это соотношение равно ~2. Соответственно, столь же велико количество явлений природы, физические проявления которых находятся в этой спектральной области.

Структуры представляют собой искусственные одномерные кристаллы из пленок нанометровой толщины, и кроме возможности их использовать для управления излучением в зависимости от материалов слоев (диэлектрик, полупроводник, металл, сверхпроводник), они могут быть интересны и для других физических приложений. Так, если одним из материалов многослойных наноструктур служит сверхпроводник, то это система множественных последовательно включенных совершенно идентичных джозефсоновских переходов. Если металл чередуется с полупроводником _ это система последовательно включенных диодов Шоттки.

В наиболее коротковолновой части диапазона 0,01-0,02 нм рентгеновские зеркала позволяют фокусировать излучение синхротронов или рентгеновских трубок на исследуемые объекты или формировать параллельные пучки. В частности, их применение увеличивает эффективность рентгеновских трубок в 30-100 раз, что делает возможным заменить синхротронное излучение в ряде биологических, структурных и материаловедческих исследований. Приблизительно в этом же диапазоне лежит излучение высокотемпературной плазмы (лазерной и ТОКАМАКов). Здесь зеркала нашли применение как дисперсионные элементы для спектральных исследований.

В диапазоне 0,6-6 нм лежит характеристическое излучение легких элементов от бора до фосфора. Здесь рентгеновские зеркала также используются для исследования спектров в приборах элементного анализа материалов.

Рентгеновская многослойная оптика широко применяется для формирования фильтрации и управления поляризацией в синхротронных источниках. В области 10-60 нм лежат линии излучения солнечной плазмы. Объективы космических телескопов из рентгеновских зеркал и сейчас находятся на орбите и регулярно передают на Землю изображение Солнца на линиях Fe IX_Fe XI (17,5 нм) и Не II (30,4 нм).

Особое место занимает применение многослойных зеркал в технологиях микроэлектроники. Мы являемся свидетелями и участниками крупнейшего события в твердотельной электронике: это переход на длину волны более чем в 10 раз короче (от 157 нм к 13 нм) в литографии _ процессе, обеспечивающем получение рисунка полупроводниковых приборов и интегральных схем. Именно длина волны излучения, используемого для получения рисунка, отвечает за размеры его минимальных элементов. До сих пор изменение длины волны излучения от поколения к поколению литографических установок не превышало 25%. Одновременно в 10 раз повышаются требования к точности изготовления всех элементов оптики и механизмам настройки и экспонирования. Фактически это означает переход всех обрабатывающих технологий на атомарную точность. Неучастие в этом процессе может оставить страну в прошлой цивилизации.

Молекулярные наноструктуры

Органические материалы в последнее время интенсивно вовлекаются в нанотехнологии и как неотъемлемые участники технологическою процесса (например, в нанолитографии), и как самостоятельные объекты и устройства _ в так называемой молекулярной электронике.

Многообразие органического мира хорошо известно (около 2 млн синтезированных соединений, и это количество непрерывно растет) _ от "полунеорганических" комплексов (углеродные кластеры, металлоорганика) до биологических объектов (ДНК, гемы). С точки зрения материалов для нанотехнологии и молекулярной электроники условно можно выделить три основных класса: полимеры, молекулярные ансамбли (molecular assemblies, selfaggregated systems) и единичные молекулы: последние называются также "умные" или "функциональные" молекулы (smart molecules).

Первый класс изучается наиболее давно и по общей совокупности работ, наверное, наиболее интенсивно. Кроме того, диэлектрические, оптические и люминесцентные свойства различных поли- и олигомеров уже широко используют в технике и электронике, они стоят ближе всего к рынку и экономическому эффекту.

Второй класс _ молекулярные ансамбли нано-метровых размеров - изучается сравнительно недавно. К ним относятся, например, агрегаты на основе порфиринов (в том числе хлорофилла) и других амфифильных молекул, получаемые из растворов. Супрамолекулярная (то есть надмолекулярная, иерархическая) организация сложна и интересна, ее исследование и связь с (фото-) электрическими свойствами проливает свет на биологические и природные процессы (клеточный транспорт, фотосинтез). Обнаружена чувствительность, а главное _ уникальная избирательность таких систем к внешним воздействиям (свет, атмосфера, вибрация), что позволяет использовать их в различных сенсорах, в том числе со смешанной электронно-ионной проводимостью. Исследуются наноразмерные молекулярные стержни и проволоки (molecular rods and wires), в том числе в качестве интерфейса между неорганическими материалами (например, двумя металлическими электродами). Предполагается, что со временем будет происходить интегрирование с классической приборной базой.

Вообще системы, построенные в основном на Ван-дер-Ваальсовых или водородных связях, представляют собой очень перспективный с точки зрения дизайна твердого тела объект с двумя уровнями свободы: внутримолекулярная структура, которая может быть модифицирована (изменена при синтезе) и которая ответственна, например, за поглощение или испускание света; межмолекулярная структура, которая может быть изменена при росте кристалла (пленки, эпитаксиального слоя), и которая ответственна за фазовые явления, транспорт носителей заряда, магнитные свойства. В качестве примера: фталоцианин меди и периферийно-фторированный фталоцианин меди структурно изоморфны, однако представляют собой полупроводники - и -типа, соответственно. Полностью органические выпрямляющие переходы на основе вакуумно-осажденных слоев интенсивно исследуются в настоящее время. Вместе с тем, допирование пленок фталоцианина сильным акцептором (например, йодом) изменяет фазовую структуру вплоть до получения квазиодномерной металлической проводимости.

Важную группу составляют также самоорганизующиеся монослои (self-assembled monolayers, SAM's) на основе органических молекул или цепочек различного строения, которые исследуют как перспективные передающие материалы при литографии, так и для изучения электропереноса вдоль контура сопряжения молекулы. Здесь уже начинается третий класс.

Третий класс или способ применения органических материалов в нанотехнологиях самый молодой. Это то, что в западных конкурсах называется emergent или futuristic technologies (внезапно возникающие или футуристические технологии). Если жидко-кристаллические дисплеи, технологии CD-R, фотопреобразователи, сенсоры и другие устройства на органических материалах хорошо известны и постепенно (хотя и медленно _ из-за понятного торможения со стороны уже широко инвестированного и раскрученного "силиконового" и GaAs-ного приоритета) приходят на рынок, то одномолекулярные устройства (приборы) в реальном производстве отсутствуют. Более того, если макроскопические свойства классических органических твердых тел (молекулярных кристаллов) имеют удовлетворительное теоретическое описание, то процессы, ожидаемые в одномолекулярных устройствах, видятся гораздо менее отчетливо. Самый упрощенный подход: берем некую молекулу, которая представляет собой хорошо организованную квантовую систему, делаем к ней электроды и получаем, например, диод. Тут сразу возникает много новых вопросов. В частности, граница металл/молекулярный полупроводник даже на макроуровне весьма неопределена.

И тем не менее истинно "наноразмерные" эффекты ожидаются именно в этом классе. Конструируются молекулярные наномашины и наномо-торы (роторы), динамические молекулярные переключатели, транспортировщики энергии, устройства распознавания, хранения информации. Для исследования инжекции носителей и туннельного тока в отдельных молекулах совершенствуются методы зондовой микроскопии.

Следует впрочем не забывать, что в числе главных достоинств (если не самые главных) органики находятся дешевизна и доступность. Изощренный синтез новых соединений делает их едва ли не дороже высокочистых неорганических веществ, поэтому наибольшие практические перспективы имеют исследование и модификация (оптимизация) широко распространенных и изученных (более или менее) соединений с высокой стабильностью и способностью интегрироваться (не обязательно) в разработанные технологические процессы. Из наиболее известных _ это фталоцианины, фуллерены, политиофены и полиарены.

Фуллереноподобные материалы

Графит, алмаз и не всеми признанный карбин в течение долгого времени считались основными аллотронными состояниями углерода. Их применяли во многих отраслях промышленности и техники, в том числе в микро- и оптоэлектронике. За 10 лет до конца XX века были обнаружены сначала в космосе, а потом получены в лаборатории новые молекулярные формы углерода _ фуллерены и фуллереноподобные индивидуальные вещества и материалы. В конце прошлого века по фуллеренам (их получению, исследованию и применению) каждый год выходило в свет до 1000 и более публикаций. Обнаружено, что самоорганизация фуллереновых структур происходит повсюду: в космосе, в природных процессах на Земле, в промышленных процессах (черная металлургия), в лабораториях. Свойства и структура этих материалов настолько разнообразны и интересны, что фуллереновые материалы начинают широко применять в промышленности: от микро- и наноэлектроники до эффективных медицинских препаратов.

К фуллереновым материалам, полученным и изучаемым в настоящее время, относятся следующие:

? Фуллерены. Они образуют молекулярно-кристаллические твердые тела, часто вследствие большого размера и высокой симметрии своих молекул _ пластические кристаллы без температуры плавления. Они образованы молекулами , имеющими форму либо сфер, либо эллипсов, хотя возможны их другие комбинации (полусферы с цилиндрами из углерода). Возможны многослойные сферы или эллипсы ("оолитовые" или "луковичные" структуры). Размер молекул главного представителя фуллеренов составляет 1 нм, и в растворе молекулы обладают свойствами броуновской частицы;

? Углеродные нанотрубки. Они образованы из свернутых по различным направлениям графитовых плоскостей и закрыты на концах сетчатыми углеродными полусферами. Такие "графитовые" нанотрубки могут быть однослойными и многослойными. Последние могут быть переведены окислением и травлением в однослойные. Углеродные нанотрубки могут иметь разветвления и изгибы. В этом случае они теряют исходную "графитовую" структуру и не называются "графитовыми". Однослойные нанотрубки имеют размеры от 1 до 10 нм в диаметре и длину 100-1000 нм и более, а многослойные имеют диаметры и длину в 10-100 раз больше. Твердые тела могут быть образованы из жгутов нанотрубок или коллинеарных (но более коротких) образований;

Наполненные фуллерены (эндо-производные). Наполнением могут быть молекулы инертных или других газов, небольшие органические и неорганические молекулы, атомы металлов (щелочных, щелочноземельных, лантанидов и др.). Несмотря на трудности получения и малый выход таких производных, присущие им свойства заставляют исследовать их синтез и возможные применения. Эти производные в большинстве своем имеют крайне низкие потенциалы ионизации по сравнению с металлами, и, по-видимому, обладают металлическими свойствами;

Наполненные углеродные нанотрубки. Помимо перечисленного выше для наполнения могут быть использованы фуллерены меньшего диаметра;

Неорганические нанотрубки (, и др.).

Патентная литература и применения фуллереноподобных материалов чрезвычайно разнообразны. Фуллереноподобные материалы обладают рядом замечательных характеристик, включая химическую стойкость, высокую прочность, жесткость, ударную вязкость, теплопроводность и (что, возможно, важнее всего) электропроводность. В зависимости от тонких особенностей молекулярной симметрии фуллерены и нанотрубки могут быть диэлектриками, полупроводниками, обладать металлической проводимостью и высокотемпературной сверхпроводимостью. Эти свойства в сочетании с наномасштабной геометрией делают их почти идеальными _ возможно даже уникальными _ материалами для изготовления электрических проводов, сверхпроводящих соединений или целых устройств, которые с полным основанием можно назвать изделиями молекулярной электроники. Химической сборке элементов различных схем благоприятствуют свойства фуллерена, который может образовывать ионы от +6 до _6 и в различных матрицах _ связи с донорами, акцепторами, свободными радикалами и ионами. Фуллерены могут также использоваться при создании средств молекулярной оптоэлектроники для фемтосекундной оптоволоконной передачи информации. Полимеризация фуллеренов при электроннолучевом или ионизирующем воздействии дает возможность получать резисты нового поколения.

Углеродные нанотрубки используются в качестве игольчатых щупов сканирующих зондовых микроскопов и в дисплеях с полевой эмиссией, в высокопрочных композиционных материалах, электронных устройствах со схемами из коротких нанотрубок, подвергнутых манипулированию и сборке. Молекулярный характер фуллереновых материалов позволяет разработать химическую стратегию сборки этих элементов в пригодные для использования структуры, материалы и возможно даже молекулярные электронные устройства.

Конструкционные наноматериалы

Использование современных конструкционных материалов обычно ограничивается тем, что увеличение прочности приводит к снижению пластичности. Данные по нанокомпозитам показывают, что уменьшение структурных элементов и более глубокое изучение физики деформационных процессов, которые определяют пластичность наноструктурных материалов, могут привести к созданию новых типов материалов, сочетающих высокие прочность и пластичность.

Анализ проведенных в последние годы отечественных и зарубежных исследований свидетельствует о высокой перспективности следующих основных направлений в области разработки конструкционных материалов: изготовление наноструктурных керамических и композиционных изделий точной формы, создание наноструктурных твердых сплавов для производства режущих инструментов с повышенной износостойкостью и ударной вязкостью, создание наноструктурных защитных термо- и коррозионно-стойких покрытий, создание обладающих повышенной прочностью и низкой воспламеняемостью полимерных композитов с наполнителями из наночастиц и нанотрубок.

В лабораторных исследованиях получены образцы изделий из нанофазной керамики (плотности на уровне 0,98-0,99 от теоретического значения) на основе оксидов алюминия и ряда переходных металлов. Экспериментально подтверждено, что плотная наноструктурная керамика имеет повышенную пластичность при сравнительно невысоких температурах. Увеличение пластичности при уменьшении размера частиц вызвано сдвиговым перемещением нанокристаллических зерен относительно друг друга при наложении нагрузки. При этом отсутствие нарушения межзеренной связи объясняется эффективным диффузионным переносом атомов в приповерхностном слое частиц. В перспективе повышенная пластичность означает возможность сверхпластичного формования керамических и композиционных изделий, что исключает необходимость трудо- и энергозатратной финишной обработки материалов высокой твердости.

В последние годы разработаны нанокомпозитные металлокерамические материалы, в частности, на основе и , значительно превосходящие по износостойкости, прочности и ударной вязкости аналоги с обычной микроструктурой. Повышенные эксплуатационные характеристики нанокомпозитных материалов обусловлены образованием при спекании специфических непрерывных нитевидных структур, формирующихся в результате трехмерных контактов между наночастицами разных фаз. Разработка и внедрение в промышленное производство технологии создания нанокомпозитных изделий будет способствовать решению проблемы изготовления высококачественных режущих инструментов.

Повышение коррозионной стойкости наноструктурных покрытий обусловлено, в первую очередь, снижением удельной концентрации примесей на поверхности зерен по мере уменьшения их размеров. Более чистая поверхность обеспечивает более однородную морфологию и более высокую коррозионную стойкость межзеренных границ. Наноструктурные покрытия характеризуются сверхвысокой прочностью. Один из основных механизмов упрочнения обусловлен эффектом скопления дислокаций вблизи препятствий, которыми при уменьшении размеров зерен являются их границы. Важным преимуществом покрытий с наноразмерной структурой является обусловленная повышенной пластичностью возможность снижения в них остаточных напряжений, что позволяет изготовлять покрытия миллиметровой толщины.

Использование диспергированных в полимерной матрице неорганических наполнителей из наноразмерных порошков позволяет существенно повысить огнестойкость пластмасс, являющуюся одним из основных недостатков при использовании их в качестве конструкционных материалов, поскольку продукты сгорания полимеров, как правило, представляют собой ядовитые вещества. Результаты исследований показывают, что снижение горючести может быть доведено до самозатухания пламени. При этом наноразмерные порошковые наполнители не снижают механической прочности и обрабатываемости материалов. Полимерные нанокомпозиты обладают высокой абляционной стойкостью, что открывает перспективы их использования для защиты поверхности изделий, эксплуатируемых в условиях воздействия высоких температур.

Размещено на Allbest.ru

...

Подобные документы

  • Методы получения наноматериалов. Синтез наночастиц в аморфных и упорядоченных матрицах. Получение наночастиц в нульмерных и одномерных нанореакторах. Цеолиты структурного типа. Мезопористые алюмосиликаты, молекулярные сита. Слоистые двойные гидроксиды.

    курсовая работа [978,0 K], добавлен 01.12.2014

  • Понятие токсичности и наноматехнологии. Преимущества и недостатки использования наноматериалов. Лабораторные исследования по токсичности наноматериалов. Исследования по токсичности наноматериалов на живых организмах. Применение наноматериалов в медицине.

    реферат [5,3 M], добавлен 30.08.2011

  • Применение газовых сенсоров в системах автоматической пожарной сигнализации. Основные стадии наночастиц и наноматериалов. Механические свойства наноматериалов. Мицеллярные и полимерные гели. Золь-гель метод синтеза тонких пленок с солями металлов.

    курсовая работа [1,6 M], добавлен 21.12.2016

  • Классификация цветных металлов, особенности применения и обработки. Эффективные методы защиты цветного металла от атмосферной коррозии. Алюминий и алюминиевые сплавы. Металлические проводниковые и полупроводниковые материалы, магнитные материалы.

    курсовая работа [491,9 K], добавлен 09.02.2011

  • Возникновение и развитие нанотехнологии. Общая характеристика технологии консолидированных материалов (порошковых, пластической деформации, кристаллизации из аморфного состояния), технологии полимерных, пористых, трубчатых и биологических наноматериалов.

    реферат [3,1 M], добавлен 19.04.2010

  • Классификация цветных металлов, особенности их обработки и области применения. Производство алюминия и его свойства. Классификация электротехнических материалов. Энергетическое отличие металлических проводников от полупроводников и диэлектриков.

    курсовая работа [804,3 K], добавлен 05.12.2010

  • Классификация и основные свойства теплоизоляционных материалов и изделий. Характеристика их отдельных видов, созданных на основе синтетического сырья. Сопротивление теплопередаче наружных стен зданий. Методы получения высокопористой структуры материалов.

    реферат [27,6 K], добавлен 01.05.2017

  • Влияние условий осаждения на структуру, электрические и магнитные свойства пленок кобальта. Рентгеноструктурные исследования пленок кобальта. Влияние условий осаждения на морфологию поверхности и на толщину пленок. Затраты на амортизацию оборудования.

    дипломная работа [2,2 M], добавлен 24.07.2014

  • Обзор современного оборудования для получения тонких пленок. Материалы и конструкции магнетронов для ионного распыления тонких пленок. Назначение, конструктивные элементы рабочей камеры установки "Оратория-5". Основные неисправности, методы их устранения.

    курсовая работа [1,8 M], добавлен 24.03.2013

  • Твердые сплавы и сверхтвердые композиционные материалы: инструментальные, конструкционные, жаростойкие; их свойства и применение. Совершенствование технологии сплавов, современные разработки получения безвольфрамовых минералокерамических соединений.

    реферат [964,1 K], добавлен 01.02.2011

  • Методы физической, химической модификации пленок. Производство химически модифицированных пленок. Физическая сущность метода каландрования. Технология производства поливинилхлоридных пленок, производимых деформационным способом. Метод прокатки, строгания.

    курсовая работа [806,1 K], добавлен 04.01.2010

  • Многослойные и комбинированные пленочные материалы. Адгезионная прочность композиционного материала. Характеристика и общее описание полимеров, их свойства и отличительные признаки от большинства материалов. Методы и этапы испытаний полимерных пленок.

    дипломная работа [1,7 M], добавлен 21.11.2010

  • Материалы с малой плотностью (легкие материалы), получение и способы их обработки. Химический состав стекла, его свойства и типы. Основы современной технологии получения стекла. Применение стекломатериалов в авиастроении, автомобилестроении, судостроении.

    курсовая работа [1,7 M], добавлен 27.05.2013

  • Материаловедение. Общие сведения о строении вещества. Классическое строение, дефекты. Материалы высокой проводимости. Алюминий, свойства, марки, применение. Изоляционные лаки, эмали, компаунды. Полупроводниковые химические соединения. Диэлектрики.

    контрольная работа [23,8 K], добавлен 19.11.2008

  • Материальная основа и функции технического сервиса пути его развития. Современное состояние предприятий ТС, направления их реформирования. Виды и применение наноматериалов и нанотехнологий при изготовлении, восстановлении и упрочнении деталей машин.

    реферат [397,6 K], добавлен 23.10.2011

  • Использование нанотехнологий в пищевой промышленности. Создание новых пищевых продуктов и контроль за их безопасностью. Метод крупномасштабного фракционирования пищевого сырья. Продукты с использованием нанотехнологий и классификация наноматериалов.

    презентация [4,6 M], добавлен 12.12.2013

  • Многослойные и комбинированные материалы являются композиционными материалами. Деление упаковочных материалов на многослойные и комбинированные. Термин "многослойные материалы" относится к группе материалов, состоящих из слоев синтетических полимеров.

    реферат [34,5 K], добавлен 15.07.2008

  • Цели и задачи материаловедения наносистем. Предмет, цели и основные направления в нанотехнологии, ее особенности. Сканирующая туннельная микроскопия, наилучшее пространственное разрешение приборов. Виды и свойства, применение наноматериалов, технологии.

    курсовая работа [2,4 M], добавлен 05.05.2009

  • Общие закономерности строения композитных наноматериалов, их виды: на основе керамической, слоистой, металлической и полимерной матрицы. Механические, электрические, термические, оптические, электрохимические, каталитические свойства нанокомпозитов.

    реферат [377,0 K], добавлен 19.05.2015

  • Методы получения пленок. Вакуумные. Вакуумно-термическое испа-рение. Его разновидности: лазерное, электронно-лучевое, "взрывное". Осо-бенности испарения сплавов и композиционных смесей. Типы и конструкции испарителей. Плазменные методы получения пленок.

    реферат [568,5 K], добавлен 03.01.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.