Механические свойства металлов
Характеристика материалов, обрабатываемых на металлорежущих станках. Марки и свойства чугуна. Химический состав углеродистых и легированных сталей. Проведение испытаний на растяжение и измерение твердости. Ультразвуковой и радиографический контроль.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 26.05.2014 |
Размер файла | 125,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://allbest.ru
Подпись: Министерство образования и науки Украины
Национальный Технический Университет
"Харьковский политехнический институт”
Кафедра: Приборы и методы неразрушающего контроля
Механические свойства металлов
Выполнила:
студентка гр. ЭМС-34 Б Носачева
Проверил:
Д.т.н., проф. Сучков Г.М.
Харьков 2007
1. Общая характеристика материалов
1.1 Инструментальные и конструкционные материалы
Большинство деталей машин, обрабатываемых на металлорежущих станках, изготавливается из металлов и их сплавов. Наибольшее распространение имеют чугуны и стали, в меньшей степени - цветные металлы. Для режущих инструментов широко применяются твердые сплавы и абразивные материалы.
Обрабатываемость металлов резанием характеризуется их механическими свойствами: твердостью, прочностью, пластичностью.
Твердость - способность металла оказывать сопротивление проникновению в него другого, более твердого тела. Наиболее распространены два способа определения твердости: Бринелля и Роквелла.
Твердость по Бринеллю устанавливается вдавливанием в испытуемый металл стального закаленного шарика под определенной нагрузкой. Полученную этим способом твердость обозначают буквами HB и определяют делением нагрузки на площадь сферического отпечатка. Прибор Бринелля применяется для определения твердости сырых или слабо закаленных металлов, так как при больших нагрузках шарик деформируется и показания искажаются.
Твердость по Роквеллу определяется вдавливанием в подготовленную ровную поверхность алмазного конуса или закаленного шарика. Значение твердости выражается в условных единицах и отсчитывается по черной или красной индикаторным шкалам прибора. Для очень твердых металлов незначительной толщины применяют алмазный конус с нагрузкой 588 Н, а значение твердости определяют по черной шкале и обозначают HRA.
Твердость закаленных сталей определяют, вдавливая алмазный конус при нагрузке 1470 Н, по черной шкале и обозначают HRCЭ.
Испытание твердости шариком с нагрузкой 980 Н на приборе Роквелла предусмотрено для мягких незакаленных металлов. В этом случае отсчет показаний ведут по красной шкале, а твердость обозначают HRB.
Прочность - способность металла сопротивляться разрушению под действием внешних сил.
Для определения прочности образец металла установленной формы и размера испытывают на наибольшее разрушающее напряжение при растяжении, которое называют пределом прочности (временное сопротивление) и обозначают УВ (сигма).
Пластичность - способность металла, не разрушаясь, изменять форму под нагрузкой и сохранять ее после прекращения действия нагрузки.
При испытании на растяжение пластичность характеризуется относи-
тельным удлинением Д (дельта), которое соответствует отношению приращения длины образца после разрыва к его первоначальной длине в процентах.
1.2 Черные металлы
Железоуглеродистые сплавы с примесями марганца, кремния, серы, фосфора и некоторых других элементов принято называть черными металлами. В зависимости от содержания углерода они делятся на две группы: чугуны и стали.
Чугун - сплав железа с углеродом, содержащий свыше 2,3 % углерода (практически от 2,5 до 4,5 %). Углерод в нем может находится в химически связанном состоянии в виде карбида железа (цементита) и в свободном состоянии - в виде графита. В соответствии с этим чугуны делятся на белые - передельные и серые - литейные.
В белом чугуне почти весь углерод находится в состоянии карбида железа (Fe3C), обладающего высокой твердостью. Такие чугуны имеют мелкозернистое строение с серебристо-белой поверхностью в изломе, высокую твердость, трудно поддаются обработке резанием, плохо заполняют форму и поэтому используются в основном для выплавки сталей.
В сером чугуне большая часть углерода находится в свободном состоянии в виде мелких пластинок графита. Последние, разделяя структуру чугуна и действуя как надрезы, значительно уменьшают его прочность и увеличивают его хрупкость. Такие чугуны имеют в изломе серый цвет, обладают хорошими литейными свойствами, почти не дают усадку в отливках и сравнительно легко обрабатываются резанием. Однако, имея в своем составе твердые зерна цементита, серые чугуны значительно ускоряют изнашивание инструмента, что не позволяет обрабатывать их с высокими скоростями резания.
Марки серого чугуна обозначаются буквами СЧ и числами, соответствующими его пределу прочности при растяжении в кгс/мм2.
В промышленности также применяются отливки из высокопрочных и ковких чугунов.
Высокопрочный чугун получают прибавлением к расплавленному чугуну присадок магния и ферросилиция, благодаря чему выделяющийся углерод приобретает шаровидную форму. Такой чугун обладает повышенной прочностью и пластичностью. Его применяют для деталей, работающих при значительных механических нагрузках.
В ковком чугуне графит имеет хлопьевидную форму. Этот чугун получают длительным отжигом отливок из белого чугуна. Такие чугуны обладают повышенной прочностью и пластичностью и по своим свойствам занимают промежуточное положение между серым чугуном и сталью.
Высокопрочные и ковкие чугуны маркируются буквами и цифрами: ВЧ -высокопрочный чугун, КЧ - ковкий чугун; первые две цифры - предел прочности при растяжении в кгс/мм2 (1кгс/мм2 = 9,608 МПа … 10 МПа).
Сера и фосфор - вредные примеси. Сера придает хрупкость чугуну, делает его густотекучим и пузырчатым. Фосфор увеличивает хрупкость чугуна, но делает его жидкотекучим.
Сталь - это сплав железа с углеродом, содержащий до 1,8 % углерода. Стали относятся к пластичным металлам, которым деформированием можно придать необходимую форму. По химическому составу они делятся на углеродистые и легированные; по назначению - на конструкционные, инструментальные, особого назначения (нержавеющие, жаропрочные и др.).
Углеродистые конструкционные стали подразделяются на обыкновенного качества, качественные и автоматные. Стали обыкновенного качества обозначаются буквами Ст и цифрами о 0 до 7. Качественные имеют меньше посторонних примесей. Они маркируются цифрами 08, 10, 15, 20 и так далее до 60, указывающие содержание углерода в сотых долях процента.
Выпускаются две группы таких сталей:
I - с нормальным;
II - с повышенным содержанием марганца.
Последние в конце маркировки имеют букву Г - марганец. Качественные стали группы II обладают повышенной прочностью и упругостью.
Легированные конструкционные стали, кроме обычного состава, содержат хром, ванадий, вольфрам, никель, алюминий и др. Эти элементы придают стали определенные свойства: прочность, твердость, прокаливаемость, износостойкость и т.д.
Марки легированных сталей обозначают буквами и цифрами. Первые две цифры указывает среднее содержание углерода в сотых долях процента; затем следуют цифры, обозначающие легирующий элемент; цифры после букв - примерное содержание легирующего элемента в процентах. Если содержание элемента близко к 1%, цифра после буквы не ставится.
В маркировке приняты следующие буквенные обозначения элементов:
Г - марганец;
С - кремний;
Х - хром;
Н - никель;
М - молибден;
В - вольфрам;
Ф - ванадий;
К - кобальт;
Ю - алюминий;
Т - титан;
Д - медь.
Буква А в конце марки означает, что сталь высококачественная.
Инструментальные стали делятся на углеродистые, легированные и быстрорежущие.
Углеродистые инструментальные стали содержат углерода от 0,65 до 1,35%, обладают высокой прочностью, твердостью в закаленном состоянии 63 … 65 HRCэ и теплостойкостью до 200 … 250 градусов С.
Они делятся на качественные и высококачественные. Последние содержат меньше серы, фосфора и остаточных примесей. Марки этих сталей обозначают буквой У - углеродистая, а цифры после нее указывают среднее содержание углерода в десятых долях процента. У высококачественных сталей в конце маркировки указывается буква А. Углерод существенно влияет на свойства стали. С повышением его содержания твердость, износостойкость и хрупкость стали увеличиваются, но вместе с тем ухудшается его обработка резанием.
Легированную инструментальную сталь получают введением в высокоуглеродистую сталь хрома, вольфрама, ванадия и других элементов, которые повышают ее режущие свойства. Благодаря легирующим элементам эта сталь приобретает повышенную вязкость и износостойкость в закаленном состоянии, меньшую склонность к деформациям и трещинам при закалке, более высокую теплостойкость (до 300-350 градусов С) и твердость в состоянии поставки. Легированные инструментальные стали маркируются аналогично конструкционным с той лишь разницей, что первая цифра в начале марки означает содержание углерода в десятых долях процента.
Быстрорежущие стали представляют собой легированные инструментальные стали с высоким содержанием вольфрама (до 18%). После термообработки (закалки и многократного отпуска) они приобретают высокую красностойкость до 600 градусов С, твердость 63-66 HRCэ и износостойкость.
Быстрорежущие стали маркируются буквами и цифрами. Первая буква Р означает, что сталь быстрорежущая. Цифры после нее указывают среднее содержание вольфрама в процентах. Остальные буквы и цифры означают то же, что и в марках легированных сталей.
Быстрорежущие стали, легированные ванадием и кобальтом, имеют повышенные режущие свойства. Они предусмотрены для труднообрабатываемых сталей и сплавов высокой прочности и вязкости.
Структура быстрорежущей стали (рисунок слева) - мелкие, твердые,
однородно распределенные карбиды и мартенсит, легированный для теплостойкости вольфрамом и (или) молибденом
Примерное назначение и свойства быстрорежущих сталей
Марка стали, прочность, износостойкость, особенности стали |
Назначение |
|
Р18 Удовлетворительная прочность и повышенная шлифуемость, широкий интервал закалочных температур |
Для всех видов инструментов, особенно подвергаемых значительному шлифованию, при обработке конструкционных материалов прочностью до 1000 МПа |
|
Р9 Повышенная износостойкость, более узкий интервал оптимальных закалочных температур, повышенная пластичность при горячей пластической деформации. |
Для изготовления инструментов простой формы, не требующих большого объема шлифования, применяемых для обработки конструкционных материалов |
|
Р6М5 Повышенная прочность, более узкий интервал закалочных температур, повышенная склонность к обезуглероживанию. Шлифуемость удовлетворительная. |
Для всех видов инструментов при обработке конструкционных материалов прочностью до 1000 МПа. |
|
Р12Ф3 Повышенная износостойкость, удовлетворительная прочность. Шлифуемость пониженная. |
Для чистовых инструментов (резцов, зенкеров, разверток, сверл, протяжек и др.) при обработке на средних режимах резания вязких аустенитных сталей, а также материалов, обладающих повышенными режущими свойствами. |
|
Р6М5Ф3 Повышенная износостойкость, удовлетворительная прочность. Шлифуемость пониженная. |
Для чистовых и получистовых инструментов (фасонных резцов, разверток, фрез, протяжек и др.). Предназначенных для работы на средних скоростях резания, преимущественно обрабатывающих углеродистые и легированные инструментальные стали. |
|
Р9К5, Р6М5К5, Р18К5Ф2 Повышенная вторичная твердость, теплостойкость, удовлетворительная прочность и вязкость. Шлифуемость пониженная. |
Для изготовления черновых и получистовых инструментов (фрез, долбяков, метчиков, сверл и т.п.), предназначенных для обработки углеродистых и легированных конструкционных сталей на повышенных режимах резания, а также некоторых труднообрабатываемых материалов |
1.3 Цветные металлы
Из цветных металлов наибольшее промышленное применение получили медь, алюминий и сплавы на их основе.
Медь - мягкий пластичный металл розовато-красного цвета, обладающий высокой электропроводностью, теплопроводностью, коррозийной стойкостью.
В отожженном состоянии она характеризуется пределом прочности при растяжении Ув = 19,6 … 23,6 МПа. Твердостью по Бринеллю 35 … 45 НВ.
Медные сплавы - латуни и бронзы по сравнению с медью более дешевы, имеют лучшие литейные свойства, большую прочность и хорошо обрабатываются резанием. Кроме свойств, присущих меди, они обладают способностью прирабатываться и противостоять изнашиванию. Это важное эксплуатационное качество - антифрикционность - обусловливает широкое применение медных сплавов, особенно бронз, в деталях машин, работающих в условиях повышенного трения (червячные колеса, гайки винтовых передач, вкладыши подшипников скольжения и др.).
Латунь - медноцинковый сплав. Различают простые латуни, состоящие из меди и цинка, и специальные - содержащие дополнительно легирующие элементы, которые улучшают механические свойства латуни.
Маркировка латуней: первая буква Л указывает на название сплава - латунь. Следующая за ней цифра обозначает среднее содержание меди в процентах.
Специальные латуни маркируются дополнительно буквами, обозначающими легирующие элементы:
А - алюминий;
Мц - марганец;
К - кремний;
С - свинец;
О - олово;
Н - никель;
Ж - железо.
Первые две цифры, стоящие за буквами, указывают среднее содержание меди в процентах, последующие цифры - содержание других элементов; остальное в сплаве цинк. Буква Л - в конце марки указывает, что латунь литейная. Например, марка ЛАЖ60 - 1 - 1 - специальная, алюминиево-железистая латунь содержит 60% меди, 1% - алюминия, 1% - железа, остальное цинк.
Бронза - сплав меди с оловом, марганцем, алюминием, фосфором, никелем и другими элементами.
В зависимости от состава бронзы делятся на оловянистые и специальные (безоловянисые).
Маркировка бронз основана на том же принципе, что и латуней. Впереди стоят буквы Бр - бронза, далее следуют буквенные обозначения элементов, входящих в состав сплава, и за ними - цифры, указывающие среднее содержание этих элементов в процентах.
Алюминий - мягкий пластичный металл серебристо-белого цвета, отличается высокой электропроводностью, коррозийной стойкостью, малой плотностью и хорошо обрабатывается давлением.
В отожженном состоянии алюминий обладает малой прочностью Ув = 78,5 … 118 МПа и твердостью 15 … 25 НВ.
Алюминиевые сплавы, имея положительные качества алюминия, обладают, кроме того, повышенной прочностью и лучшими технологическими свойствами. Благодаря малой плотности их принято называть легкими сплавами.
В зависимости от состава и технологических свойств алюминиевые сплавы делятся на деформируемые и литейные. Их марки обозначаются буквами и цифрами.
Так, например, деформируемые сплавы на основе:
алюминий - медь - магний (дюралюминий) маркируются буквой - Д;
алюминий - марганец - Амц;
алюминий - магний - АМг;
сплавы для поковок и штамповок - АК;
литейные сплавы - АЛ.
Цифры после букв соответствуют порядковому номеру сплава. Лучшими литейными сплавами являются сплавы на основе алюминий - кремний, называемые силуминами.
1.4 Твердые сплавы
Твердые сплавы выпускаются в виде пластинок различных форм и размеров, получаемых методом порошковой металлургии (прессованием и спеканием). Основой для них служат порошки твердых зерен карбидов тугоплавких металлов (вольфрама, титана, тантала), сцементированных кобальтом.
Промышленностью выпускаются три группы твердых сплавов:
вольфрамовые - ВК;
титановольфрамовые - ТК;
титанотанталовольфрамовые - ТТК.
В обозначении марок сплавов используются буквы:
В - карбид вольфрама;
К - кобальт;
(первая буква Т - карбид титана, вторая буква Т - карбид тантала).
Цифры после букв указывают примерное содержание компонентов в процентах. Остальное в сплаве (до 100%) - карбид вольфрама.
Буквы в конце марки означают:
В - крупнозернистую структуру;
М - мелкозернистую;
ОМ - особомелкозернистую.
Характерными признаками, определяющими режущие свойства твердых сплавов, являются высокая твердость, износостойкость и красностойкость до 1000 градусов С. Вместе с тем эти сплавы обладают меньшей вязкостью и теплопроводностью по сравнению с быстрорежущей сталью, что следует учитывать при их эксплуатации.
При выборе твердых сплавов необходимо руководствоваться следующими рекомендациями.
Вольфрамовые сплавы (ВК) по сравнению с титановольфрамовыми (ТК) обладают при резании меньшей температурой свариваемости со сталью, поэтому их применяют преимущественно для обработки чугуна, цветных металлов и неметаллических материалов.
Сплавы группы ТК предназначены для обработки сталей.
Титанотанталовольфрамовые сплавы (ТТК), обладая повышенной прочностью и вязкостью, применяются для обработки стальных поковок, отливок при неблагоприятных условиях работы.
Для тонкого и чистового точения с малым сечением стружки следует выбирать сплавы с меньшим количеством кобальта и мелкозернистой структурой.
Черновая и чистовая обработки при непрерывном резании выполняются в основном сплавами со средним содержанием кобальта.
При тяжелых условиях резания и черновой обработке с ударной нагрузкой следует применять сплавы с большим содержанием кобальта и крупнозернистой структурой.
Основные марки вольфрамосодержащих твердых сплавов и области их применения
Применяемость по системе ISO |
Цвет маркировки |
Марка сплава |
Области применения |
||||
Группа |
Подгруппа |
Без покрытия |
С покрытием |
Обрабатываемый материал |
Рекомендуемое назначение |
||
Р |
01 |
Синий |
Т30К4 |
- |
Сталь и стальное литье |
Чистовое точение, развертывание, фрезерование с малым сечением среза |
|
10 |
Синий |
Т14К6 |
- |
То же |
Получерновое (непрерывное), чистовое (прерывистое) точение или фрезерование |
||
20 |
Синий |
Т14К8 |
- |
То же |
Черновое (непрерывное), получерновое (прерывистое) точение или фрезерование, черновое зенкерование |
||
25 |
Синий |
МС137 |
МС1460 |
Сталь и стальное литье, нержавеюща сталь |
Черновое (прерывистое) точение и фрезерование, в том числе прерывистых поверхностей, работы по корке |
||
30 |
Синий |
Т5К10, МС131 |
МС2210 |
То же |
То же |
||
40 |
Синий |
МС146 |
- |
Сталь и стальное литье |
Обработка в тяжелых условиях, в том числе по корке, при неравномерном сечении среза |
||
М |
20 |
Желтый |
МС221 |
МС2210 |
Стали аустенитного класса, жаропрочные, титановые стали и сплавы |
Черновая и получерновая обработка |
|
30 |
Желтый |
ВК10 - ОМ |
- |
Высокопрочные чугуны |
То же |
||
K |
10 |
Красный |
ВК6 - ОМ, МС313 |
МС3210 |
Серый чугун, закаленная сталь, отбеленный чугун |
Чистовая и получистовая обработка |
|
20 |
Красный |
МС318, ВК6МС321 |
- |
Серый чугун, цветные металлы и сплавы |
Черновое и получерновое точение, получистовое фрезерование |
||
30 |
Красный |
ВК8, ВК8М |
- |
То же |
Черновое точение и фрезерование, сверление, зенкерование, |
1.5 Минералокерамические материалы
В целях экономии дорогостоящих и редких материалов, входящих в состав твердых сплавов, создан минералокерамический материал - микролит марки ЦМ332 на основе корунда (оксида алюминия - Al2O3) в виде пластинок белого цвета. Микролит превосходит твердые сплавы по твердости и красностойкости (1300 градусов С), уступая им значительно по вязкости. Поэтому его применяют в основном для получистового и чистового точения при жесткой технологической системе и безударной нагрузке.
Так же разработаны более прочные керамические материалы, в частности марки В3, в виде многогранных неперетачиваемых пластинок черного цвета, содержащих, кроме корунда, карбиды тугоплавких металлов. Как показывает практика, такие пластины успешно конкурируют с твердым сплавом при чистовой обработке сталей и высокопрочных чугунов.
Сверхтвердые инструментальные материалы. Природные (А) и синтетические (АС) алмазы представляют собой кристаллическую модификацию чистого углерода. Они обладают самой большой из всех известных в природе материалов твердостью (по последним данным получены материалы, способные обрабатывать алмаз в твердых сечениях), теплостойкостью до 850 градусов С, низким коэффициентом трения и высокой теплопроводностью. Вместе с тем алмазы характеризуются хрупкостью и интенсивностью изнашивания при резании черных металлов. Последнее свойство объясняется диффузией углерода алмаза в железе при высокой температуре. Вследствие этого область применения алмазных резцов практически ограничивается тонким точением пластмасс и цветных металлов.
Для обработки резанием цветных металлов создан новый синтетический материал - кубический нитрид бора (КНБ). Такие материалы выпускаются с размерами заготовок 4 … 8 мм под общим названием композиты трех марок: композит 01 (эльбор Р), композит 05 и композит 10 (гексанит Р). Обладая химической инертностью к углероду и железосодержащим материалам, композиты по твердости приближаются к алмазу, но примерно вдвое превосходят его по теплостойкости (1600 градусов С). Поэтому они способны резать не только сырые, но и закаленные до высокой твердости стали.
Основные характеристики и области применения безвольфрамовых твердых сплавов
Марка |
Основа |
Плотность, г/см3 |
Твердость HRA |
Области применения |
|
TH20 |
TiC |
5,5-6,0 |
90,0 |
Чистовая и получистовая обработка низколегитрованных и углеродистых сталей, цветных металлов и сплавов на основе меди, чугунов, никелевых сплавов, полиэтилена; области применения групп P01 - P10 при системе ISO |
|
KHT16 ЛЦК29 |
TiCN |
5,5-6,0 |
89,0 |
Получистовая и получерновая обработка тех же материалов; области применения групп P01 - P10 при системе ISO |
Основные характеристики и области применения сверхтвердых синтетических материалов
Марка |
Состав |
Твердость |
Области применения |
|
Эльбор "Р" (композит 01) |
BN |
До 8000 HV |
Чистовая обработка закаленных (40-63 HRCэ), сталей, чугунов |
|
Гексанит, композит 10, композит 10Д |
BN |
6000 HV |
Чистовая обработка закаленных (40-68 HRCэ), сталей, чугунов, твердых сплавов |
|
Композит 05 |
BN + Al2O3 |
4500 HV |
Получистовая обработка чугунов, в том числе отбеленных, и других материалов, дающих стружку надлома |
|
Силинит |
Si3N4 + Al2O3 + добавки |
До 96 HRA |
Получистовая, чистовая обработка нержавеющих сталей, подкаленных сталей, чугунов |
Основные характеристики и области применения пластин из минералокерамики
Марка |
Состав |
Плотность, г/см3 |
Твердость |
Предел прочности при изгибе Уи МПА |
Области применения |
|
ЦМ-322 |
Al2O3 |
3,96 - 3,98 |
До 2300 HV |
350-400 |
Чистовая и получистовая обработка закаленных (30 … 50 HRCэ) сталей, чугунов, цветных металлов и сплавов на основе меди. Работа без удара |
|
В3 |
Al2O3+TiC |
4,5 - 4,7 |
93 HRA |
650 |
То же |
|
ВОК60 ВОК71 |
Al2O3+TiC |
4,2 - 4,3 |
94 HRA |
650 |
Чистовая и получистовая обработка закаленных (45 … 60 HRCэ) сталей, чугунов с малыми сечениями среза |
|
Кортнинг |
Al2O3+TiN |
4,2 |
93 HRA |
750 |
Получистовая и чистовая обработка чугунов, в том числе в условиях прерывистого резания, обработка жаростойких никелевых сплавов |
2. Методы испытания металлов
Цель испытания материалов состоит в том, чтобы оценить качество материала, определить его механические и эксплуатационные характеристики и выявить причины потери прочности.
2.1 Химические методы
Химические испытания обычно состоят в том, что стандартными методами качественного и количественного химического анализа определяется состав материала и устанавливается наличие или отсутствие нежелательных и легирующих примесей.
Они нередко дополняются оценкой стойкости материалов, в частности с покрытиями, к коррозии под действием химических реагентов. При макротравлении поверхность металлических материалов, особенно легированных сталей, подвергают селективному воздействию химических растворов для выявления пористости, сегрегации, линий скольжения, включений, а также гросс-структуры.
Присутствие серы и фосфора во многих сплавах удается обнаружить методом контактных отпечатков, при котором поверхность металла прижимается к сенсибилизированной фотобумаге.
С помощью специальных химических растворов оценивается подверженность материалов сезонному растрескиванию. Проба на искру позволяет быстро определить тип исследуемой стали.
Методы спектроскопического анализа особенно ценны тем, что позволяют оперативно проводить качественное определение малых количеств примесей, которые невозможно обнаружить другими химическими методами.
Такие многоканальные приборы с фотоэлектрической регистрацией, как квантометры, полихроматоры и квантоваки, автоматически анализируют спектр металлического образца, после чего индикаторное устройство указывает содержание каждого присутствующего металла.
2.2 Механические методы
Механические испытания обычно проводят для выяснения поведения материала в определенном напряженном состоянии. Такие испытания дают важную информацию о прочности и пластичности металла. В дополнение к стандартным видам испытаний может применяться специально разработанное оборудование, воспроизводящее те или иные специфические условия эксплуатации изделия.
Механические испытания могут проводиться в условиях либо постепенного приложения напряжений (статической нагрузки), либо ударного нагружения (динамической нагрузки).
Виды напряжений. По характеру действия напряжения разделяются на растягивающие, сжимающие и сдвиговые.
Скручивающие моменты вызывают особый вид сдвиговых напряжений, а изгибающие моменты - сочетание растягивающих и сжимающих напряжений (обычно при наличии сдвиговых). Все эти различные виды напряжений могут быть созданы в образце с помощью стандартного оборудования, позволяющего определять предельно допустимые и разрушающие напряжения.
Испытания на растяжение. Это - один из самых распространенных видов механических испытаний. Тщательно подготовленный образец помещают в захваты мощной машины, которая прикладывает к нему растягивающие усилия.
Регистрируется удлинение, соответствующее каждому значению растягивающего напряжения. По этим данным может быть построена диаграмма напряжение - деформация.
При малых напряжениях заданное увеличение напряжения вызывает лишь небольшое увеличение деформации, соответствующее упругому поведению металла. Наклон линии напряжение - деформация служит мерой модуля упругости, пока не будет достигнут предел упругости.
Выше предела упругости начинается пластическое течение металла; удлинение быстро увеличивается до разрушения материала. Предел прочности при растяжении - это максимальное напряжение, которое металл выдерживает в ходе испытания.
Испытания на ударную вязкость. Один из самых важных видов динамических испытаний - испытания на ударную вязкость, которые проводятся на маятниковых копрах с образцами, имеющими надрез, или без надреза. По весу маятника, его начальной высоте и высоте подъема после разрушения образца вычисляют соответствующую работу удара (методы Шарпи и Изода).
Испытания на усталость. Такие испытания имеют целью исследование поведения металла при циклическом приложении нагрузок и определение предела выносливости материала, т.е. напряжения, ниже которого материал не разрушается после заданного числа циклов нагружения.
Чаще всего применяется машина для испытания на усталость при изгибе. При этом наружные волокна цилиндрического образца подвергаются действию циклически меняющихся напряжений - то растягивающих, то сжимающих.
Испытания на глубокую вытяжку. Образец листового металла зажимается между двумя кольцами, и в него вдавливается шаровой пуансон. Глубина вдавливания и время до разрушения являются показателями пластичности материала.
Испытания на ползучесть. В таких испытаниях оценивается совместное влияние длительного приложения нагрузки и повышенной температуры на пластическое поведение материалов при напряжениях, не превышающих предела текучести, определяемого в испытаниях малой длительности.
Надежные результаты могут быть получены лишь на оборудовании, обеспечивающем точный контроль за температурой образца и точное измерение очень малых изменений размеров. Длительность испытаний на ползучесть обычно составляет несколько тысяч часов.
Определение твердости. Твердость чаще всего измеряют методами Роквелла и Бринелля, при которых мерой твердости служит глубина вдавливания «индентора» (наконечника) определенной формы под действием известной нагрузки.
На склероскопе Шора твердость определяется по отскоку бойка с алмазным наконечником, падающего с определенной высоты на поверхность образца. Твердость - очень хороший показатель физического состояния металла.
По твердости данного металла зачастую можно с уверенностью судить о его внутренней структуре.
Испытания на твердость часто берут на вооружение отделы технического контроля на производствах. В тех случаях, когда одной из операций является термообработка, нередко предусматривается сплошной контроль на твердость всей продукции, выходящей с автоматической линии.
Такой контроль качества невозможно осуществить другими описанными выше методами механических испытаний.
Испытания на излом. В таких испытаниях образец с шейкой разрушают резким ударом, а затем излом исследуют под микроскопом, выявляя поры, включения, волосовины, флокены и сегрегацию.
Подобные испытания позволяют приблизительно оценить размер зерна, толщину закаленного слоя, глубину цементации или разуглероживания и другие элементы гросс-структуры в сталях.
металлорежущий сталь чугун
2.3 Оптические и физические методы
Микроскопическое исследование. Металлургический и (в меньшей степени) поляризационный микроскопы часто позволяют надежно судить о качестве материала и его пригодности для рассматриваемого вида применения. При этом удается определить структурные характеристики, в частности размеры и форму зерен, фазовые соотношения, наличие и распределение диспергированных инородных материалов.
Радиографический контроль. Жесткое рентгеновское или гамма-излучение направляется на испытуемую деталь с одной стороны и регистрируется на фотопленке, расположенной по другую сторону. На полученной теневой рентгено- или гаммаграмме выявляются такие несовершенства, как поры, сегрегация и трещины. Произведя облучение в двух разных направлениях, можно определить точное расположение дефекта. Такой метод часто применяется для контроля качества сварных швов.
Магнитно-порошковый контроль. Этот метод контроля пригоден лишь для ферромагнитных металлов - железа, никеля, кобальта - и их сплавов. Чаще всего он применяется для сталей: некоторые виды поверхностных и внутренних дефектов удается выявить нанесением магнитного порошка на предварительно намагниченный образец.
Ультразвуковой контроль. Если в металл послать короткий импульс ультразвука, то он частично отразится от внутреннего дефекта - трещины или включения. Отраженные ультразвуковые сигналы регистрируются приемным преобразователем, усиливаются и представляются на экране электронного осциллографа. По измеренному времени их прихода к поверхности можно вычислить глубину дефекта, от которого отразился сигнал, если известна скорость звука в данном металле.
Контроль проводится весьма быстро и зачастую не требует выведения детали из эксплуатации.
2.4 Специальные методы
Существует ряд специализированных методов контроля, имеющих ограниченную применимость. К ним относится, например, метод прослушивания со стетоскопом, основанный на изменении вибрационных характеристик материала при наличии внутренних дефектов. Иногда проводят испытания на циклическую вязкость для определения демпфирующей способности материала, т.е. его способности поглощать вибрации. Она оценивается по работе, превращающейся в теплоту в единице объема материала за один полный цикл обращения напряжения.
Инженеру, занимающемуся проектированием строений и машин, подверженных вибрациям, важно знать демпфирующую способность конструкционных материалов..
Литература
1. Павлов П.А. Механические состояния и прочность материалов. Л., 1980
2. Методы неразрушающих испытаний. М., 1983
3. Жуковец И.И. Механические испытания металлов. М., 1986
Размещено на Allbest.ru
...Подобные документы
Свойства стали, ее получение и области применения. Классификация углеродистых сталей в зависимости от назначения, структуры, содержания углерода, качества. Качественные конструкционные углеродистые стали, их химический состав и механические свойства.
контрольная работа [999,9 K], добавлен 17.08.2009Классификация литейных сплавов. Технологические свойства материалов литых заготовок, их обрабатываемость. Классификация отливок из углеродистых и легированных сталей в зависимости от назначения и качественных показателей. Эксплуатационные свойства чугуна.
презентация [61,7 K], добавлен 18.10.2013Характеристика высокопрочного и ковкого чугуна, специфические свойства, особенности строения и применение. Признаки классификации, маркировка, строение, свойства и область применения легированных сталей, требования для разных отраслей использования.
контрольная работа [110,2 K], добавлен 17.08.2009Обзор состава простых конструкционных сталей. Получение чугуна и легированных сталей. Характерные особенности медно-никелевых сплавов. Применение алюминиевых бронз, нейзильбера, мельхиора в народном хозяйстве. Механические свойства сплавов меди с цинком.
презентация [3,3 M], добавлен 06.04.2014Классификация, свойства, применение, маркировка углеродистых и легированных сталей. Влияние углерода и примесей на их свойства. Термическая обработка сплава 30ХГСА. Измерение твёрдости методом Роквелла. Влияние легирующих элементов на рост зерна стали.
дипломная работа [761,3 K], добавлен 09.07.2015Принципы обозначения стандартных марок легированных сталей, их механические свойства. Влияние вредных примесей, величины зерна на свойства. Виды закалки, структура сплава после нее. Понятие свариваемости стали. Коррозионные повреждения нержавеющей стали.
курсовая работа [5,1 M], добавлен 18.03.2010Характеристика основных механических свойств металлов. Испытания на растяжение, характеристики пластичности (относительное удлинение и сужение). Методы определения твердости по Бринеллю, Роквеллу, Виккерсу; ударной вязкости металлических материалов.
реферат [665,7 K], добавлен 09.06.2012Механические свойства строительных материалов: твердость материалов, методы ее определения, суть шкалы Мооса. Деформативные свойства материалов. Характеристика чугуна как конструкционного материала. Анализ способов химико-термической обработки стали.
контрольная работа [972,6 K], добавлен 29.03.2012Сущность статических испытаний материалов. Способы их проведения. Осуществление испытания на растяжение, на кручение и изгиб и их значение в инженерной практике. Проведение измерения твердости материалов по Виккерсу, по методу Бринеля, методом Роквелла.
реферат [871,2 K], добавлен 13.12.2013Изменение механических, физических и химических свойств углеродистых конструкционных и инструментальных сталей в результате химико–термической обработки. Марки сталей, их назначение и свойства. Структурные превращения при нагреве и охлаждении стали.
контрольная работа [769,1 K], добавлен 06.04.2015Микроструктура и углеродистых сталей в отожженном состоянии, зависимость между их строением и механическими свойствами. Изучение диаграммы состояния железо - углерод. Кривая охлаждения сплавов. Структура белого, серого, высокопрочного и ковкого чугуна.
презентация [1,5 M], добавлен 21.12.2010Понятие твердости. Метод вдавливания твердого наконечника. Измерение твердости по методу Бринелля, Виккерса и Роквелла. Измерение микротвердости. Порядок выбора оборудования. Проведение механических испытаний на твердость для определения трубных свойств.
курсовая работа [532,5 K], добавлен 15.06.2013Классификация, маркировка, состав, структура, свойства и применение алюминия, меди и их сплавов. Диаграммы состояния конструкционных материалов. Физико-механические свойства и применение пластических масс, сравнение металлических и полимерных материалов.
учебное пособие [4,8 M], добавлен 13.11.2013Основные свойства древесины как конструкционного материала. Структура древесины и ее химический состав. Органические вещества: целлюлоза, лигнин и гемицеллюлозы. Показатели механических свойств текстильных материалов: растяжение, изгиб, драпируемость.
контрольная работа [25,2 K], добавлен 16.12.2011Эксплуатационные свойства металлов. Классификация металлических материалов. Черные и цветные металлы, их сплавы. Стали для режущих и измерительных инструментов. Стали и сплавы со специальными свойствами. Сплавы алюминия и меди. Сплавы с "эффектом памяти".
курсовая работа [1,6 M], добавлен 19.03.2013Классификация углеродистых сталей по назначению и качеству. Направления исследования превращения в сплавах системы железо–цементит и сталей различного состава в равновесном состоянии. Определение содержания углерода в исследуемых сталях и их марки.
лабораторная работа [1,3 M], добавлен 17.11.2013Классификация и применение различных марок сталей, их маркировка и химический состав. Механические характеристики, обработка и причины старения строительных сталей. Оборудование для автоматической сварки под флюсом, предъявляемые к ней требования.
контрольная работа [73,8 K], добавлен 19.01.2014Характеристика и химический состав низколегированных и углеродистых сталей, применяемых для повышения долговечности рабочих органов машин. Свойства электродных материалов для наплавки. Технология электрошлаковой наплавки зубьев ковшей экскаваторов.
курсовая работа [509,6 K], добавлен 07.05.2014Влияние времени на деформацию. Упругое последействие, влияние температуры на свойства материалов. Механические свойства материалов. Особенности испытаний на сжатие. Зависимость предела прочности пластмасс от температуры, неоднородность материалов.
реферат [2,5 M], добавлен 01.12.2008Механические свойства металлов, основные методы их определения. Технологические особенности азотирования стали. Примеры деталей машин и механизмов, подвергающихся азотированию. Физико-химические свойства автомобильных бензинов. Марки пластичных смазок.
контрольная работа [1,1 M], добавлен 25.09.2013