Принцип работы контактной системы зажигания

Устройство и принцип работы батарейного зажигания. Техническое обслуживание катушки зажигания, добавочного резистора и транзисторного коммутатора. Особенности схемы и работы контактно-транзисторной системы. Конструкция индуктивного датчика Холла.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 25.05.2014
Размер файла 624,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Принцип работы контактной системы зажигания

Контактная система зажигания является самым старым типом системы зажигания. В настоящее время данная система применяется на некоторых моделях отечественных автомобилей (т.н. «классике»).

Создание высокого напряжения и распределение его по цилиндрам в данной системе происходит с помощью контактов.

Контактная система зажигания имеет следующее устройство:

источник питания;

выключатель зажигания;

механический прерыватель тока низкого напряжения;

катушка зажигания;

механический распределитель тока высокого напряжения;

центробежный регулятор опережения зажигания;

вакуумный регулятор опережения зажигания;

высоковольтные провода;

свечи зажигания.

Рисунок 1:

1. генератор

2. выключатель зажигания

3. распределитель

4. прерыватель

5.свечи зажигания

6. катушка зажигания

7. аккумуляторная батарея

Схема контактной системы зажигания

Механический прерыватель предназначен для размыкания цепи низкого напряжения (цепи первичной обмотки катушки зажигания). При размыкании контактов во вторичной цепи катушки зажигания наводится высокое напряжение. Для защиты контактов от обгорания в цепь параллельно контактам включен конденсатор.

Катушка зажигания служит для преобразования тока низкого напряжения в ток высокого напряжения. Катушка имеет две обмотки - низкого и высокого напряжения.

Механический распределитель обеспечивает распределение тока высокого напряжения по свечам цилиндров двигателя. Распределитель состоит из ротора (обиходное название «бегунок») и крышки. В крышке выполнены центральный и боковые контакты. На центральный контакт подается высокое напряжение от катушки зажигания. Через боковые контакты высокое напряжение передается на соответствующие свечи зажигания.

Прерыватель и распределитель конструктивно объединены в одном корпусе и приводятся в действие от коленчатого вала двигателя. Данное устройство имеет общее название прерыватель-распределитель (обиходное название - «трамблер»).

Центробежный регулятор опережения зажигания служит для изменения угла опережения зажигания в зависимости от числа оборотов коленчатого вала двигателя. Конструктивно центробежный регулятор состоит из двух грузиков. Грузики воздействуют на подвижную пластину, на которой расположены кулачки прерывателя.

Углом опережения зажигания называется угол поворота коленчатого вала двигателя, при котором происходит подача тока высокого напряжения на свечи зажигания. Для того, чтобы топливно-воздушная смесь полностью и эффективно сгорела зажигание производится с опережением, т.е. до достижения поршнем верхней мертвой точки.

Установка угла опережения зажигания производится регулировкой положения прерывателя-распределителя в двигателе.

Вакуумный регулятор опережения зажигания обеспечивает изменение угла опережения зажигания в зависимости от нагрузки на двигатель. Нагрузка на двигатель определяется степенью открытия дроссельной заслонки (положением педали газа). Вакуумный регулятор соединен с полостью за дроссельной заслонкой и, в зависимости от степени разряжения в полости, изменяет угол опережения зажигания.

Высоковольтные провода служат для подачи тока высокого напряжения от катушки зажигания к распределителю и от распределителя на свечи зажигания.

Свеча зажигания предназначена для воспламенения топливно-воздушной смеси путем образования искрового разряда.

При замкнутом контакте прерывателя ток низкого напряжения протекает по первичной обмотке катушки зажигания. При размыкании контактов во вторичной обмотке катушки зажигания индуцируется ток высокого напряжения. По высоковольтным проводам ток высокого напряжения подается на крышку распределителя, от которой распределяется по соответствующим свечам зажигания с определенным углом опережения зажигания.

При увеличении оборотов коленчатого вала двигателя, увеличиваются обороты вала прерывателя распределителя. Грузики центробежного регулятора опережения зажигания под действием центробежной силы расходятся, перемещая подвижную платину с кулачками прерывателя. Контакты прерывателя размыкаются раньше, тем самым увеличивается угол опережения зажигания. При уменьшении оборотов коленчатого вала двигателя угол опережения зажигания уменьшается.

Дальнейшим развитием контактной системы зажигания является контактно-транзисторная система зажигания. В цепи первичной обмотки катушки зажигания применен транзисторный коммутатор, управляемый контактами прерывателя. В данной системе за счет применения транзисторного коммутатора уменьшена сила тока в цепи первичной обмотки, тем самым увеличен срок службы контактов прерывателя.

2. Устройство и принцип работы батарейного зажигания

зажигание резистор коммутатор транзисторный

Развернутая схема батарейного зажигания показана на рисунке. Она представляет собой типичную автомобильную однопроводиую систему соединения источников тока с потребителями, когда вторым проводом служит металлическая масса агрегатов самого автомобиля. Источники питания -- генератор и аккумуляторная батарея -- обычно включаются параллельно. При пуске и на режиме работы с малыми оборотами вала питание осуществляется от батареи, а на средних и больших скоростях включается генератор, который питает потребителей тока и одновременно обеспечивает подзарядку аккумулятора 22.

Своевременное подключение того или иного источника питания и поддержание необходимого режима работы системы при изменении оборотов вала достигается с помощью двух реле, регулирующих напряжение и ограничивающих силу тока в сети и реле обратного тока, которое защищает батарею от разрядки через якорь генератора, что опасно также и для последнего. Все три реле обычно объединяют в один прибор, называемый реле-регулятором.

Пусковой электродвигатель постоянного тока (стартер), обеспечивающий проворачивание коленчатого вала, не относится к элементам системы зажигания, но электромагнитный включатель его (тяговое реле) входит в сеть зажигания и управляется через замок (выключатель) 15. Связано со стартером и устройство для закорачивания добавочного сопротивления 18 катушки зажигания. Сила тока, потребляемого стартером, при пуске двигателя возрастает до 200--500 а и более. Поэтому аккумуляторная батарея для автомобилей подбирается в зависимости от мощности стартера с учетом специфики ее работы. А так как большие разрядные токи при относительно умеренном падении напряжения на зажимах лучше Других выдерживают свинцовые (кислотные) аккумуляторы, то эти так называемые стартерные батареи в основном и применяются для систем зажигания автомобилей. Плюсовая клемма их соединяется с сетью, а минусовая -- на массу (в старых моделях автомобилей на массу соединяли клемму со знаком плюс).

Рис. 2. Схема батарейного зажигания 8-цилиндрового двигателя

Катушка зажигания 14 представляет собой сердечник, набранный из отдельных пластин трансформаторного железа, изолированных друг от друга окалиной, и двух обмоток: толстой (d=0,72 мм) первичной 13 с небольшим числом витков и тонкой (d=0,07 мм) вторичной 12 с большим числом витков. Первичная обмотка одним концом через клемму Р соединена с клеммой 11 прерывателя, а другим -- через клемму ВК, добавочное сопротивление 18, клемму ВКБ и контакты 16, 17 замка 15 с источником тока. Вторичная обмотка 12 одним концом присоединена к первичной, а вторым -- выведена к разносной пластине 4 бегунка (ротора) распределителя через его центральный ввод.

Прерыватель тока низкого напряжения имеет два контакта: неподвижный 7 и подвижный 8. Первый из них приклепан к стойке (наковальне), соединенной с массой, а второй закреплен на рычажке (молоточке) 10, изолированном от массы. Молоточек нагружен пластинчатой пружиной и соединен с клеммой 11 сети зажигания. Размыкание контактов осуществляется кулачком 6, скорость вращения которого в четырехтактных двигателях в два раза меньше скорости вращения коленчатого вала. Вследствие вращения кулачка 6 контакты 7 и 8 периодически размыкаются и замыкаются.

Когда зажигание включено и контакты прерывателя замкнуты, ток от плюсовой клеммы батареи 22 идет через зажим 19, выключатель зажигания 15 и добавочное сопротивление 18 в первичную обмотку катушки 14. Далее на замкнутые контакты прерывателя и массу, по которой он возвращается к минусовой клемме батареи 22, как показано стрелками на проводах схемы. В результате прохождения тока по первичной обмотке 13 в катушке возникает магнитное поле, силовые линии которого замыкаются через ее сердечник и пронизывают витки обеих обмоток. При замкнутых контактах магнитное поле постоянно и ток во вторичной обмотке не индуктируется. Но в момент размыкания контактов силовые линии исчезающего магнитного поля пересекают витки обмоток, вследствие чего в них индуктируется ток, величина электродвижущей силы которого пропорциональна скорости изменения магнитного потока. Число витков вторичной обмотки подбирают так, чтобы общая э.д.с. тока достигала в ней 18 тыс. в и гарантировала пробой искрового зазора между электродами свечи.

Ток высокого напряжения из вторичной обмотки 12 по центральному проводу высокого напряжения, как показало пунктирными стрелками на схеме, через подавителыюе сопротивление 5 поступает на разносную пластину 4 бегунка распределителя, проскакивает в виде искры на соответствующий (ближайший) неподвижный электрод 3 и через сопротивление 2 поступает на центральный электрод свечи L откуда, пробивая искровой промежуток, проскакивает на боковой ее электрод и через массу автомобиля, батарею 22, выключатель 15, сопротивление 18 по первичной обмотке 13 возвращается во вторичную обмотку 12.

При размыкании контактов прерывателя и исчезновении магнитного потока в сердечнике катушки зажигания в первичной обмотке возникает ток самоиндукции, э.д.с. которого достигает 200--300 в. Ток самоиндукции имеет при этом одинаковое направление с первичным током, что затягивает время его исчезновения и вызывает появление дуги между контактами прерывателя. Образование «мостика» между контактами не только снижает скорость убывания тока в первичной цепи, но вызывает еще и быстрое обгорание контактов, нарушая работу системы зажигания. Чтобы устранить вредное действие э.д.с. самоиндукции, параллельно контактам прерывателя включают конденсатор 9.

Конденсатор выполняется из двух тонких алюминиевых лент (обкладок), изолированных друг от друга специальной бумажной лентой и скатанных в трубочку. Одна из обкладок присоединяется к металлическому кожуху конденсатора, а вторая выводится на изолированный контакт 11 прерывателя-распределителя. При размыкании контактов ток самоиндукции из первичной обмотки отводится в конденсатор и заряжает его. Вследствие этого образование дуги почти полностью устраняется, а скорость убывания тока в первичной обмотке резко возрастает. Разряжается конденсатор через первичную обмотку при разомкнутых контактах.

Конденсаторы трудно герметизировать, а в случае проникновения влаги и пробоя их система зажигания прекращает работу. Чтобы повысить надежность системы, в последнее время стали применять самовосстанавливающиеся конденсаторы. Они представляют собой свернутые в рулончик две полоски бумаги, одна сторона которых наметаллизирована слоем цинка толщиной около 1,5 мкм. При пробое бумаги тепло дуги испаряет с нее металл, поэтому вблизи повреждения она очищается от покрытия и электрическая прочность конденсатора восстанавливается. Такие конденсаторы имеют сравнительно небольшие габариты и могут размещаться внутри корпуса прерывателя-распределителя.

Добавочное сопротивление 18 чаще всего применяют в системах зажигания напряжением 12 е. Изготовляют его из тонкой нихромовой или никелевой проволоки в виде спирали п включают последовательно с первичной обмоткой катушки. При пуске двигателя стартером, когда падение напряжения на зажимах батареи неизбежно, сопротивление автоматически отключается с помощью пружинной контактной пластины 20 и подвижного контакта 21, вмонтированных в тяговое реле стартера. Благодаря этому ток от батареи подводится непосредственно к клемме ВК катушки зажигания 14 и рабочее напряжение в ее обмотках повышается, что особенно необходимо для успешного пуска холодного двигателя, когда требуется повышенное пробивное напряжение на электродах свечи.

Добавочное сопротивление может быть использовано также в качестве вариатора, обеспечивающего автоматическое регулирование сопротивления первичной цепи зажигания при изменении числа оборотов вала двигателя. С этой целью спираль изготовляют из тонкой стальной проволоки, которая легко прогревается до высокой температуры, и сопротивление ее возрастает. А так как время замкнутого состояния контактов прерывателя изменяется обратнс пропорционально скорости вращения вала, то с уменьшение оборотов нагрев спирали, а следовательно, ее сопротивление и общее сопротивление цепи повышаются, а по мере увеличения оборотов вала -- снижаются. В результате сила тока в первичной цепи возрастает на больших оборотах вала и уменьшается на малых, чте предохраняет катушку зажигания от перегрева.

Система зажигания служит для воспламенения рабочей смеси в цилиндрах двигателя в строго определённые моменты. Воспламенение смеси может быть осуществлено батарейной системой зажигания или от магнето.

По способу прерывания тока первичной цепи батарейные системы зажигания подразделяются на контактные, контактно-транзисторные и бесконтактные транзисторные.

По исполнению системы зажигания бывают экранированный (ЗИЛ - 131) и неэкранированные (ЗИЛ - 130). Экранируют систему зажигания с целью подавления радиопомех, которые возникают во время работы системы зажигания.

3. Принцип действия контактной системы зажигания

Контактная система зажигания включает в себя: аккумуляторную батарею 1, включатель зажигания 2, добавочный резистор 3, катушку зажигания 4, прерыватель тока (кулачок 7 и контакты 9), конденсатор 8, распределитель тока высокого напряжения 5, свечи 6, соединительные провода низкого и высокого напряжения.

В системе зажигания имеется цепь низкого напряжения первичная цепь и цепь высокого напряжения (вторичная цепь). В цепи низкого напряжения входят источники тока низкого напряжения (А. Б. и генератор), выключатель зажигания, добавочный резистор, первичная обмотка (W1) катушки зажигания, прерыватель тока конденсатор и соединительные провода низкого напряжения. В цепь высокого напряжения входят вторичная обмотка (W2), катушки зажигания распределитель тока высокого напряжения, свечи и провода высокого напряжения.

Рисунок 3

При включенном зажигание и замкнутых контактов прерывателя по первичной цепи проходит ток низкого напряжения: вывод “+” аккумуляторная батарея - выключатель зажигания - добавочный резистор - первичная обмотка катушки - замкнутые контакты прерывателя - масса - вывод “-” аккумуляторной батареи.

Ток, проходит по первичной обмотке катушки зажигания, создаются вокруг её витков магнитное поле, в котором оказываются витки и вторичной обмотки. При размыкание контактов прерывателя ток в первичной цепи прекращается, в следствии чего магнитное поле катушки исчезает. Исчезая, магнитные силовые линии пересекают ветки вторичной обмотке и индуктирует в каждом из них небольшую ЭДС. Напряжение на концах вторичной обмотки 15-20 КВ и более. Через центральный провод, распределитель тока и провод свечи ЭДС высокого напряжения подводиться к электродам свечи между которыми и проходит искровой разряд воспламеняющий рабочею смесь в цилиндре двигателя. В дальнейшем при размыкании и замыкании контактов прерывателя процесс повторяется с порядком и режимом работы двигателя.

При размыкании контактов прерывателя исчезающее магнитное поле пересекает и ветки первичной цепи катушки зажигания индуктируя в ней ЭДС самоиндукции порядка 250-300 В, что вызывает сильное искрение контактов и приводит к значительному уменьшению вторичного напряжения.

Для уменьшения искрения контактов прерывателя и повышения вторичного напряжения параллельно контактам прерывателя ставят конденсатор определённой ёмкости. В начальный момент размыкания контактов конденсатор заряжается тем самым предохраняя их от искрения.

4. Свеча зажигания. Условное обозначение свечей зажигания

Свеча зажигания преобразует импульсы высокого напряжения в искровой разряд в камере сгорания. Для нормальной работы свечи температура нижней части изолятора должна быть 500-6000 С при температуре 5000 С возможно отложение нагара на изоляторе свечи, что может вызвать перебои в работе, а при температуре изолятора более 6000 С возможно калильное зажигание (воспламенение смеси от температуры изолятора свечи). Тепловая характеристика свечи выражается калильным числом, величены которого выбирается заводом - чем выше калильное число, тем свеча более «холодная», и наоборот.

Буквы А и М обозначают размер резьбы на корпусе свечи в мм (А - М14*1,25) (М - М 18*1,5) число за буквой - калильное число свечи (8, 10, 11, 14 и т. д.) буквы Н и Д длинны резьбовой части корпуса (Н = 11 мм, Д = 19 мм); буква В входит в маркировку в том случае, если тепловой конус изолятора выступает за торец корпуса свечи; буква Т указывает на то, что герметизация между центральным электродом и изолятора достигается с помощью термоцемента длина резьбовой части корпуса 12 мм. Зазор между электродами свечи находятся в пределах от 0,5 до 1,0 мм.

Характерные неисправности:

1. Свечи зажигания: отложения нагара на внутренней поверхности и большое загрязнение снаружи, нарушение нормального зазора между электродами, трещины на изоляторе и поломка бокового электрода. Из-за этих неисправностей искра свечи получается слабая или не проскакивает совсем. Это приводит к неустойчивости и неравномерной работе двигателя, уменьшению его мощности и остановки двигателя при повышенной нагрузки.

2. Катушка зажигания: замыкание первичной обмотки на массу и замыкание вторичной обмотки на первичную замыкание дополнительного резистора на массу, перегорание дополнительного резистора и трещин в крышках и изолятора.

3. Прерыватель распределителя: обгорание или замасливание контактов прерывателя и нарушение нормального зазора между ними, заедание грузиков и ослабление пружин центробежного регулятора, нарушение герметичности вакуумного регулятора, появление трещин в крышке и роторе распределителя и обрыв гибких проводов, соединяющих неподвижный диск с подвижным и рычагом подвижного контакта с зажимом низкого напряжения.

Обгорание или замасливание контактов прерывателя вызывает резкое увеличение сопротивление между ними, (в см) из-за чего уменьшается ток в первичной обмотки катушки и снижения мощности искры в свече. Нарушение зазора между контактами прерывателя приводит к ухудшению искрообразования между электродами свечей, и к перебоям в работе двигателя.

4. Контакторы: пробой изоляции, обрыв соединительного провода и плохой контакт между конденсатором и зажимом прерывателя или массой. Неисправность конденсатора вызывает сильное искрение между контактами прерывателя.

Техническое обслуживание приборов зажигания при ТО-1 необходимо очистить поверхность приборов зажигания от пыли и грязи, проверить крепление проводов, затяжку всех разъёмов, а также протереть крышку распределителя неэкранированной системы зажигания снаружи и изнутри чистой тряпкой, смоченной в бензине.

При ТО-2 надо смазать все точки распределителя зажигания. Смазку производят маслом двигателя. Для смазки вала привода необходимо ввернуть крышку маслёнки на 1-2 оборота; проверить состояния свечей зажигания, при необходимости отчистить их от нагара, проверить с помощью специального щупа зазор между электродами свечи.

Через одно ТО-2 следует проверить и отрегулировать зазор между контактами прерывателя при СО необходимости снять распределитель зажигания, разобрать и осмотреть все его элементы, очистить от пыли и грязи, собрать и проверить его работу на стенде. Заполнить смазкой колпачковую масленку.

5. Контактно транзисторная система зажигания

Основной отличительной особенностью схемы контактно-транзисторной системы зажигания от классической является наличие транзисторного коммутатора. Поэтому особенности схемы и работы контактно-транзисторной системы определяются схемным решением коммутатора.

На отечественных автомобилях применяют контактно-транзисторную систему с коммутатором ТКЮ2, добавочным резистором СЭ107, катушкой зажигания Б314 и распределителями ряда типов (Р4-Д, Р13-Д, Р133, Р137 -- все 8-искровые).

Основным элементом транзисторного коммутатора ТК102 является мощный германиевый транзистор Т (ГТ701А), эмиттерно-коллекторный переход которого включен в цепь первичной обмотки катушки зажигания Б114. База транзистора через первичную обмотку импульсного трансформатора ИТ соединена с прерывателем распределителя, а через вторичную -- с эмиттером.

Рисунок 4

При включенном выключателе Вз транзистор коммутатора может находиться в открытом или закрытом состоянии в зависимости от того, замкнуты или разомкнуты контакты прерывателя.

Если контакты прерывателя разомкнуты, транзистор находится в закрытом состоянии, так как потенциалы базы и эмиттера одинаковы. Сопротивление транзистора при этом составляет сотни Ом и тока в первичной обмотке катушки зажигания не будет.

Если контакты прерывателя замкнуты, в схеме ток идет по цепи: положительный вывод аккумуляторной батареи - амперметр -- контакты выключателя зажигания -- добавочный резистор -- первичная обмотка катушки зажигания -- резистор R коммутатора -- первичная обмотка импульсного трансформатора -- контакты прерывателя -- корпус автомобиля -- отрицательный вывод аккумуляторной батареи. В результате падения напряжения на резисторе R потенциал базы стареет меньше потенциала эмиттера и транзистор откроется. При этом сопротивление транзистора составляет доли Ома, благодаря чему ток, протекающий через первичную обмотку катушки зажигания, достигает максимальной величины (около 8А).

С возрастанием частоты вращения коленчатого вала из-за уменьшения времени замкнутого состояния контактов прерывателя ток уменьшается до ЗА. Через контакты прерывателя проходит лишь ток базы транзистора, не превышающий 0,9 А при неработающем двигателе и уменьшающийся до 0,3 А с увеличением частоты вращения.

При размыкании контактов прерывателя исчезает ток в первичной обмотке импульсного трансформатора ИТ, что приводит к резкому уменьшению магнитного потока в его сердечнике. В результате во вторичной обмотке этого трансформатора индуктируется э.д.с., приложенная к переходу эмиттер--база в обратном направлении, т.е. потенциал базы становится больше потенциала эмиттера, и транзистор закрывается. Применение импульсного трансформатора обеспечивает так называемое активное запирание транзистора, благодаря чему ускоряется процесс переключения транзистора.

Когда транзистор переходит в закрытое состояние, прерывается ток первичной обмотке катушки зажигания, а во вторичной обмотке индуктируется э.д.с. от 17 до 30 кВ. Высокое напряжение от вторичной обмотки катушки зажигания подается через распределитель к очередной свече.

При прерывании тока в первичной обмотке катушки зажигания индуктируется э.д.с. самоиндукции величиной до 100 В. При низкой частое вращения коленчатого вала или при обрыве цепи высокого напряжения величина э.д.о. самоиндукции значительно возрастает, что может привести к пробою эмнгтерио-коллекторного перевода транзистора. Для предохранения транзистора от пробоя параллельно первичной обмотке катушки зажигания включен стабилитрон Д2 (Д817В), напряжение стабилизации которого составляет около 80 В. Если 9. д.с. самоиндукции превысит указанное значение, стабилитрон пробивается и ток, вызнанный э. д. с. самоиндукции, замыкается через стабилитрон Д2 г диод Д/. Диод Д1 (Д220) препятствует прохождению через стабилитрон тока от аккумуляторной батареи.

При величине э.д.с. самоиндукции, меньшей напряжения пробоя стабилитрона Д2, ток, ею вызванный, идет на заряд конденсатора С1. В результате этого резко уменьшается выделяемая на транзисторе мощность в момент его запирания, а следовательно, и его нагрев.

Электролитический конденсатор С2 служит для сглаживания импульсов, возникающих в источниках питания, и тем самым защищает схему от перенапряжений. Такие импульсные перенапряжения могут достигать значительных величин при неисправности генераторной установки переменного тока.

Добавочный резистор СЭЮ7 выполнен из двух секций RД1 и RД2. Секция RД2 включена в цепь первичной обмотки катушки зажигания постоянно. Секция ЯД1 при пуске закорачивается контактами реле стартера или дополнительного реле. Таким образом компенсируется (как и в классической системе зажигания) уменьшение напряжения аккумуляторной батареи при питании стартера. В наконечниках, соединяющих высоковольтные провода со свечами, устанавливают подавительные резисторы.

6. Ремонт и техническое обслуживание системы зажигания

Неисправности системы зажигания могут являться причинами затрудненного пуска двигателя, неустойчивой его работы на холостом ходу (двигатель глохнет), перебоев на всех режимах работы, потери мощности двигателя (двигатель плохо тянет) и повышенного расхода топлива. Основными неисправностями системы зажигания, вызывающими вышеуказанные признаки, являются нарушение угла опережения зажигания (слишком раннее и позднее зажигание), перебои в одном или нескольких цилиндрах, а также полное прекращение зажигания.

Позднее зажигание характеризуется потерей мощности и перегревом двигателя, а раннее зажигание -- потерей мощности и стуком в двигателе. Для устранения неисправности нужно проверить и при необходимости отрегулировать угол опережения зажигания путем поворота корпуса распределителя зажигания или датчика-распределителя.

Перебои в одном цилиндре чаще всего вызываются неисправностью свечи зажигания, порчей изоляции провода высокого напряжения, присоединяемого к свече, а также плохим контактом этого провода в наконечнике свечи или в гнезде крышки распределителя.

Перебои в нескольких цилиндрах могут появиться в результате порчи изоляции центрального провода высокого напряжения, плохого его контакта в гнезде крышки распределителя или клемме катушки зажигания, неисправности конденсатора, обгорания контактов прерывателя, неправильного зазора между ними или периодического замыкания подвижного контакта прерывателя на «массу» вследствие порчи изоляции, трещин крышки распределителя и ротора. Частыми причинами перебоев зажигания в цилиндрах являются попадание влаги и загрязнений на элементы системы зажигания: на крышку распределителя зажигания, провода высокого напряжения, наконечники свечей, а также загрязнение или обгорание контактов в распределителе зажигания и нарушение зазора между контактами.

При малом зазоре между контактами прерывателя время разомкнутого состояния контактов уменьшается и магнитное поле, создаваемое первичной обмоткой, не успевает полностью исчезнуть. При слишком большом зазоре, наоборот, уменьшается время замкнутого состояния контактов и ток в первичной цепи не успевает восстанавливаться до максимального. В том и другом случаях во вторичной обмотке уменьшается напряжение и могут появляться перебои в цилиндрах, особенно с увеличением частоты вращения коленчатого вала.

Загрязненные контакты протирают чистой ветошью, смоченной бензином, а окисленные и обгоревшие зачищают надфилем. При зачистке контактов следует удалить бугорок на одном из них, а на другом только слегка сгладить углубление (кратер). Учитывая, что слой вольфрама на контактах тонкий, полностью удалять углубление не следует с целью увеличения срока службы контактов. Не следует применять для зачистки шлифованную шкурку, имеющую на поверхности твердые частицы наждака; при работе попавшие на контакты частицы вызывают сильное искрение и быстрое изнашивание контактов. После зачистки надо отрегулировать зазор и проверить угол опережения зажигания.

Полное прекращение зажигания может быть вызвано неисправностями как в цепях высокого, так и низкого напряжения. В этом случае производится проверка неисправности сначала цепи низкого напряжения, а затем высокого.

Комплексная диагностика системы зажигания производится с применением стационарных или передвижных мо­тор-тестеров.

7. Техническое обслуживание катушки зажигания, добавочного резистора и транзисторного коммутатора

Техническое обслуживание сводится к очистке наружной поверхности от грязи и проверке надежности контактов в местах соединения с проводами. Особое внимание следует обращать на соединения проводов высокого напряжения с выводами распределителя и катушки зажигания. Наличие зазора в соединении провода высокого напряжения с выводом неизбежно приводит к образованию искры и, как следствие, к разрушению поверхности изолятора вывода или его пробою.

Оголенные провода низкого напряжения необходимо изолировать, а провода высокого напряжения с поврежденной изоляцией заменять.

Системы зажигания служат для воспламенения горючей смеси в цилиндре в конце такта сжатия.

Во всех мотоциклетных двигателях топливовоздушная смесь воспламеняется за счет электрической искры, возникающей между электродами свечи зажигания при напряжении 15-30 тыс. В.Существуют системы зажигания контактного и бесконтактного типов, они могут работать как с аккумуляторной батареей, так и без нее.

Контактные системы зажигания. До конца 80-х годов прошлого века на бензиновых ДВС применяли так называемую батарейную систему зажигания, в которую входят контактный прерыватель, катушка зажигания и свечи зажигания.

Подвижный контакт размещен на изолированном от корпуса рычажке (молоточке), который приводится в движение кулачком, вращающимся синхронно с коленчатым валом двигателя. В двухтактных двигателях искра должна возникать один раз за один оборот коленчатого вала, поэтому прерыватель системы зажигания размещают непосредственно на цапфе коленчатого вала. В четырехтактных двигателях воспламенение смеси происходит один раз за два оборота, поэтому прерыватель размещают на конце распределительного вала, вращающегося в два раза медленнее коленчатого.

Неподвижный контакт закреплен на основании (наковальне), соединенном с «массой». В заданный момент кулачок своим выступом поднимает подвижный контакт, разрывая тем самым цепь первичной обмотки катушки зажигания. В этот момент из-за быстрого изменения напряженности магнитного поля во вторичной обмотке катушки наводится (индуцируется) ток высокого напряжения. Конденсатор, включенный параллельно контактам, уменьшает искрообразование на них и, следовательно, обгорание контактов.

В двухцилиндровых двухтактных двигателях каждый цилиндр имеет свою цепь зажигания. В двухцилиндровых четырехтактных двигателях один кулачок обслуживает двухискровую катушку зажигания. В них искра проскакивает во время одного цикла в каждом цилиндре дважды: около ВМТ -- в установленный момент искрообразования и около НМТ -- во время такта выпуска, когда она не влияет на рабочий процесс. В некоторых четырехтактных двигателях с двумя и более цилиндрами используют распределитель зажигания автомобильного типа с одной катушкой.

Катушка зажигания представляет собой трансформатор. Она преобразует ток низкого напряжения, поступающий к ее первичной обмотке от аккумуляторной батареи (или альтернатора, работающего без аккумулятора), в ток высокого напряжения во вторичной обмотке, который направляется по высоковольтному проводу к свече.

Обмотки катушки зажигания наматываются на сердечник из пластин трансформаторного железа. Первичная обмотка имеет несколько сотен витков толстого провода, а вторичная 15-20 тыс. витков тонкого провода. Корпус катушки неразборный, ремонту она не подлежит.

Свеча зажигания -- неразборная; состоит из стального корпуса с резьбовой частью с одной стороны для вворачивания в головку цилиндра и стержня для соединения с колпачком высоковольтного провода с другой. Этот стержень, являющийся центральным электродом свечи, изолирован от ее корпуса. Свеча имеет в той части, которая входит в камеру сгорания, один или несколько боковых электродов. Между ними и центральным электродом устанавливается определенный зазор (обычно 0,5-1,0 мм), в котором образуется искра. Свечи различаются по размеру резьбовой части и калильному числу. Диаметр резьбы свечи у двухтактных двигателей -- 14 мм; у четырехтактных, из-за ограниченности пространства камеры сгорания в многоклапанных головках, он меньше -- 12 или 10 мм. Длина резьбовой части свечи должна точно соответствовать высоте отверстия в головке.

Калильное число характеризует способность свечи выдерживать тот или иной тепловой режим. Свечи с большим калильным числом называют «холодными», они применяются в форсированных двигателях. Благодаря особенностям конструкции, такие свечи мало нагреваются, интенсивно отводят тепло. В противоположность им, свечи с малым калильным числом называют «горячими». Каждому типу двигателя и режиму работы завод-изготовитель предписывает применение строго определенного типа свечей. На российских мотоциклах применяются свечи марок: А17В («Иж-Юпитер-5»), А23-1 («Сова», «Иж-Планета-5»), А14В («Урал»).

Через наконечник свечи (колпачок) импульсы высокого напряжения передаются от катушки зажигания на свечи. Кроме того, в наконечнике для снижения уровня радиопомех, излучаемых системой зажигания, установлен проволочный резистор, а корпус закрыт металлическим экраном. Нередко для защиты от радиопомех специальный резистор вставляют в корпус самой свечи -- в этом случае в ее маркировке присутствует буква «R».

Существенный недостаток батарейной системы зажигания заключается в подгорании контактов, поскольку через них проходит ток высокого напряжения (до 5 А). Этого недостатка лишены контактно-транзисторные системы зажигания («ТАС»), устанавливавшиеся на некоторые зарубежные модели. В них контакты формируют только управляющий импульс тока низкого напряжения, поступающий к транзисторному коммутатору.

Бесконтактные системы зажигания. На современных мотоциклах контактные батарейные системы зажигания полностью вытеснены бесконтактными системами зажигания (БСЗ). Они более надежны и позволяют достигать высоких частот вращения коленчатого вала двигателя. Кроме того, БСЗ не нуждаются в обслуживании и периодической регулировке момента зажигания. Различают конденсаторные (тиристорные -- CDI) и транзисторные (TI) системы, в которых применяют импульсные генераторы (датчики) разных видов: индуктивного типа (магнитоэлектрические) и использующие эффект Холла.

Индуктивный датчик представляет собой отдельную обмотку, схожую с обмоткой генератора. Конструкция такого датчика проста, и он не требует питания, однако вырабатываемое им напряжение управляющего импульса зависит от частоты вращения коленчатого вала двигателя; кроме того, форма импульса может быть искажена воздействием магнитного поля других обмоток генератора.

Датчик Холла состоит из чувствительного элемента и расположенного на небольшом расстоянии неподвижного постоянного магнита, между которыми создается магнитное поле. В пространстве между чувствительным элементом и магнитом вращается металлический экран с прорезью. Прорезь беспрепятственно пропускает магнитный поток, и на выходе элемента появляется ЭДС; сам же поток экран прерывает. Обычно датчик Холла совмещен с микросхемой, стабилизирующей напряжение его питания и усиливающей выходной сигнал. В многоцилиндровых двигателях экран имеет несколько прорезей по числу цилиндров (или их пар, если применены двухискровые катушки зажигания). Датчики Холла достаточно надежны, миниатюрны, потребляют малое количество энергии, а самое главное их достоинство -- малая чувствительность к помехам от других обмоток генератора. Их недостатки -- необходимость питания чувствительного элемента постоянным током и некоторая сложность в установке.

Сигнал от датчика любого типа поступает в электронный блок управления -- коммутатор, который подает импульс на катушку зажигания.

Все чаще на современных мотоциклах с многоцилиндровыми четырехтактными двигателями применяют цифровые микропроцессорные БСЗ как с механическим распределителем зажигания (ESA), или одной катушкой зажигания, обслуживающей два цилиндра, так и полностью электронные (DLI) с индивидуальными (на каждой свече) катушками зажигания. Для их управления двигатель оснащают рядом датчиков: частоты вращения и положения коленчатого вала (метки ВМТ), положения дроссельной заслонки, температуры охлаждающей жидкости и воздуха, содержания кислорода («лямбда-зонд»). Нередко цифровая БСЗ объединена с системой впрыска топлива («Motronic» мотоциклов БМВ).

Для нормальной работы двигателя, независимо от типа системы зажигания, важны правильная установка угла опережения зажигания, а также соответствие тепловой характеристики свечи типу двигателя и режимам его работы. Искра должна образоваться между электродами свечи не точно в ВМТ, а чуть раньше, поскольку воспламенение горючей смеси происходит с запаздыванием. Поэтому каждому типу двигателя и даже режиму его работы соответствует оптимальный угол опережения зажигания (в мм или градусах поворота коленчатого вала до ВМТ). При более раннем зажигании в двигателе возникает детонация (взрывное горение), приводящая к поломкам деталей цилиндро-поршневой группы. Позднее зажигание вызывает перегрев деталей двигателя и падение его мощности.

В четырехтактных двигателях корректировка угла опережения зажигания в зависимости от частоты вращения коленчатого вала осуществляется автоматическими регуляторами: центробежным или электронным в системах с БСЗ.

Центробежный регулятор состоит из двух пластин, на одной из которых закреплен кулачок, размыкающий контакты батарейной системы зажигания, а на другой -- оси специальных грузов. Вторая пластина вращается вместе с валом, а грузы своими пальцами входят в пазы первой пластины. При увеличении частоты вращения вала грузы расходятся, преодолевая усилие пружин, и поворачивают на заданный угол (до 15°) пластину с кулачком. Из российских мотоциклов центробежный регулятор изменения угла опережения зажигания имеют мотоциклы «Урал» с контактной системой зажигания.

Основные неисправности системы зажигания -- отсутствие или недостаточная сила искры, а также неправильно установленный момент зажигания. Для устранения проверяют всю цепь -- от источника напряжения и контактной пары (датчика) до катушки зажигания, высоковольтного провода и свечи.

Опережение зажигания -- воспламенение рабочей смеси в цилиндре двигателя до достижения поршнем верхней мертвой точки.

Момент зажигания оказывает большое влияние на работу двигателя. При работе четырёхтактного ДВС после такта сжатия перед достижением поршнем ВМТ происходит воспламенение рабочей смеси в камере сгорания с помощью свечи зажигания. Происходит возгорание рабочей смеси, расширение рабочих газов и выполняется следующий такт -- рабочий ход. В действительности сгорание рабочей смеси происходит не мгновенно. От момента появления искры до момента, когда вся смесь загорится, и давление газов достигнет максимальной величины, проходит некоторое время. Этот отрезок времени очень мал, но так как скорость вращения коленчатого вала весьма велика, то даже за это время поршень успевает пройти некоторый путь от того положения, при котором началось воспламенение смеси. Поэтому, если воспламенить смесь в ВМТ, то горение происходит при увеличивающемся объёме (начало рабочего хода) и закончится, когда поршень пройдёт некоторый путь и максимальная величина давления газов будет меньше, чем в том случае, если бы сгорание всей смеси произошло в ВМТ. Если воспламенение смеси происходит слишком рано, то давление газов достигает значительной величины до того, как поршень подойдёт к ВМТ и будет противодействовать движению поршня. Всё это приводит к уменьшению мощности двигателя, его перегреву. Поэтому, при правильном выборе момента зажигания, давление газов достигает максимальной величины примерно через 10-12 градусов поворота коленчатого вала после прохода поршнем верхней мертвой точки. Опережение зажигания характеризуется углом опережения зажигания. Угол опережения зажигания -- угол поворота кривошипа от момента, при котором на свечу зажигания начинает подаваться напряжение для пробоя искрового промежутка до занятия поршнем верхней мёртвой точки.

Найвыгоднейшее опережение зажигания в основном зависит от соотношения между скоростью горения смеси и числом оборотов двигателя. Чем больше число оборотов двигателя, тем больше должно быть опережение зажигания, а чем больше скорость горения смеси, тем меньше. Скорость горения зависит от конструкции двигателя, от состава рабочей смеси и некоторых других факторов. Наибольшее влияние на скорость сгорания оказывает содержание остаточных газов в рабочей смеси. При малом открытии дроссельной заслонки процентное содержание остаточных отработавших газов велико, смесь горит медленно, поэтому опережение зажигания должно быть большим. По мере открытия дроссельной заслонки в цилиндр поступает всё больше свежей горючей смеси, а количество отработавших газов остаётся примерно неизменным, в результате процентное содержание их уменьшается и смесь горит быстрее -- опережение зажигания должно уменьшатся. При одновременном изменении положения дросселя (изменение нагрузки) и числа оборотов найвыгоднейшее опережение зажигания зависит от обоих факторов одновременно и в зависимости от условий работы двигателя оба фактора могут влиять на найвыгоднейшее опережение в одном или в разных направлениях.

Для изменения опережения зажигания в зависимости от оборотов коленчатого вала используют центробежные регуляторы, расположенные обычно в прерывателях. При изменении нагрузки двигателя и сохранении его оборотов постоянными центробежный регулятор не меняет опережения зажигания, в то время как в этих условиях (постоянные обороты и переменная нагрузка) угол опережения зажигания должен изменяться. Для этого центробежный регулятор дополняют вакуумным регулятором.

Всё это справедливо при условии, что топливо допускает бездетонационную работу двигателя. Однако в действительности предельная величина опережения зажигания ограничивается явлением детонации в двигателе. Поэтому при переходе с топлива одного качества на другое, отличающееся от первого антидетонационными свойствами, установка зажигания должна быть изменена. Это осуществляется при помощи специального устройства - октан-корректора, позволяющего корректировать установку зажигания в зависимости от качества применяемого топлива.

Размещено на Allbest.ru

...

Подобные документы

  • Принцип действия, назначение и условия эксплуатации системы зажигания. Организационно-технические мероприятия по обслуживанию и ремонту системы зажигания. Экономическая эффективность проведения планово-предупредительного ремонта системы зажигания.

    курсовая работа [865,9 K], добавлен 29.05.2019

  • Общие сведение о современной системе зажигания карбюраторных двигателей. Прерыватель-распределитель, катушка, свечи и замок зажигания: устройство, предназначение и принцип действия. Схема батарейной системы зажигания. Установка зажигания в двигателе.

    реферат [465,3 K], добавлен 14.07.2010

  • Применение микроконтроллеров в промышленности. Разработка системы управления механизмом зажигания. Виды конструкторской документации при производстве электронных устройств. Маршрутная карта технологического процесса при изготовлении печатной платы.

    дипломная работа [183,2 K], добавлен 17.01.2011

  • Технологический процесс, принцип работы системы питания дизельного двигателя. Обслуживание дизельных двигателей, их регулировка. Основные неисправности, ремонт и техническое обеспечение системы питания, приборы и инструменты, необходимые для этого.

    контрольная работа [187,3 K], добавлен 26.01.2015

  • Анализ использования средств диагностирования технического осмотра и текущего ремонта автомобилей. Назначение, устройство, принцип работы автоматической коробки передач. Принцип работы и основные неисправности автоматической коробки передач автомобиля.

    курсовая работа [110,6 K], добавлен 21.12.2022

  • Назначение и классификация газораспределительных механизмов. Принцип работы конструкции. Отмеченные неисправности работы, способы их устранения неисправностей (техническое обслуживание или ремонт). Составление технологической операционной схемы.

    лабораторная работа [140,4 K], добавлен 11.06.2015

  • Виды систем охлаждения и принцип их работы, устройство и работа приборов жидкостной системы. Проверка уровня и плотности жидкости, заправка системы, регулировка натяжения ремня привода насоса. Основные неисправности и техническое обслуживание системы.

    реферат [4,0 M], добавлен 02.11.2009

  • Назначения, применение и устройство насосной станции Grundfos SL 1.50. Принцип работы электрической принципиальной схемы. Техника безопасности при обслуживании насосной станции очистных сооружений, техническое обслуживание и ремонт оборудования.

    курсовая работа [794,5 K], добавлен 15.07.2013

  • Назначение системы водяного охлаждения. Упаковка и комплектация продукции компании. Внутренняя структура ватерблока. История развития радиаторных систем. Основные характеристики устройства, принцип работы, тестирование. Техническое обслуживание систем.

    курсовая работа [1,1 M], добавлен 13.02.2012

  • Основные типы мельниц. Конструкция и принцип работы шаровой мельницы 115 М2. Транспортировка и установка оборудования, требования к отделке фундамента, монтаж. Пуско-наладочные работы и тестирование. Техническое обслуживание и текущий ремонт аппарата.

    курсовая работа [801,5 K], добавлен 10.12.2015

  • Изучение электромагнитного реле типа ПЭ-5, принцип работы датчиков температуры, их назначение и устройство. Конструктивные особенности, принцип работы и область применения датчиков типа ДЩ-1 и КСЛ-2, принцип работы и назначение датчиков скорости.

    практическая работа [845,8 K], добавлен 23.10.2009

  • Назначение, техническая характеристика и конструкция манифольда МПБ5-80х35. Конструкция и принцип действия насоса. Монтаж, эксплуатация и ремонт манифольда. Расчет клиновой задвижки с выдвижным шпинделем. Формулы определения циркуляционной системы.

    курсовая работа [614,6 K], добавлен 13.01.2014

  • Управление и контроль за технологическим процессом работы станции "Шаим-2". Назначение и устройство системы маслоснабжения, принцип ее работы. Устройство и работа сигнализатора уровня ПМП-052, порядок проведения его текущего и капитального ремонта.

    контрольная работа [102,8 K], добавлен 18.06.2014

  • Классификация, устройство и принцип работы направляющей аппаратуры гидроприводов: логических клапанов, выдержки времени. Назначение и элементы уплотнительных устройств гидроприводов. Закон Архимеда. Расчет аксиально-поршневого насоса с наклонным блоком.

    контрольная работа [932,3 K], добавлен 17.03.2016

  • Анализ технико-экономических показателей ПО "Барлукский промкомбинат". Организация работы мясного цеха. Конструкция, техническое обслуживание фаршемешалки М-125. Устройство и процесс работы дымогенератора. Средства и методы контроля качества продукции.

    отчет по практике [929,3 K], добавлен 02.12.2014

  • Классификация станков для обработки металлов резанием по технологическим признакам. Буквенное и цифровое обозначение моделей. Общая характеристика радиально-сверлильных станков. Назначение, устройство, принцип работы станка 2А554 и его технические данные.

    контрольная работа [455,7 K], добавлен 09.11.2009

  • Конструкция и принцип работы насоса, описание его технических характеристик. Гидравлический расчет проточной части, деталей центробежного насоса на прочность. Эксплуатация и обслуживание оборудования. Назначение и принцип действия балластной системы.

    курсовая работа [172,0 K], добавлен 04.06.2009

  • Классификация и обозначение покрытых электродов для ручной дуговой сварки. Устройство сварочного трансформатора и выпрямителя. Выбор режима сварки. Техника ручной дуговой сварки. Порядок проведения работы. Процесс зажигания и строение электрической дуги.

    лабораторная работа [1,1 M], добавлен 22.12.2009

  • Технология изготовление книжного блока. Особенности процесса фальцовки, приклейки, подборки комплектации, скрепления и обработки блоков. Устройство и принцип работы термоклеевой машины. Принцип работы термопереплетного оборудования (термопереплетчиков).

    курсовая работа [31,6 K], добавлен 23.10.2010

  • Принцип работы системы привода транспортной машины. Выбор дистанционного датчика температуры, усилителя, электромеханического преобразователя сигнала. Функции звеньев системы. Переходный процесс скорректированной системы автоматического управления.

    курсовая работа [1,7 M], добавлен 17.02.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.