Технологии вентиляции на предприятии

Проектирование вентиляционных установок промышленных предприятий. Фильтрационные системы для нейтрализации выхлопных газов. Рельсовые вытяжные системы для гаражей и СТО. Расчет вентиляционной системы расхода воздуха и воздуховода общеобменной вентиляции.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 20.05.2014
Размер файла 112,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

l 1 = средняя дистанция, которую проезжают автомобили до места парковки в гараже или на стоянке

с 2 = количество автотранспортных средств, проезжающих через гараж

l 2 = средняя дистанция для автомобилей, проезжающих через гараж

а количество приточного воздуха Q:

Q = kq CO (2)

Где Q = необходимое количество свежего воздуха (м 3 / ч)

к = коэффициент, учитывающий время нахождения людей в гараже или на стоянке

к = 2, если в гараже люди находятся небольшое количество времени

к = 4, если люди находятся постоянно - СТО, мастерские

Вентиляция гаража. Пример.

Определение количества приточного воздуха

Стоянка машин

Необходимо определить подачу воздуха в помещение стоянки автомобилей со следующими данными: 10 машин, площадь 150 м 2, объем помещения 300 м2 и средняя дистанция, которую проезжают автомобили равна 20 метрам.

Все это может быть определено как:

Необходимый воздухообмен в час

Если будем использовать требование соблюдения необходимой кратности воздухообмена в час, а кратность для стоянок автомобилей (смотрите выше) должна быть не менее 4-х воздухообмена в час, то получим следующее значение расхода воздуха Q = 4*300 (м 3 / ч) = 1200 м 3 / ч

Содержание CO в воздухе

Если будем считать необходимую подачу свежего воздуха по выбросам от машин оксида углерода, то получим следующую величину q CO

q CO = (20 + 0,1* 20) 10 = 220 м 3 / ч CO

а необходимый расход воздуха

Q = 2*220 (м 3 / ч) = 440 м 3 / ч воздуха

Так как, при проектировании вентиляции в случае выбора величины необходимого воздухообмена в помещении всегда выбирают большую величину то расход приточного воздуха в помещении автостоянки должен быть 1200 м 3/ч.

Ремонтная мастерская, СТО

Необходимо определить расход приточного воздуха в помещении ремонтной мастерской (СТО) со следующим техническим заданием: количество машин 10, площадь помещения 150 м 2, объем помещения 300 м2 и средняя дистанция, которую проезжают автомобили равна 20 метрам.

Необходимый минимальный воздухообмен

Если будем использовать требование соблюдения необходимой кратности воздухообмена в час, а кратность для СТО (смотрите выше) должна быть не менее 20-го воздухообмена в час, то получим следующее значение расхода воздуха

Q = 20 * 300 (м 3 / ч)= 6000 м 3 / ч

Содержание CO в воздухе

Если будем считать необходимую подачу свежего воздуха по выбросам от машин оксида углерода, то получим следующую величину выброса q CO

q CO = (20 + 0,1* 20) 10 = 220 м 3 / ч CO

А необходимый расход воздуха (коэффициент равен 4 - люди в помещении находятся постоянно)

Q = 4*220 (м 3 / ч) = = 880 м 3 / ч воздуха

Подача воздуха должна быть не менее 6000 м 3 / ч.

Типичное решение вентиляции для небольших гаражей

Вентиляция гаража небольшого не требует сложного расчета. Свежий воздух поступает через решетки в наружной стене. Загрязненный воздух удаляется через отверстия в полу и крыше через решетки с помощью вентилятора

10. Расчет воздуховода общеобменной вентиляции

Для расчета необходимо знать теплофизические характеристики рабочего тела (воздуха):

- температура воздуха внутри воздуховода ;

- плотность воздуха кг/м;

- плотность наружного воздуха кг/м;

- температура наружного воздуха ;

Определяем естественное расчетное давление:

Па, где

м - вертикальное расстояние от центра оконного проема до устья вытяжной шахты;

Эквивалентный диаметр для каждого участка:

м;

По заданному эквивалентному диаметру определяем площадь сечения трубы для каждого участка:

м;

Скорость течения воздуха в воздуховоде для каждого участка будет равна:

, м/с, где

расход удаляемого воздуха;

Для 1-го участка: м/с;

Для 2-го участка: м/с;

Для 3-го участка: м/с;

Для 4-го участка: м/с;

Для 5-го участка: м/с;

Для 6-го участка: м/с;

Для 7-го участка: м/с;

Для 8-го участка: м/с;

Для 9-го участка: м/с;

Для 10-го участка: м/с;

Для 11-го участка: м/с;

Потери на 1 м длины участка характеризуется числом Рейнольдса:

, где

коэффициент вязкости;

Для 1-го участка: ;

Для 2-го участка: ;

Для 3-го участка: ;

Для 4-го участка: ;

Для 5-го участка: ;

Для 6-го участка: ;

Для 7-го участка: ;

Для 8-го участка: ;

Для 9-го участка: ;

Для 10-го участка: ;

Для 11-го участка: ;

Ламинарный режим течения существует устойчиво при числах Рейнольдса Re<2300. При Re>2300 ламинарное течение теряет устойчивость. При 2300<Re<4000 существует переходный режим течения, а при Re>4000 течение становится турбулентным.

Так как Re>2300, то потери на 1 м длины участка для каждого участка будет равен:

, где

кинетическая энергия воздуха;

Для 1-го участка: Па/м;

Для 2-го участка: Па/м;

Для 3-го участка: Па/м;

Для 4-го участка: Па/м;

Для 5-го участка: Па/м;

Для 6-го участка: Па/м;

Для 7-го участка: Па/м;

Для 8-го участка: Па/м;

Для 9-го участка: Па/м;

Для 10-го участка: Па/м;

Для 11-го участка: Па/м;

Потеря давления на местное сопротивление для каждого участка:

, Па, где

сумма коэффициентов местных сопротивлений (берется из табличных данных СНиП 2.04.05-91 «Отопление, вентиляция и кондиционирование»);

Для 1-го участка: Па;

Для 2-го участка: Па;

Для 3-го участка: Па;

Для 4-го участка: Па;

Для 5-го участка: Па;

Для 6-го участка: Па;

Для 7-го участка: Па;

Для 8-го участка: Па;

Для 9-го участка: Па;

Для 11-го участка: Па;

Для 10-го участка: Па;

коэффициент, учитывающий шероховатость стенок воздуховода, определяется для каждого участка по СНиП 2.04.05-91.

Полное давление, по которому выбирается вентилятор, определяется по формуле:

Па;

На заданную подачу вентиляторной установки принимаем запас в пределах 10% на возможные дополнительные потери.

Определяем полную мощность вентилятора:

Вт = 0,864 кВт, где

производительность вентилятора;

давление, создаваемое вентилятором;

КПД вентилятора;

КПД привода клиноременной передачи.

Определяем установочную мощность с запасом:

кВт, где

коэффициент запаса.

По полученной мощности подбираем вентилятор ВЦ-4-70-3.15, мощностью электродвигателя 1,5 кВт, производительностью 1560 - 3800 м/ч.

Расчет воздуховода ведется по той же методике, что и расчет воздуховода для общеобменной системы вентиляции.

Расход воздуха от одного автомобиля равен L = 200 м/ч, количество автомобилей в помещении - 4.

Определяем естественное расчетное давление:

Па, где

м - вертикальное расстояние от центра оконного проема до устья вытяжной шахты; Эквивалентный диаметр для каждого участка:

м;

По заданному эквивалентному диаметру определяем площадь сечения трубы для каждого участка:

м;

Скорость течения воздуха в воздуховоде для каждого участка будет равна:

, м/с, где

расход удаляемого воздуха;

Для 1-го участка: м/с;

Для 2-го участка: м/с;

Для 3-го участка: м/с;

Для 4-го участка: м/с;

Для 5-го участка: м/с;

Потери на 1 м длины участка характеризуется числом Рейнольдса:

, где

коэффициент вязкости;

Для 1-го участка: ;

Для 2-го участка: ;

Для 3-го участка: ;

Для 4-го участка: ;

Для 5-го участка: ;

Так как Re>2300, то потери на 1 м длины участка для каждого участка будет равен:

, где

кинетическая энергия воздуха;

Для 1-го участка: Па/м;

Для 2-го участка: Па/м;

Для 3-го участка: Па/м;

Для 4-го участка: Па/м;

Для 5-го участка: Па/м;

Потеря давления на местное сопротивление для каждого участка:

, Па, где

сумма коэффициентов местных сопротивлений (берется из табличных данных СНиП 2.04.05-91 «Отопление, вентиляция и кондиционирование»);

Для 1-го участка: Па;

Для 2-го участка: Па;

Для 3-го участка: Па;

Для 4-го участка: Па;

Для 5-го участка: Па;

коэффициент, учитывающий шероховатость стенок воздуховода, определяется для каждого участка по СНиП 2.04.05-91.

Полное давление, по которому выбирается вентилятор, определяется по формуле:

Па;

На заданную подачу вентиляторной установки принимаем запас в пределах 10% на возможные дополнительные потери.

Определяем полную мощность вентилятора:

Вт = 0,091кВт, где

производительность вентилятора;

давление, создаваемое вентилятором;

КПД вентилятора;

КПД привода клиноременной передачи.

Определяем установочную мощность с запасом:

кВт, где

коэффициент запаса.

По полученной мощности подбираем вентилятор ВЦ-4-70-2.5, мощностью электродвигателя 0,18 кВт, производительностью 430 - 960 м/ч.

При выборе оборудования для системы вентиляции необходимо рассчитать следующие параметры:

- Производительность по воздуху;

- Мощность калорифера;

- Рабочее давление, создаваемое вентилятором;

- Скорость потока воздуха и площадь сечения воздуховодов;

- Допустимый уровень шума.

Ниже приводится упрощенная методика подбора основных элементов системы приточной вентиляции, используемой в бытовых условиях.

Производительность по воздуху

Подбор оборудования для системы вентиляции начинается с расчета требуемой производительности по воздуху или «прокачки», измеряемой в кубометрах в час. Для этого необходим поэтажный план помещений с экспликацией, в которой указаны наименования (назначения) каждого помещения и его площадь.

Расчет начинается с определения требуемой кратности воздухообмена, которая показывает сколько раз в течение одного часа происходит полная смена воздуха в помещении. Например, для помещения площадью 50 квадратных метров с высотой потолков 3 метра (объем 150 кубометров) двукратный воздухообмен соответствует 300 кубометров в час.

Требуемая кратность воздухообмена зависит от назначения помещения, количества находящихся в нем людей, мощности тепловыделяющего оборудования и определяется СНиП (Строительными Нормами и Правилами). Так, для большинства жилых помещений достаточно однократного воздухообмена, для офисных помещений требуется 2-3 кратный воздухообмен.

Для определения требуемой производительности необходимо рассчитать два значения воздухообмена: по кратности и по количеству людей, после чего выбрать большее из этих двух значений.

Расчет воздухообмена по кратности:

L = n * S * H, где

L - требуемая производительность приточной вентиляции, м3/ч;

n - нормируемая кратность воздухообмена: для жилых помещений n = 1, для офисов n = 2,5;

S - площадь помещения, м2;

H - высота помещения, м;

Расчет воздухообмена по количеству людей:

L = N * Lнорм, где

L - требуемая производительность приточной вентиляции, м3/ч;

N - количество людей;

Lнорм - норма расхода воздуха на одного человека:

- в состоянии покоя - 20 м3/ч;

- работа в офисе - 40 м3/ч;

- при физической нагрузке - 60 м3/ч.

Рассчитав необходимый воздухообмен, выбираем вентилятор или приточную установку соответствующей производительности. При этом необходимо учитывать, что из-за сопротивления воздухопроводной сети происходит падение производительности вентилятора. Зависимость производительности от полного давления можно найти по вентиляционным характеристикам, которые приводятся в технических характеристиках.

Для справки: участок воздуховода длиной 15 метров с одной вентиляционной решеткой создает падение давления около 100 Па.

Типичные значения производительности систем вентиляции:

Для квартир - от 100 до 500 м3/ч;

Для коттеджей - от 1000 до 2000 м3/ч;

Для офисов - от 1000 до 10000 м3/ч.

Мощность калорифера

Калорифер используется в приточной системе вентиляции для подогрева наружного воздуха в холодное время года. Мощность калорифера рассчитывается исходя из производительности системы вентиляции, требуемой температурой воздуха на выходе системы и минимальной температурой наружного воздуха. Два последних параметра определяются СНиП.

Температура воздуха, поступающего в жилое помещение, должна быть не ниже +18°С. Минимальная температура наружного воздуха зависит от климатической зоной и для Москвы равна -26°С (рассчитывается как средняя температура самой холодной пятидневки самого холодного месяца в 13 часов).

Таким образом, при включении калорифера на полную мощность он должен нагревать поток воздуха на 44°С. Поскольку сильные морозы в Москве непродолжительны, в приточных системах можно устанавливать калориферы, имеющие мощность меньше расчетной. При этом приточная система должна иметь регулятор производительности для уменьшения скорости вентилятора в холодное время года.

При расчете мощности калорифера необходимо учитывать следующие ограничения:

Возможность использования однофазного (220 В) или трехфазного (380 В) напряжения питания.

При мощности калорифера свыше 5 кВт необходимо 3-х фазное подключение, но в любом случае 3-х фазное питание предпочтительней, так как рабочий ток в этом случае меньше.

Максимально допустимый ток потребления. Ток, потребляемый калорифером, можно найти по формуле:

I = P / U, где

I - максимальный потребляемый ток, А;

Р - мощность калорифера, Вт;

U - напряжение питание:

220 В - для однофазного питания;

660 В (3 Ч 220В) - для трехфазного питания.

В случае если допустимая нагрузка электрической сети меньше чем требуемая, можно установить калорифер меньшей мощности. Температуру, на которую калорифер сможет нагреть приточный воздух, можно рассчитать по формуле:

ДT = 2,98 * P / L, где

ДT - разность температур воздуха на входе и выходе системы приточной вентиляции, °С;

Р - мощность калорифера, Вт;

L - производительность вентиляции, м3/ч.

Типичные значения расчетной мощности калорифера - от 1 до 5 кВт для квартир, от 5 до 50 кВт для офисов. Если использовать электрический калорифер с расчетной мощностью не представляется возможным, следует установить калорифер, использующий в качестве источника тепла воду из системы центрального или автономного отопления (водяной калорифер).

Рабочее давление, скорость потока воздуха в воздуховодах и допустимый уровень шума

После расчета производительности по воздуху и мощности калорифера приступают к проектированию воздухораспределительной сети, которая состоит из воздуховодов, фасонных изделий (переходников, разветвителей, поворотов) и распределителей воздуха (решеток или диффузоров). Расчет воздухораспределительной сети начинают с составления схемы воздуховодов. Далее по этой схеме рассчитывают три взаимосвязанных параметра - рабочее давление, создаваемое вентилятором, скорость потока воздуха и уровень шума.

Требуемое рабочее давление определяется техническими характеристиками вентилятора и рассчитывается исходя из диаметра и типа воздуховодов, числа поворотов и переходов с одного диаметра на другой, типа распределителей воздуха. Чем длиннее трасса и чем больше на ней поворотов и переходов, тем больше должно быть давление, создаваемое вентилятором. От диаметра воздуховодов зависит скорость потока воздуха. Обычно эту скорость ограничивают значением 4-5 м/с. При больших скоростях возрастают потери давления и увеличивается уровень шума. В тоже время, использовать «тихие» воздуховоды большого диаметра не всегда возможно, поскольку их трудно разместить в межпотолочном пространстве. Поэтому при проектировании систем вентиляции часто приходится искать компромисс между уровнем шума, требуемой производительностью вентилятора и диаметром воздуховодов.

Список литературы

1. Синельников А.Ф., Штоль Ю.Л., Скрипников С.А. «Кузова легковых автомобилей: обслуживание и ремонт», М.: Транспорт, 1999 г.

2. Епифанов Л.И. «Техническое обслуживание и ремонт автомобилей»

3. Шестопалов С.К. «Устройство, техническое обслуживание и ремонт автомобилей», Высшая школа, 2001 г.

4. Белов С.В. «Безопасность жизнедеятельности», М.: Высшая школа, 2001 г.

5. Бакалов Б.В., Карпис Е.Е. «Кондиционирование воздуха в промышленных, общественных и жилых зданиях», М.: Стройиздат, 1994 г.

6. Тихомиров К.В., Сергеенко Э.С. «Теплотехника, теплогазоснабжение и вентиляция», М.: Стройиздат, 1991 г.

7. Соснин Ю.П. «Инженерные сети. Оборудование зданий и сооружений», М.: Высшая школа, 2001 г.

8. Цимбалин В.Б., Успенский И.Н. Атлас конструкций. Шасси автомобиля - Москва: «Машиностроение», 1977, 106 с.

9. Краткий автомобильный справочник. - 10-е изд., перераб. и доп. - М.: Транспорт, 1984. - 220 с.

10. Экологическая безопасность автотранспортного комплекса URL:http://www.centreco.ru/lit_def/41.php

11. Оборудование порошковой окраски URL:http://www.prompolymer.ru/opo.html

12. А.М. Козлитин, Б.Н. Яковлев, «Чрезвычайные ситуации техногенного характера. Прогнозирование и оценка», учебное пособие, Саратов, 2000

13. Ю.В. Еганов, «Прогнозирование и оценка обстановки в чрезвычайных ситуациях», Обнинск, 2003]

14. Б.С. Мастрюков «Безопасность в чрезвычайных ситуациях», Москва, издательский центр «Академия», 2007

Размещено на Allbest.ru

...

Подобные документы

  • Изучение технических характеристик и принципа работы приточной системы вентиляции с рециркуляцией воздуха, которая используется в вагонах с кондиционированием воздуха и предназначена для обеспечения требуемого воздухообмена, охлаждения, подогрева воздуха.

    реферат [7,3 M], добавлен 24.11.2010

  • Анализ существующих типовых схем автоматики вентиляции производственных цехов. Математическая модель процесса вентиляции производственных помещений, выбор и описание средств автоматизации и элементов управления. Расчет себестоимости проекта автоматизации.

    дипломная работа [5,9 M], добавлен 11.06.2012

  • Проверка теплозащитных свойств наружных ограждений. Проверка на отсутствие конденсации влаги. Расчет тепловой мощности системы отопления. Определение площади поверхности и числа отопительных приборов. Аэродинамический расчет каналов системы вентиляции.

    курсовая работа [631,5 K], добавлен 28.12.2017

  • Составление теплового баланса помещения. Теплопоступления через массивные ограждающие конструкции. Определение количества приточного воздуха, необходимого для удаления избытка теплоты. Расчет прямоточной системы кондиционирования воздуха с рециркуляциями.

    курсовая работа [4,7 M], добавлен 23.04.2017

  • Определение значения производственных вентиляционных установок, их технические и гигиенические задачи. Расчет технических параметров вентиляционной сети: давление, сопротивление и скорость движения воздуха. Схема расположения воздуховодов и вентиляторов.

    курсовая работа [139,5 K], добавлен 17.10.2013

  • Режимы работы и типы вентиляционных установок. Выбор типа, мощности их электропривода, регулирование подачи. Преимущества и недостатки приточной вентиляции с естественной тягой. Механическая характеристика вентилятора. Методика расчета напора вентилятора.

    презентация [2,1 M], добавлен 08.10.2013

  • Рассмотрение методов модернизации системы отопления, вентиляции, изоляции наружных ограждений. Обоснование использования установки приточно-вытяжной вентиляционной установки с централизованной рекуперацией и теплообменника с качественным регулированием.

    дипломная работа [1,7 M], добавлен 02.02.2022

  • Характеристика основных типов кондиционеров: бытовые, полупромышленные и системы промышленного кондиционирования и вентиляции. Расчет необходимой мощности кондиционера. Эксплуатация кондиционера и монтаж. Центральные системы кондиционирования воздуха.

    контрольная работа [26,5 K], добавлен 08.12.2010

  • Описание технологических процессов на сварочных, токарных, кузнечных участках. Расчетные параметры внутреннего и наружного микроклимата, выделения вредных веществ. Аэродинамический расчет производительности местных вентиляционных вытяжных устройств.

    дипломная работа [884,9 K], добавлен 18.11.2017

  • Системы вытяжной вентиляции с естественным побуждением. Неисправности вентиляционных систем. Схема выпуска канализации из здания. Схема насосной системы отопления, принципы ее работы и причины присоединения расширительного сосуда с обработкой магистрали.

    контрольная работа [9,0 M], добавлен 10.10.2014

  • Функциональная и структурная схемы автоматизированной системы. Выбор датчика температуры, преобразователя расхода, исполнительного механизма, программируемого логического контроллера. Расчёт конфигурации устройства управления. Тестирование системы.

    дипломная работа [1,3 M], добавлен 19.01.2017

  • Особенности использования системы управления установкой приточной вентиляции на базе контроллера МС8.2. Основные функциональные возможности контроллера. Пример спецификации для автоматизации установки приточной вентиляции для схемы на базе МС8.2.

    практическая работа [960,3 K], добавлен 25.05.2010

  • Основные требования к состоянию воздушной среды в тоннеле метрополитена. Описание технологического процесса проветривания и элементов системы вентиляции на станции "Речной вокзал". Исполнительный механизм управляемых шиберов. Датчик расхода воздуха.

    дипломная работа [3,0 M], добавлен 25.08.2010

  • Аэродинамический расчет вентиляционных систем. Удаление избытков теплоты, влаги в рабочей зоне помещения. Расчет теплопоступлений и влаговыделений от технологического оборудования. Определение количества воздуха, удаляемого системами местных отсосов.

    контрольная работа [86,8 K], добавлен 15.09.2017

  • Общая характеристика и назначение, сферы практического применения системы автоматического управления приточно-вытяжной вентиляции. Автоматизация процесса регулирования, ее принципы и этапы реализации. Выбор средств и их экономическое обоснование.

    дипломная работа [1,2 M], добавлен 10.04.2011

  • Тепловой баланс помещения, метеорологические параметры воздуха. Теплопоступления и теплопотери, баланс тепла. Вентиляция кабин крановщиков. Расчёт зонта над кузнечным горном. Аэродинамический расчёт вентиляции. Борьба с шумом вентиляционных установок.

    курсовая работа [753,7 K], добавлен 20.03.2012

  • Характеристика проектируемого комплекса и выбор технологии производственных процессов. Механизация водоснабжения и поения животных. Технологический расчет и выбор оборудования. Системы вентиляции и воздушного отопления. Расчет воздухообмена и освещения.

    курсовая работа [135,7 K], добавлен 01.12.2008

  • Приточная система вентиляции, ее внутреннее устройство и взаимосвязь элементов, оценка преимуществ и недостатков использования, требования к оборудованию. Мероприятия по энергосбережению, автоматизация управления энергоэффективных вентиляционных систем.

    курсовая работа [476,9 K], добавлен 08.04.2015

  • Характеристика классификации систем кондиционирования и вентиляции. Особенности протекания переходных газодинамических процессов в воздушных потоках вентиляционных шахт. Численное моделирование проветривания тоннельного тупика в двухмерной постановке.

    магистерская работа [1,7 M], добавлен 10.07.2017

  • Теплотехнический расчет наружных ограждающих конструкций. Расход теплоты на нагревание вентиляционного воздуха. Выбор системы отопления и типа нагревательных приборов, гидравлический расчет. Противопожарные требования к устройству систем вентиляции.

    курсовая работа [244,4 K], добавлен 15.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.