Проектирование автомобильной газозаправочной станции сжиженным газом пропан-бутан
Характеристика генерального и ситуационного плана автомобильной газозаправочной станции. Нормативно-правовая база обеспечения ее пожарной безопасности. Расчет площади разлива сжиженных углеводородных газов в случае полной разгерметизации системы.
Рубрика | Производство и технологии |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 28.05.2014 |
Размер файла | 143,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Дипломная работа
Проектирование автомобильной газозаправочной станции сжиженным газом пропан-бутан
Введение
Современные тенденции развития автомобилестроения предполагают использование экологически чистых видов топлива. К таким видам топлива относятся и сжиженные углеводородные газы, в дальнейшем СУГ. В качестве топлива широко используется смесь пропан-бутан. В современных условиях топливного кризиса в России СУГ (пропан-бутан) с их низкой себестоимостью способны конкурировать с традиционными видами топлива, такими как бензин и дизельное топливо.
В настоящее время существует два способа хранения СУГ: наземное и подземное. При наземном способе хранения уровень хранимого в резервуаре продукта располагается выше уровня планировочных отметок площадки хранилища, а при подземном - ниже уровня планировочных отметок площадки емкости. Для наземного хранения СУГ применяют резервуары трех основных типов: автомобильный газозаправочный станция
1. Работающие под высоким давлением;
2. Полуизотермические;
3. Изотермические.
Металлические наземные резервуары, работающие под высоким давлением, обычно используются для хранения небольших количеств СУГ с упругостью паров, не превышающих 1,8-2 мПа при температуре окружающей среды. При этом газ сжижают компремированием.
В полуизотермических резервуарах режим хранения СУГ поддерживается с помощью регулирования двух параметров - температуры и давления: температура хранимого продукта определяется заданным давлением насыщения, которое выбирается несколько выше атмосферного. Полуизотермический способ используется также при транспортировании СУГ в автомобильных и железнодорожных цистернах, а также в танкерах.
В изотермических резервуарах СУГ хранят под атмосферным давлением при температуре кипения. Сжижение газа, охлаждение его до температуры кипения и поддержание изотермического режима хранения достигается за счет холодильных установок. При выборе оптимальной технологии (способа) хранения СУГ важную роль играют два взаимосвязанных фактора:
§ объем хранилища;
§ скорость его заполнения продуктом.
В каждом конкретном случае выбор того или иного вида хранилища СУГ определяется и другими факторами, среди которых важное место отводится обеспечению взрыво- и пожаробезопасности.
1. Характеристика автомобильной газозаправочной станции сжиженным газом пропан-бутан
Автомобильная газозаправочная станция на три топливо раздаточные колонки, расположена на 29 км Симферопольского шоссе, Московской области. Технологическая схема АГЗС предназначена для заправки баллонов топливной системы грузовых, специальных и легковых транспортных средств сжиженным углеводородным газом (пропан-бутан). Заправка автомобилей осуществляется при помощи газораздаточной колонки, отмеривающей в дм3 количество заправленного в баллон автомобиля газа.
Техническое описание
В состав АГЗС входит:
- один наземный одностенный резервуар, объемом 17,5 м3;
- три топливораздаточные колонки «ADAST», располагаемые на островках безопасности;
- два насоса: один для слива СУГ из автоцистерны в резервуар, второй для заправки газобаллонных автомобилей;
- навес;
- здание операторной (II степени огнестойкости);
- площадка АЦ СУГ;
- газонаполнительный пункт;
- молниеотвод.
Насосный агрегат установлен на несущих стальных рамах и представляют собой компактную эксплуатационную установку.
Станция установлена и заземлена согласно чертежам, предварительно переданным Потребителю.
1.1 Характеристика генерального и ситуационного плана
Строительство автомобильной газозаправочной станции (АГЗС), по адресу: Московская область 29 км Симферопольского шоссе, площадью застройки 0,175 га.
Площадка для АЦ не отгораживается железобетонной стеной. Въезд и выезд на площадку предусматривается раздельный. На въезде и выезде на площадку предусматриваются пандусы.
Наружное противопожарное водоснабжение обеспечивается за счет противопожарных резервуаров объемом 200 м3.
Камера под резервуар - наземное сооружение, высотой h=2,4м выполнено из сборных бетонных фундаментных блоков, покоится на монолитной железобетонной плите. Покрытие камеры - плоские асбестоцементные листы по стяжке из цементно-песчаного раствора. Изнутри свободное пространство камеры с установленным в нее металлическим резервуаром заполняется отфильтрованным песком.
С наружи поверхность блоков камеры отштукатуривается и окрашивается; выполняется декоративное оформление - ограждение из профлиста.
Операторская - отдельно стоящее мобильное здание размерами в плане 3,0x4,0 высотой 2,4м. Каркас здания металлический, из уголковых элементов, обшитый снаружи профильными стальными листами, изнутри - панелитом по внутреннему слою утеплителя (пеноизола).
Навес над раздаточной колонной - сооружение из металлических конструкций размерами в плане на металлических стойках из труб. Фундаменты под трубы - монолитные железобетонные стаканного типа. Покрытие и обрамление навеса - металлочерепица.
В соответствии с рабочим проектом принята следующая технoлогическая схема:
· сжиженный углеводородный газ (СУГ) хранится в емкости (резервуаре) мод. ЦТА-10. Геометрическая вместимость резервуара составляет 17,6 куб.м.; фактическая вместимость цистерны при максимальном коэффициенте заполнения-0,85, составляет-14,96куб.м. Суммарное количество хранимого сжиженного газа составляет-14,96 куб.м;
Для площадки автоцистерны с СУГ, оборудованной отбортовкой, и технологическим колодцем, предусматривается аварийная вентиляция с искусственным побуждением (система В1) с основными и резервными вентиляторами взрывобезопасного исполнения. Запуск и остановка системы предусмотрена как вручную, так и в автоматическом режиме, а также дистанционно из операторской, что отражено в электротехнической части проекта. Для обеспечения равномерной подвижности отсасываемой паровоздушной смеси в любой точке площадки, предусматривается отсос ее через воздуховод равномерного всасывания, который располагается на уровне верхнего края отбортовки. Удаление паровоздушной смеси предусматривается через воздуховод с помощью факельного выброса, что обеспечивает удаление ее на более значительную высоту.
Сеть технологических трубопроводов автомобильной газозаправочной станции позволяет производить прием топлива из автоцистерны и раздачу их через колонки потребителям. От резервуара до газозаправочной колонки предусматривается подземная прокладка газопровода Дц 25x35; Дц 15x2,5 по ГОСТ 1050-88 на глубине 1,6 м. в лотках, на опорах с пролетом 1,5м по резиновым подушкам. Колонка подключена к резервуару посредством труб Дц 53x3,5; 42x3,0 по ГОСТ 50-88. Для защиты подземных газопроводов были применены защитные покрытия усиленного типа по ГОСТ 9.602-89 на основе битумной мастики. Для резервуара также была предусмотрена защита от коррозии, состоящая из покрытия весьма усиленного типа по ГОСТ 9.602-89, на основе битумной мастики.
Проектом предусмотрено по степени надежности электроснабжения АГЗС к III категории. Напряжение сети 380/220 В. Установленная мощность Руст=12,785 кВт. Для распределения электроэнергии на станции принят распределительный пункт ПР 8501-1-292, установленный в операторской. Для заземления электроприемников станции используют нулевые жилы питающих кабелей и внешний контур заземления. Под навесом топливозаправочной устанавливаются светильники ВЗГ/ВЧА-200МС. Для наружного освещения станции применяются светильники РТУ-06-125-002 и РКУ-07-125-001-У1. Подвод питания к светильникам выполнен кабелем АВВГз и ВВГ, прокладываемым в траншее, трубах и по строительным конструкциям.
Заземлением корпусов светильников выполняется присоединением нулевого рабочего провода к винту заземления внутри светильника. Линия электроснабжения выполнена кабелем АВВ-1 сечением 4x25 мм2, проложенным в траншее, защищенным по всей длине глиняным кирпичом.
Молниезащита емкости хранения топлива выполнена стержневым молниеотводом, присоединенным к наружному контуру заземления в соответствии с РД 34.21.122-87. Высота стержневого молниеотвода равна 15м. Молниезащита топливораздаточной колонки осуществляется присоединением ее к наружному контуру заземления. На сооружении защиты газовой емкости предусматривается молниеприемная сетка с шагом ячеек 6x6 м.
Операторская имеет металлическую кровлю, поэтому в качестве молниеприемной сетки должна быть использована сама кровля. Токоотводы от металлической кровли и молниеприемной сетки должны быть соединены с наружным контуром заземления. Сопротивление заземления должно быть не более 4 Ом.
В проекте применен сигнализатор СТМ-10 Смоленского ПО «Аналитприбор». При повышении предельно допустимой концентрации сжиженных углеводородных газов срабатывает световая сигнализация и включаются вытяжные вентиляторы. Датчики газоанализатора устанавливаются в приямке на уровне 50-100 мм. от площадки и в колодце на уровне 50-100мм от дна. Трассы внешних соединений выполнены кабелем КВВГ, АКВВГ, проложенными в операторской открыто по стене с креплением скобами. Автомобильная газозаправочная станция оборудуется пожарной сигнализацией:
· в помещении операторской монтируется прибор ППК.
· извещатели дымовые пожарные ИП 215.
Техника безопасности.
На стационарной автомобильной газозаправочной станции производится заправка баллонов легковых и грузовых автомобилей одорированным сжиженным углеводородным газом, соответствующим ГОCT 20448-92 «Газы углеводородные сжиженные топливные для коммунально-бытового потребления» марок ПТ и СПБТ, пары которого могут образовывать с воздухом взрывоопасные смеси.
Факторы производственных опасностей воздействия на организм человека:
1. Наличие вредных веществ IV-гo класса опасности (пропана, бутана), обладающих наркотическим действием.
2. Обморожение открытых участков кожи при попадании на них углеводородных газов.
Наиболее опасными аварийными ситуациями на АГЗС могут быть:
· разгерметизация гибкого шланга типа АЦТ8М-431-04-36-00 с условным проходом 40 мм и поступление сжиженного углеводородного газа на бетонированную площадку заправочной станции при заполнении баллонов автомобилей из колонки;
· отключение электроэнергии;
· неисправность оборудования:
а) неисправен предохранительный клапан (утечка рабочей среды через соединение золотник-седло клапана, клапан не срабатывает, при повышении давления газа в цистерне выше рабочего);
б) повреждено защитное стекло индикатора уровня и т.д.;
в) нарушение санитарного режима, представляющего опасность для людей и окружающей среды.
Во всех случаях возникновения аварийных ситуаций и образования взрывоопасных смесей должны быть приняты меры по их устранению.
Мероприятия, направленные на обеспечение безопасной эксплуатации АГЗС:
· Автоцистерны со сжиженным углеводородным газом и заправляемые автомобили размещаются на открытых площадках заправочной станции.
· Все электрооборудование и осветительная аппаратура, расположенные в зоне В-1г, имеют взрывозащищенное исполнение, соответствующее категории и группе взрывоопасных смесей.
· Загрязненные маслами песок, снег и промасленная ветошь должны быть собраны в металлический ящик искронедающим совком и периодически вывезены на полигоны промышленных отходов.
· По прибытии на площадку наполнения газобаллонных автомобилей водитель автоцистерны обязан:
а) заглушить двигатель автомобиля - тягача и вынуть ключ из замка зажигания;
б) заземлить автоцистерну и пост управления;
в) убедиться в отсутствии открытого огня;
г) под колеса автоцистерны поставить упор противооткатный.
· Заправка газобаллонных автомобилей должна осуществляться согласно производственной инструкции.
· Количество одновременно заправляемых автомобилей - один, остальные автомобили должны находиться на площадке для стоянки автомобилей, предусмотренной в проекте у въезда, за территорией АГЗС.
· При наполнении баллонов газобаллонных автомобилей на АГЗС должны выполняться требования «Правил устройства и безопасной эксплуатации сосудов, работающих под давлением». Допускается заправка только баллонов газобаллонных автомобилей. Заправка других баллонов, в том числе и бытовых, категорически запрещается.
· Ответственность за техническую исправность баллонов газобаллонных автомобилей и их освидетельствование несет владелец автомобиля.
· Перед заправкой баллонов газобаллонных автомобилей оператор АГЗС обязан проверить в путевом листе водителя наличие штампа и подписи, подтверждающих исправность и пригодность баллонов к наполнению, а так же наличие у водителя удостоверения на право вождения газобаллонных автомобилей.
· Запрещается заправлять СУГ в установленные на автомобилях баллоны, у которых:
а) истек срок периодического освидетельствования, ллоны подлежат освидетельствованию один раз в два года);
б) нет установленных надписей;
в) не исправлены вентили и клапаны;
г) ослаблено крепление баллона;
д) имеются утечки из различных соединений.
Наполнение баллонов автомобилей СУГ разрешается только при выключенном двигателе автомобиля. Включать двигатель разрешается только после отсоединения рукавов и установки заглушки на отключающее устройство.
Въезд на территорию АГЗС и заправка автомобилей, в которых находятся пассажиры, запрещаются. Во время операций по подготовке, заправке и окончания заправки автомобилей запрещается так же пребывание на территории АГЗС посторонних лиц и водителей, ожидающих заправку.
При заправке газобаллонных автомобилей СУГ необходимо соблюдать следующие правила безопасности:
а) не стучать металлическими предметами по арматуре и газопроводам, находящимся под давлением;
б) если двигатель заправленного газом автомобиля при пуске дает перебои (хлопки), его следует немедленно заглушить и откатить автомобиль на расстояние не менее 15м;
в) не подтягивать соединения на баллонах и коммуникациях;
г) не оставлять заправляемые автомобили без надзора;
д) не производить выброс СУГ из баллонов в атмосферу при переполнении;
е) не производить регулировку и ремонт газовой аппаратуры газобаллонных автомобилей на территории АГЗС;
ж) не наполнять автомобильные баллоны более 90% по объему;
з) не заправлять баллоны автомобилей при повышении давления системе автоцистерны выше 1,6 МПа (16кгс/см2);
и) не держать присоединенной наполнительную струбцину к наполнительному вентилю автомобиля, когда заправка его не производится;
к) не буксировать транспортные средства петлей аварийного выталкивания автоцистерны.
Запрещается эксплуатация и въезд автоцистерны на площадку АГЗС если:
· истек срок очередного освидетельствования сосуда (цистерны);
· поврежден корпус или днище сосуда (вмятины, нарушена окраска и так далее);
· отсутствуют установление клейма и надписи;
· отсутствует или неисправна арматура;
· отсутствуют предупредительные надписи;
· отсутствует паспорт на сосуд;
· имеются утечки газа через соединения и арматуру;
· неисправны предохранительные клапаны;
· оборвана цепь заземления;
· заземляющий трос со штырем-струбциной отсутствует или имеет повреждения;
· отсутствуют огнетушители или истек срок их проверки (автоцистерна должна быть укомплектована двумя огнетушителями);
· неисправна резьба на штуцерах и резинотканевых рукавах;
· истек срок испытания резинотканевых рукавов, повреждены поверхность и их заземление;
· неисправно крепление арматуры и трубопроводов;
· поврежден индикатор уровня и КИП;
· повышено давление в сосуде (цистерне) выше 1,6 МПа (16 кгс/см2);
· отсутствует информационная табличка «Системы информации» об опасности, аптечка и знак аварийной остановки.
При наливе автоцистерны на «Базе сжиженного углеводородного газа» объем наливаемого топлива в цистерне не должен превышать 85% объема цистерны.
Противопожарные мероприятия.
Персональная ответственность за обеспечение пожарной безопасности АГЗС возлагается на ее руководителя. Руководитель АГЗС обязан:
а) обеспечить круглосуточную охрану АГЗС;
б) организовать изучение и выполнение правил пожарной безопасности всеми работниками АГЗС;
в) периодически проверять состояние пожарной безопасности, наличие и исправность технических средств борьбы с пожарами.
АГЗС обеспечивается следующими первичными средствами пожаротушения (ПСТ):
1) огнетушитель химически-воздушно-пенный (ОХВП-10) - 2 шт.;
2) ящик с песком (объем 0,5 м3) -- 2 шт.;
3) лопата-2 шт.;
4) асбестовое полотно размером 1х2м - 2 шт.
Первичные средства пожаротушения и их количество приняты в соответствии с требованиями:
· «Правил безопасности при эксплуатации газового хозяйства автомобильных заправочных станций сжиженного газа»;
· «Инструкции» по эксплуатации и техническому обслуживанию заправочной автоцистерны для сжиженного газа.
· «Правил пожарной безопасности в Российской Федерации 01-03»
· «Норм пожарной безопасности. Автозаправочные станции. Требование пожарной безопасности. НПБ 111-98*»
Автоцистерна, доставляющая СУГ на площадку АГЗС, должна быть укомплектована двумя огнетушителями.
Первичные средства пожаротушения используются для локализации и ликвидации небольших загораний, а также пожаров в их начальной стадии развития.
Огнетушители должны быть опломбированы и должны иметь исправный раструб. Применять огнетушители без раструбов запрещается.
Огнетушители должны подвергаться наружному осмотру и перезарядке в соответствии с требованиями «Паспорта» на огнетушители.
Огнетушители, отправляемые на перезарядку, должны быть заменены на соответствующее количество заряженных огнетушителей.
При каждом ящике с песком должны находиться две металлические совковые лопаты. Ящики должны плотно закрываться крышками. На ящиках должна быть надпись: «Песок на случай пожара». Песок следует регулярно осматривать. При обнаружении увлажнения или комкования его необходимо просушить и просеять.
На видном месте в помещении пребывания обслуживающего персонала должна быть вывешена инструкция о порядке действия персонала при возникновении пожара и способы оповещения пожарной охраны.
В случае возникновения аварийной ситуации, связанной с разгерметизацией гибкого шланга и поступлении СУГ на бетонированную площадку, рабочим проектом предусмотрено автоматическое включение вентиляторов, срабатывающих от датчиков-сигнализаторов СТМ-10, реагирующих на повышение концентрации сжиженного газа в наиболее низких местах АГЗС:
- приямок бетонированной площадки;
- колодец сбора ливневых стоков с бетонной площадки.
Включение аварийной вентиляции позволяет резко снизить приземную концентрацию газа и не допустить условий возникновения пожара или взрыва. При повышении концентраций газа, кроме включения вентиляторов, включается световая сигнализация, указывающая на необходимость немедленного принятия мер персоналом.
1.2 Нормативно-правовая база обеспечения пожарной безопасности автомобильной газозаправочной станции
Обеспечение пожарной безопасности автомобильной газозаправочной станции происходит на основе следующих документов:
§ СНиП 21-01-97* Пожарная безопасность зданий и сооружений - М.: ГОСТстрой РФ, 2002.
§ НПБ 105-03 «Определение категорий помещений, зданий и наружных установок по взрывопожарной и пожарной опасности». - М.: ГУГПС МЧС РФ, 2003 г.
§ ГОСТ 12.1.004-91. Пожарная безопасность. Общие требования. - М.: Госстандарт России, 1991 г.
§ НПБ 111-98* «Автозаправочные станции. Требования пожарной безопасности». ГУГПС МЧС РФ, 2002 г.
§ Рекомендации по обеспечению пожарной безопасности объектов нефтепродуктообеспечения расположенных на селитебной территории: М., ВНИИПО МВД РФ, 1997 г.
§ Правила безопасности при эксплуатации газового хозяйства автомобильных заправочных станций сжиженного газа. Госгортехнадзор России. - М.: НПО ОБТ, 2001. - 220 с.
§ Обеспечение пожарной безопасности объектов хранения и переработки СУГ: Рекомендации. - М.: ВНИИПО, 1999. - 78 с.
§ ППБ 01-03 Правила пожарной безопасности в Российской Федерации. - М.: 2003;
§ Правила устройства электроустановок. - М.: Энергоатомиздат, 1985;
§ ГОСТ Р 12.3.047-98 Пожарная безопасность технологических процессов. Общие требования. Методы контроля. - М.: 1998.
1.3 Пожарно-техническая экспертиза газовой автозаправочной станции
Противопожарная защита автомобильной газозаправочной станции сжиженного пропан - бутана, предусматривает 2 вида защиты: пассивная противопожарная защита и активная пожарная защита.
Пассивная пожарная защита включает в себя следующие мероприятия. Размещение оборудования на площадке выполнено с соблюдением противопожарных норм относительно друг друга и относительно окружающих зданий и сооружений.
Предусмотрена защита от статического электричества автоцистерны, заземляющим контуром.
Конструкция резервуаров АЦ снабжена КИПиА и предохранительными клапанами, позволяющими избежать переполнения резервуара СУГ и повышения давления, выше допустимого.
Электрооборудование выполняется во взрывозащищенном исполнении.
Активная пожарная защита состоит из средств обнаружения утечки сжиженного газа; средств предотвращающих образование взрывоопасной концентрации парового облака СУГ при аварийном проливе СУГ и средств локализации и тушения пожара при воспламенении пролитого сжиженного газа.
1) Экспертиза генерального плана рассматриваемой автомобильной газозаправочной станции нарушений и отступлений от требований норм пожарной безопасности не выявила.
2) Экспертиза технологической части рассматриваемой автомобильной газозаправочной станции выявила следующие отступления от требований норм пожарной безопасности:
единичная вместимость резервуара для СУГ превышает нормативный уровень 14,8 м3, в место положенного объема 10 м3.
3) Экспертиза расположение АГЗС в ситуационном плане выявила следующие отступления от требований норм пожарной безопасности:
не соответствуют минимальные расстояния от границы АГЗС до автомобильной дороги (фактическое минимальное расстояние составляет 14,5 м требуемое по НПБ 111-98* - 50 м);
не соответствуют минимальные расстояния от границы АГЗС до производственного здания (фактическое минимальное расстояние составляет 65 м требуемое по НПБ 111-98* - 80 м);
не соответствуют минимальные расстояния от границы АГЗС до жилого здания (фактическое минимальное расстояние составляет 75 м требуемое по НПБ 111-98* - 100 м). Таким образом, для приведения проектируемой АГЗС к требуемому уровню пожарной безопасности, необходимо разработать дополнительные мероприятия позволяющие компенсировать несоответствия минимальные расстояния и разместить технологическое оборудование АГЗС на отведенных площадях застройки.
1.4 Задачи дипломного проектирования
Целью данного дипломного проекта является:
· рассмотрение возможных аварийных ситуаций при эксплуатации автомобильной газозаправочной станции;
· анализ пожарной опасности технологического процесса;
· выработка противопожарных мероприятий позволяющих эксплуатировать АГЗС на отведенных площадях застройки.
2. Моделирование пожарной опасности
Специфика всякой аварии современного промышленного взрыво- и пожароопасного объекта представляется в обязательном прохождении ее некоторых характерных фаз:
Фаза инициирования аварии
В этот период установки переходит в нестабильное (предаварийное) состояние и вводится фактор неустойчивости. Такую ситуацию можно интерпретировать как наличие у установки "болевой точки", для которой незначительное отклонение от нормального режима эксплуатации способно вызвать крупную аварию и сопутствующие ей колоссальные разрушительные эффекты. Она наименее определена для новых установок и новых технологий -там, где полностью отсутствует опыт эксплуатации, и нет фактических данных о безопасности, т.е. отсутствует нормативная база для проектирования. На этой фазе существенно влияние человеческого фактора. Обстоятельный анализ статистических данных показывает, что свыше 60% аварий происходит из-за ошибок персонала, т.е. тоже отсутствует нормативная база, регламентирующая вопросы взрыво- и пожаробезопасности при эксплуатации технологического оборудования. Следовательно, основным фактором опасности является неконтролируемый выход продукта из оборудования.
Как показывают статистика и приведенные примеры, аварии возникают в основном при вводе в эксплуатацию и ремонте систем транспорта и хранения СУГ, а также вследствие не изученности причин резкого повышения давления в изотермических резервуарах.
Фаза развития аварии
Этот период характеризуется самопроизвольным выходом продукта и его разливом, процессом испарения, образованием облака взрывоопасных концентраций, контактом облака с источником зажигания. При этом в зависимости от массы испарившегося продукта развитие аварии может носить цепной характер, когда разрушительное действие инициирующего события многократно (иногда в сотни раз) усиливается вследствие вовлечения в процесс энергонасыщенных компонентов технологии. Для современных малоизученных технологий характерна неконтролируемость опасности как штатными системами обеспечения безопасности самого предприятия, так и специальными силами по борьбе с авариями и чрезвычайными ситуациями. Эта особенность объясняет во многом автономный характер протекания аварии, когда темп нарастания событий (темп выделения энергии, опасности) превышает штатные ила специально привлекаемые для нейтрализации разрушительных процессов возможности.
Большинство крупных аварий обусловлено воспламенением газовоздушной смеси, образующейся при утечке сжиженного газа. Если она длится продолжительное время, то создается бассейн испарения сжиженного газа, который может быть причиной взрыва и большого пожара.
Фаза выхода аварии за промышленное предприятие
В современных условиях высокой концентрации объектов, близкого соседства различных зданий и сооружений разрушительное действие аварии при выходе за территорию объекта вовлекает дополнительные опасности для других объектов в ходе процесса и увеличивает масштаб катастрофы. Если же при этом затрагивается население, то авария становится событием социальным и политическим.
Понимание специфики аварий, знание их особенностей и закономерностей позволяют выявить существо возникающих проблем. Для современного состояния проблемы взрыве- и пожаробезопасности характерна ограниченность знаний как в области дефектов и отклонений, накапливаемых под действием технологических нагрузок и способных вызвать аварийную ситуацию, так и в области их поведения под действием воздушных ударных волн, теплового излучения и других поражающих факторов, появляющихся в условиях аварий.
Для обеспечения безопасности необходимо выявление качественных и количественных закономерностей при исследовании взрыво- и пожароопасное™ технологии хранения СУГ.
На рисунке 1 представлены возможные варианты развития взрыво- и пожароопасных ситуаций.
2.1 Пожароопасные свойства сжиженных углеводородных газов
Сжиженные углеводородные газы получают из нефти или природного газа. Они обладают высокой плотностью паров, примерно в 1,5-2 раза превышающей плотность воздуха. Низкая температура кипения (пропан: Ткип = -42,06°С, бутан: Ткип = -0,5°С) не позволяет газам в нормальных условиях находиться в жидком состоянии, и они быстро испаряются.
Сжиженные газы обладают высоким коэффициентом объемного расширения, например, в 3,5 раза больше чем у керосина, поэтому при нагревании возможно быстрое повышение давления внутри резервуара и его разрыв. Вследствии высокой плотности и значительной диффузии газы стелятся по земле и могут в безветренную погоду в открытом пространстве локальные взрывоопасные концентрации. Большая скорость испарения СУГ и низкие концентрационные пределы распространения пламени (пропан: НКПР = 2,3%, ВКПР = 9,4%, бутан: НКПР=1,8%, ВКПР = 9,1%) обуславливают быстрый рост взрывоопасных концентраций в значительных объемах. Так, из одного литра бутана при t = -4°С с площади 1 м2 может образоваться взрывоопасная концентрация в течение 1,5 мин в объеме до 13 м2.
Основными компонентами автомобильного газового топлива являются пропан и бутан. Они обладают способностью растворять жир, масло, краску, разрушать резину. Поэтому уплотнения в магистралях низкого давления выполнены из бензо- и маслостойкой резины или синтетических материалов. На автомобильные газозаправочные станции поставляют летнюю и зимнюю смеси газов с различным содержанием пропана и бутана. В летний период 50±10% пропана, в зимний период 90±10%. Уменьшение количества пропана и увеличение бутана в летний период необходимо для ограничения роста давления в емкостях при положительных температурах окружающей среды. И, наоборот, в зимней смеси пропана больше чем бутана для сохранения необходимого давления и надежной работы технологической системы.
2.2 Анализ возможных причин разгерметизации технологической системы
Необходимым условием обеспечения эффективной и безопасной эксплуатации технологического оборудования является его прочность, под которой понимают способность конструкции воспринимать усилия рабочих нагрузок, не разрушаясь и не образуя пластических деформаций сверх установленных величин.
Наблюдаемые на практике повреждения технологического оборудования происходят:
· в результате недостатков конструктивного характера (неправильный расчет, неудачный выбор материала) и дефектов изготовления (скрытые внутренние дефекты материала, некачественная подгонка и сварка);
· нарушения принятых режимов работы;
· отсутствие или неисправность средств защиты от перегрузок;
· некачественного технического обслуживания и ремонта.
Возможны следующие основные комбинации нарушений, в результате которых возникают повреждения технологического оборудования:
· превышение расчетных нагрузок при сохранении расчетной прочности оборудования;
· снижение расчетной прочности оборудования при сохранении расчетных нагрузок;
· одновременное нарушение расчетных нагрузок и расчетной прочности.
Причины повреждений технологического оборудования принято классифицировать следующим образом:
· повреждение в результате механических воздействий;
· повреждение в результате температурных воздействий;
· повреждение в результате химических воздействий.
2.2.1 Разгерметизация в результате механических воздействий
Под механическими воздействиями обычно понимают такие воздействия, которые возникают в результате превышения расчетных нагрузок на оборудовании при сохранении его расчетной прочности. Наиболее характерным механическим воздействием является чрезмерное внутреннее давление, возникающее в аппарате при переполнении его СУГ. Такое явление может иметь место:
· при нарушении технологического режима;
· внешнее воздействие;
· при неисправности контрольно-измерительных приборов и защит ной автоматики.
2.2.2 Разгерметизация в результате температурных воздействий
Повреждение технологического оборудования может произойти в результате:
· образования не предусмотренных расчетом температурных перенапряжений в материале стенок резервуара и трубопроводов;
· ухудшений механических характеристик материалов при низких или высоких температурах.
2.2.3 Разгерметизация в результате химических воздействий
Обращающаяся в технологическом процессе вещества (СУГ) и окружающая среда вступают в химическое взаимодействие с материалами, из которых изготовлено технологическое оборудование, вызывая его разрушение (коррозию). Разрушающему действию коррозии наиболее подвержены слабые места оборудования:
· швы;
· разъемные соединения;
· прокладки;
· места изгибов и поворотов труб.
2.3 Расчет площади розлива сжиженных углеводородных газов в случае полной разгерметизации технологической системы
2.3.1 Определение показателей, характеризующих
пожарную опасность аварийного розлива СУГ
Основными показателями, характеризующими пожарную опасность аварийного разлива СУГ, являются: площадь или зона разлива; коэффициент разлива, радиус зоны разлива; толщина слоя разлившейся жидкости.
Установлено, что площадь разлива жидкости Fж по поверхности твердых тел прямо пропорциональна объему разлившейся жидкости Vж:
Fж = ѓ Vж.
Коэффициент пропорциональности f в уравнении назван коэффициентом разлива жидкости. В СИ коэффициент разлива выражается в м2/м3 или м-1 и показывает значение площади разлива единицы объема данной жидкости.
Остальные показатели пожарной опасности аварийного разлива пожароопасной жидкости можно определить исходя из площади разлива.
Площадь разлива жидкости характеризуют диаметром или радиусом круга, эквивалентного (по площади) разлившейся жидкости. Такой параметр можно найти, приняв площадь разлива к площади круга и вычислив из этого равенства радиус.
Кроме того, важна толщина слоя разлившейся жидкости дж, которую определяют по формуле:
дж = 1/ѓ.
При крупномасштабных авариях, например, связанных с полным разрушением наземных вертикальных стальных резервуаров («Рекомендации по обеспечению пожарной безопасности объектов нефтепродуктообеспечения, расположенных на селитебной территории»), коэффициент разлива или вернее уже затопления определяют исходя из расположения наземного резервуара на местности.
Приведенную форму разлива жидкости при расположении резервуара в низине или на ровной поверхности (с уклоном до 1%) - в виде круга с радиусом:
Rж=;
Допускается определять показатели, характеризующие пожарную опасность разлива пожароопасных жидкостей, по материалам реальных аварий при адекватности анализируемых ситуаций или в лабораторных условиях.
2.4 Расчет зоны взрывоопасных концентраций при испарении сжиженных углеводородных газов с площади разлива
Основные положения
При функционировании технологического процесса возможны два варианта образования зон взрывоопасных концентраций на открытой технологической установке:
· эксплуатационные взрывоопасные зоны, образующиеся при нормальном функционировании технологического аппарата;
· аварийные взрывоопасные зоны, образующиеся в результате неконтролируемого поступления СУГ наружу из технологического аппарата.
2.4.1 Основы классификации взрывоопасных зон при нормальном функционировании технологического процесса
Размеры эксплуатационных взрывоопасных зон регламентированы «Правилами устройства электроустановок» (ПУЭ). Такие зоны принято классифицировать как взрывоопасные класса В-Iг у наружных установок. Взрывоопасные зоны у наружных установок ограничиваются по горизонтали и вертикали следующими размерами:
· 3м - от закрытых технологических аппаратов, содержащих горючие газы и ЛВЖ;
· 5м - от места выброса взрывоопасных и горючих веществ из предохранительных и дыхательных клапанов;
· 8м - от резервуаров с ЛВЖ газгольдеров, а при наличии обвалования - в пределах всей площади внутри обвалования;
· 20м - от мест открытого слива и налива ЛВЖ на эстакадах.
2.4.2 Определение размеров взрывоопасных зон при аварийном розливе СУГ на открытой площадке
При аварийном разливе СУГ взрывоопасные концентрации образуются только в том случае если,
tр>tвсп ;
где tр - температура СУГ, 0С; tвсп - температура вспышки, 0С.
В нормативных документах по пожарной безопасности имеются два метода расчета размеров зон взрывоопасных паровоздушных смесей при испарении жидкости с поверхности разлива.
Первый метод, включенный в «Рекомендации по обеспечению пожар ной безопасности объектов нефтепродуктообеспечения, расположенных на селитебной территории», основан на проведенных исследованиях по изучению закономерностей распределения вредных веществ при кратковременном выделении из наземных источников в Главной геофизической обсерватории России.
Расчетная формула, заимствованная из работы В.М. Эльтермана "Охрана воздушной среды на химических и нефтехимических предприятиях" (М.: Химия, 1985), имеет вид:
, м.
где Rзвк - горизонтальный размер зоны от границы источника испарения, ограничивающие область концентраций, превышающих нижний концентрационный предел распространения пламени, м; А - константа, равная 0,17 м-1; mп - масса паров, испарившаяся с открытой поверхности разлива, кг; цнп - нижний концентрационный предел распространения пламени, кгм-3.
Связь между нижним концентрационным пределом распространения пламени, выраженным в кг·м-3 (цнп), нижним концентрационным пределом распространения пламени, выраженным в % объемных (цнп) описывается следующей формулой:
; кг·м-3
где М - молекулярная масса, кг·кмоль-1, Vt - мольный объем, равный при нормальных условиях 22,4 м3 ·кмоль-1.
Второй метод расчета горизонтальных размеров зон, ограничивающих газо- паровоздушные смеси с концентрацией горючего выше нижнего концентрационного предела распространения пламени, при аварийном поступлении горючих газов и паров не нагретых легковоспламеняющихся жидкостей в открытое пространство изложен в НПБ 105-03.
Размеры зоны, м, ограничивающие область концентраций, превышающих нижний концентрационный предел распространения пламени (цнп), вычисляют по формулам:
для горючих газов (ГГ)
* радиус зоны:
;
* высота зоны:
;
* плотность газа при расчетной температуре:
; ;
где mг - масса поступивших в открытое пространство СУГ при аварийной ситуации, кг; сг - плотность СУГ при расчетной температуре и атмосферном давлении, кг·м-3, цнп - нижний концентрационный предел распространения пламени, % объема.
При расчете за начало отсчета горизонтального размера зоны принимают внешние размеры аппарата. Для сжиженных углеводородных газов (СУГ) при отсутствии данных допускается рассчитывать удельную массу испарившегося СУГ (кг·м-2 ) из пролива при температуре Тж ? Ткип по формуле:
где М - молекулярная масса СУГ, кг·моль-1; Lисп - мольная теплота испарения СУГ, Дж·моль-1 ; Т0 - начальная температура материала, на поверхность которого разливается СУГ, К; Тж - начальная температура СУГ, К; лтв -коэффициент теплопроводности материала, на поверхность которого разливается СУГ; ф - текущее время, сек, принимаемое равным времени полного испарения СУГ, но не более 3600 сек; б - коэффициент температуропроводности материала, на поверхность которого разливается
СУГ, м·сек-1; Re - число Рейнольдса; лв - коэффициент теплопроводности воздуха, Вт·м-1 К-1; d - характерный размер пролива СУГ, м. Учитывая, что Т0 Тж =Тж =310; К mсуг = 0.
* Число Рейнольдса:
где U - скорость воздушного потока, м·сек-1; нв - кинематическая вязкость воздуха, м2 ·сек-1.
* Коэффициент температуропроводности материала, на поверхность которого разливается СУГ, определяется по формуле:
где ств - теплоемкость материала, на поверхность которого разливается СУГ, Дж·кг-1 ·К-1; ств - плотность материала, на поверхность которого разливается СУГ, кг·м-3.
* Характерный размер пролива СУГ определяют по формуле:
где Fи - площадь поверхности испарения, м2.
При температуре Тж > Ткип дополнительно рассчитывается масса СУГ, испарившегося в окружающее пространство за счет перегрева.
* Масса СУГ, испарившегося в окружающее пространство в случае его перегрева:
где mп - масса вышедшего перегретого СУГ, кг; Ср - удельная теплоемкость СУГ при температуре перегрева Та, Дж·кг-1 ·К-1; Та - температура перегретого СУГ в соответствии с технологическим регламентом в технологическом аппарате, К; Ткип - температура кипения СУГ, К; Lисп - удельная теплота испарения СУГ, Дж·кг-1:
кг
2.5 Расчет избыточного давления взрыва при сгорании взрывоопасной газовоздушной смеси
Рассчитаем избыточное давление взрыва при сгорании взрывоопасной газовоздушной смеси. Расчет проводиться на основе ГОСТ Р 12.3.047-98.
2.5.1 Избыточное давление ДР, кПа, развиваемое при сгорании газовоздушной смеси в открытом пространстве
где Ро - атмосферное давление, кПа (допускается принимать равным 101 кПа); mпр - приведенная масса газа, кг; г - расстояние от геометрического центра газовоздушного облака, м.
2.5.2 Приведенная масса СУГ
де Qсг - удельная теплота сгорания СУГ, Дж/кг; Z - коэффициент участия, который допускается принимать равным 0,1; Q0 - константа равная 4,52-106 Дж/кг; mг - масса горючих СУГ поступившего в результате аварии в окружающее пространство, кг; б - степень заполнения емкости по обьему
(85%); ссуг - плотность СУГ, кг/м3 ; VPE3 - объем резервуара, м3 .
2.5.3 Импульс волны давления i, Па-сек
где mпр - приведенная масса газа, кг; r - расстояние от геометрического центра газовоздушного облака, м.
Рис.1. Импульс волны давления при сгорании газовоздушной смеси на открытом пространстве, кПа·с.
Рис.2. Избыточное давление, развиваемое при сгорании газовоздушной смеси на открытом пространстве, кПа
2.6 Возможная обстановка при воздействии волны избыточного давления взрыва
При сгорании газовоздушной смеси на открытом пространстве опасность будут представлять:
Волна давления при сгорании газовоздушной смеси в открытом пространстве (последствия воздействия избыточного давления представлены в таблице 5);
Осколки (части) разрушившихся резервуара и другого технологического оборудования.
Опасный параметр достигнет критических для человека значений в течении нескольких секунд. В таких условиях эвакуация обслуживающего персонала не возможна.
2.7 Расчет опасных параметров при возникновении "огненного шара"
Рассчитаем интенсивности теплового излучения и параметры волны давления, образующейся при возникновении "огненного шара". Расчет проводится на основе ГОСТ Р 12.3.047-98.
2.7.1 Интенсивность теплового излучения q (кВт·м-2) для "огненного шара"
2.7.1.1 Угловой коэффициент облученности Fq:
где Н - высота центра "огненного шара", м; Ds - эффективный диаметр "огненного шара", м; r - расстояние от облучаемого объекта до точки на поверхности земли непосредственно под центром "огненного шара", м; эффективный диаметр "огненного шара"; величину Н допускается принимать равной Ds/2
2.7.1.2 Масса горючего вещества в огненном шаре m, кг:
где ссм - плотность смеси кг/м3, VCM - объем смеси.
ссм=(0,5·585+0,5·601)=292,5+300,5=593 кг/м3
Vсм=б·Vрез,
где объем резервуара Vрез= 17,6 м3; коэффициент заполнения резервуара, б = 0,85.
Vсм=0,85·17,6=14,96 м3;
m=ссм·Vсм=593·14,96=8871,28 кг
2.7.1.3 Эффективный диаметр "огненного шара"
Ds=5.33·m0.327; Ds=5.33·8871.280.327=104.16 м,
где Ds - эффективный диаметр "огненного шара"; m - масса горючего вещества в "огненном шаре", кг.
2.7.1.4 Продолжительность существования "огненного шара" ts, сек
ts=0,92·m0,303; ts=0,92·8871,280,303=14,45 сек,
где ts - продолжительность существования "огненного шара", сек; m - масса горючего вещества в "огненном шаре", кг.
2.7.1.5 Высота центра "огненного шара"
где Н - высота центра "огненного шара", м; Ds - эффективный диаметр "огненного шара".
2.7.1.6 Коэффициент пропускания атмосферы
где г - расстояние от облучаемого объекта до точки на поверхности земли непосредственно под центром "огненного шара", м; Н - высота центра "огненного шара", м; Ds - эффективный диаметр "огненного шара".
2.7.1.7 Интенсивность теплового излучения q, кВт м-2
где Ef - среднеповерхностная плотность излучения пламени кВт·м-2 ; Ef = 450 кВт·м2 (при отсутствии данных ); цq - угловой коэффициент облученности, фпр - коэффициент пропускания атмосферы.
2.7.2 Параметры волны давления при взрыве резервуара с СУГ
Так как разрыв резервуара с образованием "огненного шара", происходит совместно с образованием волн давления, то рассчитаем параметры волны давления.
2.7.2.1 Энергия, выделившаяся при изотропическом расширении среды в резервуаре Еиз, Дж:
Еиз=Сэфф·m·( Т-Ткип);
Еиз = 500·8871,28·(360 - 251,65) = 480601594 = 4,8·108 Дж;
Ткип = (-42,5 - 0,5)/2 + 273,15 = 251,65 К,
где m =8871,28 - масса СУГ в резервуаре; Сэфф - константа, равная 500 Дж/(кг·К); Ткип - температура кипения СУГ при постоянном давлении.
2.7.2.2 Температура вещества в резервуаре с СУГ
в момент его взрыва, К:
рк=2 кПа;
А = (5,95547 + 6,00525)/2 =5 ,98036;
В = (968,098 + 813,864)/2 = 890,981;
Са = (248,116 + 242,555)/2 = 245,3355;
Т = 890,981/(5,98036 - lg2) + 273,15 = 360 К,
где А, В, Са - константы Антуана вещества; рк давление срабатывания предохранительного клапана.
2.7.2.3 Приведенная масса СУГ mпр, кг
где Q0 - константа равная 4,52·106 Дж/кг; Еиз - энергия, выделяющаяся при изоэнтропическом расширении среды, находящейся в резервуаре.
2.7.2.4 Величину импульса волны давления i, Па·сек
где mпр - приведенная масса газа, кг; r - расстояние от разрушающегося резервуара с СУГ, м.
2.7.2.5 Избыточное давление ДР, кПа
где Р0 - атмосферное давление, кПа (допускается принимать равным 101 кПа); mпр - приведенная масса газа, кг; r - расстояние от разрушающегося резервуара с СУГ, м.
2.8 Возможная обстановка на объекте при воздействии теплового излучения от "огненного шара"
При возникновении крупномасштабного диффузионного горения массы СУГ поднимающегося над поверхностью земли ("огненный шар") опасность будут представлять:
волна давления при сгорании газовоздушной смеси в открытом пространстве (последствия воздействия избыточного давления представлены в таблице 10);
тепловое излучение (последствия воздействия теплового излучения на окружающие материалы представлены в таблице 8, на человека в таблице 9);
быстрораспространяющееся открытое пламя;
резкое повышение температуры;
токсичность продуктов горения и термического разложения;
осколки (части) разрушившихся резервуаров.
Опасные параметры достигнут критических для человека значений в течение нескольких секунд. В таких условиях эвакуация обслуживающего персонала невозможна.
2.9 Расчет тепловых нагрузок при пожаре разлива сжиженных углеводородных газов
2.9.1 Интенсивность теплового излучения пожара пролива СУГ
где Ef - среднеповерхностная плотность излучения пламени кВт·м-2 ,
Ef=43 кВт·м-2 (при d= 40 м); цq -угловой коэффициент облученности; фпр -коэффициент пропускания атмосферы;
2.9.2 Эффективный диаметр пролива d, м
где F - площадь пролива, м2.
2.9.3 Высота пламени Н, м
где mвыг - удельная массовая скорость выгорания топлива, кг·м-2·сек-1; св -
плотность окружающего воздуха, кгм-3 ; g = 9,81 м·сек-2 - ускорение свободного падения.
2.9.4 Угловой коэффициент облученности Fq
2.9.5 Коэффициенты облученности для вертикальной и горизонтальной площадок, соответственно цv, цh
где r - расстояние от геометрического центра облучаемого объекта, м; Н -высота пламени, м.
2.9.6 Коэффициент пропускания атмосферы
где г - расстояние от геометрического центра облучаемого объекта, м; d -эффективный диаметр пролива, м.
Значение средне поверхностной плотности теплового излучения пламени Ef принимается на основе экспериментальных данных. Для некоторых жидких углеводородных топлив указанные данные приведены в таблице 7. Для диаметров очагов менее 10 м или более 50 м следует принимать величину Ef такой же, как для очагов 10 и 50 м, соответственно. При отсутствии данных допускается принимать величину Ef равной: 100 кВт·м-2 для СУГ и 40 кВт·м-2 для нефтепродуктов и для твердых материалов.
2.10 Возможная обстановка на объекте при воздействии теплового излучения при пожаре разлива сжиженных углеводородных газов
При возникновении пожара розлива СУГ опасность будут представлять:
* Тепловое излучение;
Быстро распространяющееся открытое пламя;
Резкое повышение температуры;
Токсичность продуктов горения и термического разложения. Опасные параметры достигнут критических для человека значений в течение нескольких секунд. В таких условиях эвакуация обслуживающего персонала невозможна.
3. Разработка противопожарных мероприятий
3.1 Мероприятия по обеспечению пожарной безопасности автомобильной газозаправочной станции
3.1.1 Мероприятия по снижению категории пожарной опасности автомобильной газозаправочной станции сжиженным газом (пропан-бутан)
В настоящее время отсутствует нормативная база, регламентирующая снижение категории пожарной опасности наружных установок.
Мероприятия по исключению источников зажигания
Необходимо выполнить следующие мероприятия:
Электроустановки должны быть смонтированы и эксплуатироваться в соответствии с Правилами устройства электроустановок (ПУЭ), правилами технической эксплуатации электроустановок потребителей (ПТЭ), Правилами техники безопасности при эксплуатации электроустановок потребителей (ПТБ) и другими нормативными документами (ППБ 01-03);
Электродвигатели, аппаратура управления, пускорегулирующая, контрольно-измерительная и защитная аппаратура, вспомогательное оборудование и проводки должны иметь исполнение и степень защиты, соответствующую классу зоны по ПУЭ, а также иметь аппараты защиты от токов короткого замыкания и перегрузок (ППБ 01-03);
Установить приказом противопожарный режим на территории авто мобильной газозаправочной станции сжиженным газом (ППБ 01-03);
АЗС следует оборудовать молниезащитой в соответствии с требованиями РД 34.21.122-87, но не ниже II категории (пункт 40 НПБ 111-98*);
Система заземления АЗС должна отвечать требованиям ПУЭ и Правил защиты от статического электричества в производствах химической, нефтехимической и нефтеперерабатывающей промышленности (пункт 41 НПБ 111-98*).
3.1.2 Технические мероприятия
Необходимо выполнить следующие мероприятия:
Технологические системы разместить таким образом, чтобы обеспечивались их целостность и работоспособность при воздействии на них возможных нагрузок (при движении и остановке транспортных средств, подвижках грунта и т.п.), определяемых проектом на АЗС (пункт 31 НПБ 111-98*);
Защитить от повреждения транспортными средствами. На АЗС для заправки крупногабаритной техники (грузовые автомобили, автобусы, строительная и сельскохозяйственная техника и т.п.) крепление защитных устройств к блокам и контейнерам хранения топлива не допускается (пункт 32 НПБ 111-98*);
...Подобные документы
Техническая характеристика, пожарно-техническая экспертиза и нормативно-правовая база обеспечения автомобильной газозаправочной станции сжиженным газом пропан-бутан. Моделирование и расчет пожарной опасности. Разработка противопожарных мероприятий.
дипломная работа [741,5 K], добавлен 31.05.2010Требования и основные характеристики сжиженных газов. Характеристика исходного сырья, реагентов и продуктов. Описание технологического процесса и технологической схемы ректификации сжиженных углеводородных газов. Определение температуры ввода сырья.
курсовая работа [125,3 K], добавлен 19.02.2014Назначение товарного парка сжиженных газов. Схема сбора факельного газа и подтоварной воды. Подача синтетического спирта в трубопроводы. Система программирования промышленных контроллеров. Схема поступления и откачки пропан-пропиленовой фракции.
дипломная работа [2,7 M], добавлен 16.04.2015Баллоны для сжатых и сжиженных газов и пропан-бутана, кислородные и ацетиленовые баллоны, запорные вентили. Хранение и транспортировка, маркировка, объем, конструкция баллонов. Меры безопасности при работе с газовыми баллонами и при их транспортировке.
реферат [753,5 K], добавлен 16.03.2010Расчет водопроводной насосной станции 2-го подъема, определение категории надежности станции. Расчет вместимости бака водонапорной башни. Проектирование станции, подбор и размещение оборудования. Определение технико-экономических показателей станции.
курсовая работа [426,2 K], добавлен 13.02.2016Обоснование выбора типа промежуточной станции. Расчет числа приемо-отправочных путей станции. Разработка немасштабной схемы станции в осях путей. Построение продольного и поперечного профиля станции. Объем основных работ и стоимость сооружения станции.
курсовая работа [361,3 K], добавлен 15.08.2010Расчет путевого развития заводской сортировочной станции. Определение суточных объемов перевозок. Расчет числа ходовых, главных, приемоотправочных, сортировочных и вытяжных путей. Построение суточной диаграммы вагонопотоков. Составление плана на станции.
курсовая работа [504,3 K], добавлен 27.01.2015Характеристика автомобильной заправочной станции: развитие, эксплуатация, безопасность. Испарение и розливы нефтепродуктов, выхлопы отработанных газов транспорта как источники загрязнения окружающей среды. Анализ физических и химических свойств бензина.
реферат [621,3 K], добавлен 25.01.2013Характеристика компрессора как устройства для сжатия и подачи газов под давлением. Рассмотрение состава компрессорной станции. Выбор необходимого количества вспомогательного оборудования. Определение параметров основных и вспомогательных помещений.
курсовая работа [3,6 M], добавлен 26.05.2012Расчет максимальной подачи насосной станции. Определение диаметра и высоты бака башни, потерь напора во всасывающих и напорных водоводах, потребного напора насосов в случае максимального водопотребления, высоты всасывания. Подбор дренажного насоса.
курсовая работа [737,9 K], добавлен 22.06.2015Выбор генератора, главной схемы станции, основных трансформаторов, выключателей и разъединителей. Технико-экономический расчет выбора главной схемы станции, определение отчислений на амортизацию и обслуживание. Расчет токов короткого замыкания в системе.
дипломная работа [269,6 K], добавлен 19.03.2010Выбор и обоснование принятой схемы и состава сооружений станции водоподготовки. Расчет изменения качества обработки воды. Проектирование системы оборотного охлаждающего водоснабжения. Расчет реагентного хозяйства для известкования и коагуляции воды.
курсовая работа [317,2 K], добавлен 03.12.2014Разработка технического проекта головной нефтеперекачивающей станции магистрального нефтепровода. Обоснование технического решения резервуарного парка станции и выбор магистрального насоса. Расчет кавитационного запаса станции и условия экологии проекта.
контрольная работа [1,8 M], добавлен 08.09.2014Методика определения высоты земляного полотна. Поперечный профиль автомобильной дороги. Особенности комплектования машинно-дорожных отрядов. Схема определения дальности транспортировки грунта. Расчет необходимого количества специализированных машин.
курсовая работа [260,4 K], добавлен 16.09.2017Организация и режим работы станции диагностики гусеничных машин. Определение количества технического обслуживания и ремонтов по номограмме. Планировка станции диагностики гусеничных машин. Расчет численности работающих, количества постов и площади.
курсовая работа [81,8 K], добавлен 05.12.2012Схематический план станции с сигнализованием, системное улучшение обеспечения безопасности движения. Положения и расчетные формулы, расчёт кабельной сети релейных трансформаторов. Управляющий контроллер централизации. Схемы управления светофорами.
дипломная работа [535,5 K], добавлен 28.03.2023Выбор марки и расчет количества компрессоров для соответствующей станции, определение мощности необходимых электродвигателей. Расчет воздушных фильтров, концевых воздухоохладителей, водомаслоотделителей, расходов охлаждающей воды и смазочного масла.
контрольная работа [144,1 K], добавлен 05.06.2014Моделирование насосной станции с преобразователем частоты. Описание технологического процесса, его этапы и значение. Расчет характеристик двигателя. Математическое описание системы. Работа насосной станции без частотного преобразователя и с ним.
курсовая работа [1,0 M], добавлен 16.11.2010Стабилизационная обработка воды. Определение полной производительности станции. Расчет емкостей расходных и растворных баков. Расчет хлораторной установки, горизонтальных отстойников, вихревого смесителя, песколовки, сгустителей и резервуара чистой воды.
курсовая работа [603,6 K], добавлен 01.02.2012Технологическая характеристика нефтеперекачивающей станции. Система ее автоматизации. Выбор и обоснование предмета поиска. Вспомогательные системы насосного цеха. Оценка экономической эффективности модернизации нефтеперекачивающей станции "Муханово".
дипломная работа [1,1 M], добавлен 16.04.2015