Структура металлургического предприятия с полным циклом производства
Черная металлургия как отрасль промышленности металлургического предприятия. Основные составляющие агломерационной шихты. Технологические переделы производства огнеупорных изделий. Анализ горно-обогатительного, доменного и коксохимического производства.
Рубрика | Производство и технологии |
Вид | отчет по практике |
Язык | русский |
Дата добавления | 26.05.2014 |
Размер файла | 1,6 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Министерство образования и науки Российской Федерации
Федеральное агентство по образованию
Магнитогорский государственный технический
университет им. Г.И. Носова
Кафедра металлургии черных металлов
Отчет по ознакомительной практике
Выполнил: Беспалова М.А.
Проверил: Иванов А.В.
Магнитогорск 2011
Аннотация
Целью ознакомительной практики является изучение структуры металлургического предприятия с полным циклом производства. Металлургические предприятия принадлежат к отрасли называемой черной металлургией. Черная металлургия - отрасль промышленности, производящая металлические сплавы на основе железа, а именно чугун, сталь и ферросплавы.
Введение
Целью учебной практики является изучение структуры металлургического предприятия с полным циклом производства. Металлургические предприятия принадлежат к отрасли называемой черной металлургией. Черная металлургия - отрасль промышленности, производящая металлические сплавы на основе железа, а именно чугун, сталь и ферросплавы.
Чугун - это сплав железа с углеродом, содержание которого более 2,14%, но, как правило, от 3,5 до 5%. Кроме указанных элементов чугун содержит примеси. В основном кремний, фосфор, марганец и серу. Реже в так называемых природно-легированных чугунах содержится ванадий, хром, титан и медь. Примеси подразделяются на полезные и вредные. К вредным примесям относятся фосфор и сера. Остальные примеси являются полезными. Фосфор вызывает хладноломкость металлов, т.е. хрупкость при низких температурах. Сера вызывает красноломкость металлов, т.е. умешает прочность металлов при температурах его механической обработки (1000 С). Содержание железа в чугуне находится в пределах от 92 до 95%. Порядка 80% и более чугуна в жидком горячем виде перерабатывается в сталь. Лишь 20% чугуна используется в основном в машиностроении и других отраслях промышленности для изготовления деталей методом литья. Чугун имеет существенный недостаток, как конструкционный материал: он обладает хрупкостью, т. е. не поддается механической обработке. Существенным достоинством чугуна является его высокая коррозионная стойкость благодаря высокому содержанию в нем углерода. Чугун обладает высокой теплопроводностью и другими свойствами, которые находят применение в машиностроении.
Основным конструкционным материалом в нашей цивилизации является сталь. Сталь-сплав железа, содержание углерода, в котором менее 2,14%, как правило, менее 1,7%. Вследствие низкого содержания углерода сталь приобретает пластичность и может подвергаться различного рода механическом обработкам, а также не является коррозионным материалом. Содержание железа в стали, как правило, 99% и выше.
Ферросплавы - сплавы железа с другими элементами, которые указываются в их названии:
Ш ферромарганец (содержание марганца от 70 до 80%);
Ш ферросилиций (содержание кремния от 43 до 95%);
Ш феррохром (содержание хрома от 35 до 80%);
Ш феррованадий (содержание ванадия от 65 до 80%);
Ш ферротитан (содержание титан от 27 до 40%).
Ферромарганец и ферросилиций имеют два назначения:
1. для раскисления стали;
2. для легирования стали.
Легирование - ввод в сталь элементов, улучшающих потребительские качества стали (износостойкость, коррозионную стойкость, повышает электропроводность и т.д.).
Структура металлургического предприятия с полным циклом производства
КР - шахты и угольные разрезы для добычи каменного угля.
УОФ - углеобогатительные фабрики для первичного дробления и обогащения каменного угля.
КХП - коксохимическое производство или заводы с угольными складами, цехами по подготовки угольной шахты, коксовыми цехами и цехами улавливания и переработки химических продуктов коксования.
ЖР - карьеры (раскрытая разработка) и шахты (подземная разработка) по добыче железных руд.
ГОП - горно-обогатительное производство, которое может быть в виде отдельного предприятия ГОК - горно-обогатительного комбината. Используется для дробления, обогащения и окускования железных руд (производство агломерата и окатышей).
КФ - карьеры по добычи и первичному дроблению флюсов - добавки в металлический агрегат для:
1. получения жидкого шлака - сплав густой породы зоны кокса и флюсов.
2. коррекции состава металла, а именно, для удаления из него с помощью шлака вредных примесей - фосфора, серы.
ОП - огнеупорное производство для изготовления огнеупорных изделий, используемых при футеровке металлургических агрегатов. ОП обслуживает практически все цехи, что придает ему особое место и значение в производстве.
ЭЦ - энергоцехи для получения электрической энергии, пара, сжатого воздуха, технологического и технического кислорода доменного дутья; для подготовки и подачи воды в системы охлаждения, очистка и распределение горючих материалов (доменного и коксового газа).
КЦ - копровые цехи. Цехи по подготовке и сортировке металлического лона.
ФЗ -- ферросплавный завод.
Основная технологическая цепочка.
1. ДЦ - доменный цех - первая стадия получения металла, т.е. восстановление плавки железных руд с получением чугуна.
2. СПЦ - окисление рафинеров чугуна в сталеплавильных цехах с получением жидкой стали.
3. ПС - прокатные цеха, где из стали получают два вида проката:
-листовой;
-сортовой - производство рельс, балок, уголков, двутавра и т.д.
ЦГП - цеха глубокой переработки металла: цех гнутых профилей, цех оцинкования листа, цех получения жести, цеха товаронародного производства.
Агломерационное производство
Окускование - это процесс превращения мелких железорудных материалов (руд, концентратов, колошниковой пыли) в кусковые необходимых размеров, применение которых значительно улучшает показатели работы металлургических агрегатов. Для подготовки сырья к доменной плавке широко применяются два способа окускования: агломерация и окомкование.
Агломерация - это процесс окускования мелких руд, концентратов и колошниковой пыли спеканием в результате сжигания топлива в слое спекаемого материала. Наиболее распространены ленточные агломерационные машины со спеканием слоя шихты на движущейся колосниковой решетке при просасывании воздуха через шихту. Продукт спекания (агломерации) - агломерат представляет собой кусковой, пористый продукт черного цвета; упрощенно можно характеризовать его как спеченную руду или спеченный рудный концентрат.
1. Шихта агломерации и ее подготовка.
Основные составляющие агломерационной шихты - железосодержащие материалы (рудный концентрат, руда, колошниковая пыль); возврат (отсеянная мелочь ранее произведенного агломерата); топливо (коксовая мелочь); влага, вводимая для окомкования шихты; известняк, вводимый для получения офлюсованного агломерата..
Для обеспечения равномерного распределения компонентов по всему объему шихты необходимо осуществлять хорошее смешивание шихты, что обычно проводят во вращающихся барабанах, сначала в смесительном, а затем в окомковательном. На некоторых аглофабриках эти операции совмещают в одном барабане.
2.Процесс спекания.
На колосниковую решетку конвейерной ленты загружают так называемую «постель» высотой 30-35 мм, состоящую из возврата крупностью 10-25 мм. Затем загружают шихту (250-350 мм). Под колосниковой решеткой создают разрежение около 7-10 кПа, в результате чего с поверхности в слои засасывается наружный воздух.
В зоне горения температура достигает 1400-1500 °С. При таких температурах известняк СаСО3 разлагается на СаО и СО2, а часть оксидов железа шихты восстанавливается до FeO. Образующиеся СаО и FeO, а также оксиды шихты SiO2, Fe3O4, Fe2О3, А12О3 и др. вступают в химическое взаимодействие с образованием легкоплавких соединений, которые расплавляются. Образующаяся жидкая фаза пропитывает твердые частицы и химически взаимодействует с ними. Когда зона горения опустится ниже мест образования жидкой фазы, просасываемый сверху воздух охлаждает массу, пропитанную жидкой фазой, и последняя затвердевает, в результате чего образуется твердый пористый продукт - агломерат. Поры возникают в результате испарения влаги и просасывания воздуха. Продвижение через слой шихты сверху вниз зоны, в которой происходит горение топлива и формирование агломерата (т.е. спекаемого слоя) длится 8-12 мин и заканчивается при достижении постели.
Рассмотрим основные химические реакции, протекающие при агломерации. Горение топлива происходит по реакциям:
С + 0,5О2 - СО; (1)
С + О2 = СО2. (2)
В отводимых продуктах горения отношение СО2/СО равно 4-6, но вблизи горящих кусочков кокса атмосфера восстановительная (преобладает СО), что вызывает восстановление оксидов железа.
Большая часть непрочных оксидов Fе2О3 превращается в Fе3О4 в результате восстановления: Fе2О3 + СО = Fе3О4 + СО2, либо в результате диссоциации: 6Fe2O3 =4Fe3O4.
Часть оксидов Fe3O4 восстанавливается до FeO: Fe3O4 + СО = 3FeO + СО2.
Содержание FeO в агломерате обычно находится в пределах 8--17 %, оно возрастает при увеличении расхода кокса на агломерацию; одновременно уменьшается остаточное содержание Fе2О3.
Известняк разлагается по реакции СаСО3 = СаО + СО2, идущей с поглощением тепла.
При агломерации удаляется сера и частично (около 20 %) мышьяк. Сера в шихте обычно находится в виде сульфида железа FeS2 (пирит), а иногда в виде сульфатов СаSО4 * 2Н2О (гипс) и BaSO4 (барит). Пирит в условиях агломерации окисляется по нескольким реакциям, одна из них: 3FeS2 +2О2 = Fe3O4 + 6SO2.
Гипс и барит разлагаются при 1200-1400°С по реакциям
CaSO4 = СаО + SО3; (3)
BaSO4 = ВаО + SO3. (4)
В процессе агломерации выгорает 90-98 % сульфидной серы, а сульфатной 60-70 %. Нижний предел относится к офлюсованному агломерату, а верхний к неофлюсованному.
3.Офлюсованный агломерат и его свойства.
В настоящее время производят офлюсованный агломерат, т.е. в шихту агломерации вводят известняк, чтобы агломерат содержал СаО и его основность CaO/SiO2 составляла 1-1,4 и более. Это позволяет работать без загрузки известняка в доменную печь.
Основные преимущества офлюсованного агломерата:
1. Исключение из доменной плавки эндотермической реакции разложения карбонатов, т.е. СаСО3= СаО + СО2 - Q или MgCO3 = MgO + CO2 - Q, требующих тепла, а следовательно, расхода кокса. Этот процесс перенесен на аглоленту, где расходуется менее дефицитное и более дешевое топливо, чем кокс.
2. Улучшение восстановительной способности газов в самой доменной печи вследствие уменьшения разбавления их двуокисью углерода, получаемой от разложения карбонатов.
3. Улучшение восстановимости агломерата, так как известь вытесняет оксиды железа из трудновосстановимых силикатов железа.
4. Улучшение процесса шлакообразования, так как в офлюсованном агломерате оксиды плотно контактируют друг с другом.
5. Уменьшение числа материалов, загружаемых в доменную печь.
4.Производство агломерата.
Его ведут на агломерационных фабриках, в состав которых входят комплекс оборудования для подготовки шихты, ленточные (конвейерные) агломерационные машины и комплекс оборудования для дробления и охлаждения полученного агломерата и отсева его мелочи.
Агломерационная машина имеет в качестве основного элемента замкнутую ленту (конвейер) из отдельных спекательных тележек-паллет 2. Тележка - это опирающаяся на четыре ролика колосниковая решетка с продольными бортами; тележки движутся по направляющим рельсам под воз-действием пары приводных звездочек. На горизонтальном участке ленты тележки плотно примыкая друг к другу, образуют движущийся желоб с дном в виде колосниковой решетки.
На движущуюся ленту питателем укладывают постель высотой ~ 30 мм из возврата агломерата крупностью 10-25 мм; она предотвращает просыпание шихты через щели решетки и предохраняет решетку от перегрева. Затем питателем загружают слой шихты высотой 250-350 мм. Далее шихта на движущейся ленте попадает под зажигательный горн, который нагревает поверхность шихты по всей ширине до 1200-1300°С, в результате чего загорается топливо. При дальнейшем движении ленты за счет просасываемого эксгаустером сверху воздуха слой горения кокса и спекания агломерата перемещается вниз, а продукты сгорания через вакуумные камеры поступают в пылеуловитель и далее выбрасываются в атмосферу через трубу. Формирование агломерата заканчивается на горизонтальном участке движения ленты; этот момент легко определяют по резкому падению температуры отходящих газов, свидетельствующему об окончании горения кокса. Готовый агломерат при огибании лентой холостой звездочки ссыпается вниз. Он попадает в валковую дробилку горячего дробления и затем на грохоты, где от дробленого продукта отсеивают горячий возврат. Далее агломерат поступает на охладитель (пластинчатый конвейер либо круглый вращающийся охладитель), где он в течение 40-60 мин охлаждается до 100°С просасываемым воздухом. Затем агломерат направляется на грохоты холодного агломерата, где отделяется постель. После этого годный агломерат конвейером транспортируют в доменный цех, а мелочь - в бункер возврата. Этот возврат, также как и горячий, вновь направляются на агломерацию. Выход годного агломерата (фракции крупностью > 5 мм) из шихты не превышает 70--80 %.
5. Производство окатышей.
Расширение использования бедных руд и особенно стремление к более глубокому обогащению их привели к получению тонкоизмельченных железорудных концентратов (менее 0,07 мм), для которых появилась необхо-димость найти новые пути окускования. В связи с этим начал развиваться так называемый процесс скатывания или окомкования.
Исходную шихту: возврат (некондиционные окатыши), концентрат и в случае производства офлюсованных окатышей известняк загружают в бункеры, откуда она при помощи дозаторов выдается на сборный транспортер и поступает в смесительный барабан. После смешивания шихта поступает по другому транспортеру в окомкователь или так называемый гранулятор. Для лучшего окомкования и обеспечения необходимой прочности к шихте добавляют связующее вещество, обычно бентонит (мелкодисперсная глина) в количестве 0,5-1,5% и воду в количестве 8- 10 %. В грануляторе при круговом движении шихта при помощи связующего вещества и воды постепенно превращается в гранулы-комки. При этом из гранулятора разгружаются только комки, достигшие определенного размера (шарики диаметром 10-20 мм).
В зоне сушки окатыши подогревают до 250-400°С газами, поступающими из зон обжига и охлаждения. Циркуляция газов и удаление их в дымовую трубу осуществляются вентиляторами. В зонах обжига окатыши нагреваются до 1200-1350°С продуктами горения газообразного или жидкого (мазута) топлива, просасываемыми через слой окатышей на колосниковой решетке машины. В зоне охлаждения окатыши охлаждаются принудительно подаваемым через колосниковую решетку воздухом. Охлажденные окатыши разгружаются на грохот. Фракцию > 5 мм отправляют для доменной плавки, а фракция 0--5 мм является возвратом. Время пребывания окатышей в зоне обжига равно 7--12 мин. Основная цель обжига окатышей сводится к упрочнению их до такой степени, чтобы они в дальнейшем выдерживали транспортировку, перегрузки и доменную плавку без значительных разрушений. При этом в отличие от агломерации нельзя доводить процесс до перехода значительной части шихты в жидкое состояние. Если не ограничить верхний предел температуры (1320-1350 °С), то произойдет оплавление окатышей и сваривание их в крупные глыбы. В то же время понижение температуры обжига ниже 1200-1250°С приводит к понижению прочности окатышей.
Упрочнение окатышей (спекание частиц в прочную гранулу) происходит преимущественно путем твердофазного (без участия жидкой фазы) спекания. Твердофазное спекание начинается при 800-900°С. Жидкофазное спекание начинается при температурах 1200-1350 °С.
Огнеупорное производство
Главный потребитель огнеупоров - черная металлургия. Поэтому промышленность огнеупорных материалов как подотрасль входит в состав отрасли - черной металлургии, а количество выпускаемых огнеупоров в стране условно относят к выплавке стали в слитках (кг/т стали).
Огнеупорами называют неметаллические материалы, предназначенные для использования в условиях высоких температур в различных тепловых агрегатах и имеющие огнеупорность не ниже 1580 °С.
Без огнеупоров нет другого практически приемлемого способа ограничить распространение тепла в окружающую среду и поддерживать длительное время высокие температуры в больших объемах различных печей.
Поскольку огнеупоры играют служебную, вспомогательную роль при производстве стали, цемента и т.д., то чем меньше их расход на единицу продукции, тем производство основной продукции более эффективно. Поэтому не ставится задача выпускать огнеупоров как можно больше, а ставится задача выпускать в необходимом количестве и ассортименте такие огнеупоры, расход которых на единицу продукции был бы наименьшим, и чтобы стоимость огнеупоров была экономически приемлемой.
Сырьем для производства огнеупоров служат горные породы, содержащие тугоплавкие оксиды. В большинстве случаев минералы, содержащие тугоплавкие оксиды, получаются при обжиге горных пород. Кроме естественных горных пород в производстве огнеупоров используются искусственные продукты, например технических глинозем, карбид кремния и др. Производство огнеупорных изделий состоит из следующих технологических переделов:
1) подготовки исходных компонентов;
2) измельчения, классификации и хранения порошков;
3) дозирования смешения компонентов шихты, получения масс;
4) формирование изделий;
5) термообработки (сушки и обжига);
6) классификации, упаковки, хранения, транспортирования.
Подготовка исходных компонентов в случае использования природного сырья включает процессы усреднения, в некоторых случаях - обогащения, электроплавки, термообработки, обжига т.п. В перспективе считается целесообразным, чтобы заводы, выпускающие огнеупоры, получали сырье в полностью подготовленном виде - обогащенным, обожженным, усредненным, заданного химического, минералогического и зернового составов, а также заданной плотности.
Для получения огнеупоров выбирают исходные вещества (сырье) с огнеупорностью выше 1580°С или такие, которые в результате переработки дают новые с огнеупорностью не ниже указанной. Выбранный материал обрабатывают различными приемами и по режимам, наиболее благоприятным для такого течения физико-химических процессов, при котором получают изделия с требуемыми свойствами.
Основная задача технологии огнеупорных материалов заключается в том, чтобы свойства огнеупоров соответствовали условиям службы. Прежде всего, огнеупорность материала должна быть не ниже температуры применения. Отсутствие достаточно полной теории плавления не позволяет в настоящее время находить огнеупорные материалы и определять их температуру плавления расчетным путем. Поэтому в технологии огнеупоров широко используют эмпирические данные и физико-химические закономерности.
Сырье для производства огнеупоров поступает на заводы в виде кусков разной формы и размеров. Измельчение крупных и средних кусков называют дроблением, а мелких - помолом. Машины для измельчения называют дробилками и мельницами. Дробление и помол производят путем раздавливания, удара и изгиба, истирания, раскалывания, разрезания или же сочетания этих способов. Для прочных и хрупких материалов при крупном и среднем дроблении более эффективны раздавливание, изгиб, удар и раскалывание; для вязких, влажных материалов типа глины - разрезание. Для прочных и хрупких материалов при тонком помоле эффективен удар в сочетании с истиранием и истирание; для мягких и вязких материалов (глины) - удар.
Наиболее распространены полуавтоматические дозаторы для порошков типа ДПО-100, ДПО-250 и т.п. Масса одной порции на этих весах составляет 20-250 кг, время взвешивания 40 с. Жидкие добавки (вода, шликер) при подаче в смесители периодического действия дозируются по объему. Объем глинистого шликера, поступающего в смеситель, с течением времени уменьшается из-за зарастания внутренних и стенок и дна дозатора глиной. Для смесителей непрерывного действия разработаны устройства, автоматически подающие жидкости в количестве, определяемом установленной для процесса влажностью. Применение микро-ЭВМ позволяет обслуживать одновременно несколько технологических потоков и корректировать изменение влажности масс по ходу технологического процесса.
Во всех случаях необходима регулярная проверка правильности работы дозаторов, так как при дозировании по объему и по массе количество материала несколько меняется в зависимости от влажности материала и других условий.
Сушка представляет собой процесс удаления влаги из твердых веществ пористых веществ путем испарения при температуре обычно ниже точки кипения. Необходимость сушки очевидна для изделий пластического формирования вследствие незначительной механической прочности сырца, не превышающей 0,05 Н/мм2.
В процессе сушки влажность снижается, а механическая прочность повышается до 200-500 кПа, что обеспечивает сохранность сырца при дальнейшем его транспортировании в печи для обжига.
Шамотные, многошамотные и магнезиальные сырцы, приготовленные способом полусухого прессования, обладают достаточной механической прочностью, равной 1,5-5 Н/мм2, и их можно сразу после прессования сажать на печные вагонетки.
Сырец из тощих масс, например динасовых, при условии применения мощных прессов получается достаточно прочным и также может быть посажен на печные вагонетки и направлен в туннельные печи.
В технологии производства огнеупоров применяют сушку сырца как в специальных сушилах, где изделия сушат на полочных вагонетках, туннельных сушилах, так и непосредственно в туннельных печах на печных вагонетках. В последнем случае первая зона печи выполняет роль сушила.
Под режимом сушки понимают совокупность условий процесса: времени сушки, температуры и влажности входящего и выходящего сушильного агента, начальной и конечной влажности изделий.
Обжиг - завершающая стадия производства обожженных огнеупорных изделий. При обжиге происходят глубокие физико-химические превращения в огнеупорном материале, сопровождающиеся изменением размеров и пористости. Обжиг огнеупорных изделий происходит при сравнительно высоких температурах (1300-1850 °С). Получение таких высоких температур с зоной равномерного распределения их в больших объемах печи является сложной технологической задачей. Для обжига применяют периодические печи (горны), непрерывно действующие туннельные печи и др.
Условием получения качественных электроплавленных огнеупоров является высокая однородность исходной шихты с минимальным отклонением по химическому составу. Выбор состава шихты предопределяется условиями службы огнеупоров и технологическим процессом его производства.
Горно-обогатительное производство
Ш Эффективность использования того или иного полезного ископаемого зависит, прежде всего, от содержания в нем полезного компонента и наличия вредных примесей. Добываемые полезные ископаемые только в тех случаях подвергаются непосредственной переработке металлургическими, химическими и другими методами, когда качество их соответствует требованиям, предъявляемым к данному сырью. Такие полезные ископаемые в природе встречаются редко. Содержание полезных компонентов в добываемом сырье может составлять от долей процента (Сu, Ni, Co и др.) до нескольких процентов (Fe, Mn, ископаемый уголь и некоторые другие неметаллические полезные ископаемые). Непосредственная переработка таких полезных ископаемых технически и экономически невыгодна. Поэтому в большинстве случаев полезные ископаемые подвергаются специальной подготовке с целью их обогащения. Обогащение полезных ископаемых представляет совокупность процессов механической переработки минерального сырья с целью извлечения ценных компонентов и удаления пустой породы и вредных примесей, которые не представляют практической ценности в данных технико-экономических условиях.
В нашей стране обогащение полезных ископаемых получило большое развитие особенно за последние 15-20 лет. Современные обогатительные фабрики представляют мощные высокомеханизированные предприятия со сложными технологическими процессами. Полезные ископаемые на обогатительных фабриках проходят целый ряд последовательных операций, в результате которых достигается отделение полезных компонентов от примесей. Процессы обогащения полезных ископаемых по своему назначению делятся на подготовительные, вспомогательные и основные. К подготовительным относятся процессы дробления, измельчения, грохочения и классификации. Дробление и измельчение - процессы уменьшения размеров кусков полезных ископаемых под действием внешних сил, преодолевающих внутренние силы сцепления между отдельными минеральными частицами.
Грохочение и классификация применяются с целью разделения полезного ископаемого на продукты различной крупности, называемые классами. Грохочение осуществляется рассевом полезного ископаемого на решетах и ситах с калиброванными отверстиями, поэтому отделяемый мелкий (подрешетный) продукт содержит зерна определенного максимального размера, соответствующего размеру отверстий просеивающей поверхности. В получаемом крупном (надрешетном) продукте частично остаются мелкие зерна, количество которых зависит от многих факторов. Грохочение применяется для разделения полезных ископаемых по крупности на ситах с отверстиями размером от нескольких сотен миллиметров до долей миллиметра.
Классификация осуществляется в водной или воздушной среде и основана на выносе движущимся водным или воздушным потоком мелких зерен. К основным процессам относятся процессы собственно обогащения, в результате которых полезные компоненты выделяются в виде концентратов, а породные примеси удаляются с хвостами. В процессах обогащения используются различия в крупности, форме, плотности, магнитной проницаемости, смачиваемости, в электропроводности и др.
Обогащению по крупности используется в тех случаях, когда полезные компоненты представлены более крупными, или, наоборот, например, в россыпях полезные компоненты находятся в виде более мелких частиц. Отделив мелко зернистую часть руды от крупнозернистой (валунов и гали), можно удалить значительную часть породных примесей.
Различия в оптических свойствах компонентов в прошлом широко использовались при обогащении методом ручной рудоразборки. В последние годы все более широкое распространение приобретают фотометрические сепараторы, на которых осуществляется механическая рудоразборка зерен, обладающих различным цветом и блеском.
Полезные ископаемые, компоненты которых отличаются по электропроводности или обладают способностью под действием тех или иных физических факторов приобретать различные по величине и знаку электрические заряды, могут обогащаться электросепарацией. К таким полезным ископаемым относятся вольфрамовые, титановые, оловянные, слюдосодержащие, апатитовые и другие руды.
Различия в смачиваемости компонентов водой используется при обогащении полезных ископаемых флотационными методами. Особенностью флотационных процессов является возможность искусственно регулировать смачиваемость и разделять весьма тонкие минеральные зерна, крупность которых составляет сотые доли миллиметра. Благодаря этим особенностям флотационное обогащение является одним из наиболее универсальных методов обогащения разнообразных тонковкрапленных полезных ископаемых.
Подготовительные, основные и вспомогательные процессы называются технологическими.
Доменное производство
1.Описание доменной печи
Доменная печь - печь шахтного типа. Сверху в печь порциями непрерывно загружают шихтовые материалы - агломерат (окатыши) и кокс, которые медленно опускаются вниз; длительность их пребывания в печи составляет 4-6 ч. В нижнюю часть печи(верх горна) через фурмы подают дутье - нагретый воздух; у фурм за счет кислорода дутья сгорает кокс с выделением тепла, а горячие продукты сгорания движутся через столб шихты вверх, нагревая ее; время пребывания газов в печи составляет 3-12с. При опускании нагревающейся шихты в ней из оксидов восстанавливается железо, которое науглероживается, расплавляется и каплями стекает в горн, формируя чугун, а невосстановившиеся оксиды в нижней части печи (низ шахты, распар) расплавляются, образуя шлак, который также стекает в горн. Накапливающиеся в горне чугун и шлак, имеющие температуру 1450-1500°С, периодически выпускают через чугунные и шлаковые летки.
2. Доменное производство.
Цель доменного производства состоит в получении чугуна из железных руд путем их переработки в доменных печах. Сырыми материалами доменной печи являются топливо, железные и марганцевые руды и флюс.
Топливом для доменной плавки служит кокс, получаемый из каменного угля. Его роль состоит в обеспечении процесса теплом и восстановительной энергией. Железные руды вносят в доменную печь химически связанное с другими элементами железо. Восстанавливаясь и науглероживаясь в печи, железо переходит в чугун. С марганцевой в доменную печь вносится марганец для получения требуемого состава.
Флюсом называются добавки, загружаемые в доменную печь для понижения температуры плавления пустой породы руды, офлюсования золы кокса и придания шлаку требуемых технологией выплавки чугуна физико-химических свойств. Для руд с кремнезернистой (кислой) пустой породой в качестве флюса используют материалы, содержащие оксиды кальция и магния: известняк и доломитизированный известняк.
Для получения высоких технико-экономических показателей доменной плавки сырые материалы предварительно подвергают специальной подготовке. Исходные материалы для получения кокса - специальные марки каменных углей -измельчают, по возможности удаляют, пустую породу, усредняют угольную шихту и подвергают ее коксованию - спеканию без доступа воздуха в коксовых печах на коксохимических заводах. Готовый кокс дважды подвергают сортировке для отсева мелких фракций: на коксохимическом заводе и перед загрузкой в доменную печь.
Добываемые на рудниках железные руды дробят, сортируют, при необходимости обжигают и обогащают, удаляя частично пустую породу и вредные примеси.
После усреднения мелкие железные руды и рудный концентрат окусковывается при помощи агломерации или скатывания. В процессе окускования производят частичное или полное офлюсование пустой породы руды добавлением в спекаемою шихту флюса. В большинстве случаев в агломерационную шихту добавляют в необходимом количестве и марганцевую руду. Готовый агломерат или окатыши подвергают сортировке для отсева мелких фракций. Флюс в сыром виде сейчас в доменные печи загружают лишь в незначительном количестве для получения заданного химического состава шлака. Подготовленные шихтовые материалы в строгом соотношении загружают в доменную печь сверху при помощи засыпного аппарата.
В нижнюю часть доменной печи - горн через фурмы подают воздух, сжатый воздуходувной машиной. Для уменьшения расхода кокса и повышения производительности доменной печи воздух нагревают до 1000-1200°С, обогащают кислородом, а в горн вдувают природный газ, мазут или пылеугольное топливо. В результате протекания в доменной печи сложных физико-химических процессов между исходными шихтовыми материалами дутьем образуется чугун, шлак и газ. Основной продукт доменного производства - передельный чугун выпускают из горна доменной печи через чугунную летку 8-14 раз в сутки и направляют в сталеплавильные цехи для передела в сталь или на разливочные машины для разливки в чушки и отправки потребителям.
Кроме передельного чугуна, в доменных печах выплавляют литейный чугун, доменный ферросилиций, ферромарганец и зеркальный чугун. Из литейного чугуна отливают изделия главным образом в машиностроении. Доменные ферросплавы используют в сталеплавильном производстве для раскисления стали и присадки соответствующих элементов.
Шлак в печи образуется в результате плавления пустой породы руды, флюса и золы кокса. Шлак из доменной печи выпускают периодически через шлаковые летки (верхний шлак) и при выпуске чугуна через чугунные летки (нижний шлак). Основную массу жидкого шлака подвергают грануляции, а часть шлака сливают на шлаковых отвалах. Доменный шлак используют для производства цемента, строительных панелей, блоков, шлаковой ваты и для сооружения шоссейных дорог.
Доменный газ, образующийся в печи при взаимодействии кислорода дутья и шихты с углеродом кокса, после очистки используют как металлургическое топливо в доменном и смежных цехах. Колошниковую пыль направляют на аглофабрику для производства агломерата.
Важнейшим процессом, протекающим в рабочем пространстве печи, является восстановление железа и его оксидов. Поэтому доменный процесс принято называть восстановительным. Успешность протекания восстановительного процесса зависит от ряда других взаимосвязанных процессов: движения и распределения шихты газов, образования чугуна и шлака, сгорания топлива в горне и др.
Современная доменная печь представляет собой печь шахтного типа, состоящую из колошника, шахты, распара, заплечиков и горна. Это высокоавтоматизированный и механизированный агрегат.
Агрегатом для осуществления доменного процесса служит печь шахтного типа. Рабочее пространство доменной печи в горизонтальных сечениях имеет округлую форму, а в вертикальном разрезе - своеобразное очертание, называемое профилем. Профиль печи состоит из элементов: горна, заплечиков, распара, шихты и колошника. Форма профиля и размеры его элементов определены сущностью процессов, протекающих в печи.
Важнейшим условием осуществления доменного процесса в рабочем пространстве печи является непрерывное встречное движение и взаимодействие опускающих шихтовых материалов, загружаемых в печь через колошник, и восходящего потока газов, образующегося в горне при горении углерода кокса в нагретом до 1000-1200°С воздухе (дутье), который нагнетается в верхнюю часть горна через расположенные по его окружности фурмы. К дутью может добавляться технический кислород, природный газ, водяной пар. Кокс поступает в горн нагретым до 1400-1500°С. В зонах горения углерод кокса взаимодействует с кислородом дутья по реакциям:
Ск + О2 + 3,76N2 = CO2 + 3,76N2 + 400,928 МДж, (5)
Ск + 0,5О2 + 1,88N2 = СО2 + 1,88N2 + 117,565 МДж. (6)
Образующийся в зонах горения диоксид углерода при высокой температуре и избытке углерода неустойчив и превращается в оксид углерода по реакции: металлургия огнеупорный промышленность
СО2 + С = 2СО - 165,797 МДж. (7)
Таким образом, за пределами зон горения горновой газ состоит из оксида углерода, азота и небольшого количества водорода, образовавшегося при разложении водяных паров или природного газа. Смесь этих паров, содержащая 32-36% СО; 57-64% N2 и 1-10% Н2 и нагретая до 1800-2000°С, поднимается вверх и передает тепло материалам, постепенно опускающимся в горн вследствие выгорания кокса, образования чугуна и шлака и периодического выпуска их из домен-ной печи. При этом газы охлаждаются до 200-450°С, а оксид углерода, отнимая кислород из оксидов железа, превращается частично в диоксид углерода, содержание которого в доменном газе на выходе из печи достигает 14-20%. Кроме оксида углерода, восстановителями являются водород и твердый углерод. Шихтовые материалы загружают в доменную печь при помощи засыпного аппарата отдельными порциями - подачами. Они располагаются на колошнике чередующимися слоями кокса, руды или агломерата и флюса при работе на неполностью офлюсованном агломерате. Загрузку подач производят через 5-8 мин по мере освобождения пространства на колошнике в результате опускания материалов.
В процессе нагревания опускающихся происходит удаление из них влаги и летучих веществ кокса и разложение карбонатов. Оксиды железа под действием восстановительных газов СО и Н2, а при температуре выше 1000°С и твердого углерода кокса постепенно переходят от высших степеней окисления к низшим, а затем - в металлическое железо по схеме Fe2O3 - Fe3O4 - FeO - Fe. Свежевосстановленное железо заметно науглероживается еще в твердом состоянии. По мере науглероживания температура плавления его понижается.
При температуре 1000-1100°С восстановление железа почти заканчивается и начинает восстанавливаться более труднорастворимые элементы - кремний, марганец и фосфор. Науглероженное железо, содержащее около 4% углерода и некоторое количество кремния, марганца и фосфора, плавится при температуре 1130-1150°С и стекает в виде капель чугуна в горн. В нижней половине шахты начинается образование жидкого шлака из составных частей пустой породы руды и флюса (SiO2, A12O3, CaO, MgO). Понижению температуры плавления шлака способствует невосстановленные оксиды железа и марганца (FeO и МnО). В стекающем вниз шлаке под действием возрастающей температуры постепенно расплавляется вся пустая порода и флюс, а после сгорания кокса - и зола. При взаимодействии жидких продуктов плавки с раскаленным коксом в заплечиках и горне происходит усиленное восстановление кремния, марганца и фосфора из их оксидов, растворенных в шлаке. Здесь же поглощенная металлом в ходе плавки сера переходит в шлак. Железо и фосфор печи полностью восстанавливаются и переходят в чугун, а степень восстановления кремния и марганца и полнота удаления из чугуна серы в большей мере зависят от температурных условий, химического состава шлака и его количества. Жидкие чугун и шлак разделяются в горне благодаря различным удельным массам. По мере скопления их в горне чугун выпускают через чугунную летку, а шлак - через шлаковые летки (верхний шлак) и чугунную летку во время выпуска чугуна (нижний шлак).
Все перечисленные процессы протекают в доменной печи одновременно, оказывая взаимное влияние.
Кислородно-конвертерное производство
1. Технология плавки.
Шихтовка плавки и организация загрузки. Шихтовку, т.е. определение расхода на плавку чугуна и лома, шлакообразующих, ферросплавов и других материалов, в современных цехах проводят с помощью ЭВМ на основании вводимых в нее данных о составе чугуна и других шихтовых материалов, температуре чугуна, параметрах выплавляемой стали и некоторых других. При этом расход лома, являющегося охладителем плавки, определяют на основании расчета теплового баланса плавки, увеличивая или уменьшая расход так, чтобы обеспечивалась заданная температура металла в конце продувки, а расход извести -- так, чтобы обеспечивалась требуемая основность шлака (2,7--3,6). Лом загружают в конвертер совками объемом 20-110м3; их заполняют ломом в шихтовом отделении цеха и доставляют к конвертерам рельсовыми тележками. Загрузку ведут через отверстие горловины конвертера, опрокидывая совок с помощью полупортальной машины, либо мостового крана, либо напольной (перемещающейся по рабочей площадке цеха) машины. Жидкий чугун заливают в наклоненный конвертер через отверстие горловины с помощью мостового крана из заливочного ковша, который обычно вмещает всю порцию заливаемого чугуна (до 300т и более). Заливочные ковши с чугуном доставляют к конвертерам из миксерного или переливного отделений. Для загрузки сыпучих шлакообразующих материалов конвертер оборудован индивидуальной автоматизированной системой. Из расположенных над конвертером расходных бункеров, где хранится запас материалов, их с помощью электровибрационных питателей и весовых дозаторов выдают в промежуточный бункер, а из него материалы по наклонной течке (трубе) ссыпаются в конвертер через горловину. При этом система обеспечивает загрузку сыпучих без остановки продувки по программе, которая разработана заранее или задается оператором из пульта управления конвертером. Периоды плавки Плавка в кислородном конвертере включает следующие периоды:
1. Загрузка лома. Стальной лом в количестве до 25--27 % от массы металлической шихты (при использовании специальных технологических приемов и в большем количестве) загружают в наклоненный конвертер совками. Объем совков достигает 110м3, его рассчитывают так, чтобы загрузка обеспечивалась одним - двумя совками, поскольку при большем числе возрастает длительность загрузки и плавки и целом. Загрузка длится 2-4 мин. Иногда с целью ускорения шлакообразования после загрузки лома или перед ней в конвертер вводят часть расходуемой на плавку извести.
2. Заливка чугуна. Жидкий чугун при температуре 1300 до 1450°С заливают в наклоненный конвертер одним ковшом в течение 2--3 мин.
3. Продувка. После заливки чугуна конвертер поворачивают в вертикальное рабочее положение, вводят сверху фурму и включают подачу кислорода, начиная продувку. Фурму в начале продувки для ускорения шлакообразования устанавливают в повышенном положении, а через 2-4 мин ее опускают до оптимального уровня. В течение первой трети длительности продувки в конвертер двумя - тремя порциями загружают известь; В течение продувки протекают следующие основные металлургические процессы:
Ш Окисление составляющих жидкого металла вдуваемым кислородом; окисляется избыточный углерод, а также весь кремний, около 70% марганца и немного (1-2%) железа. Газообразные продукты окисления углерода (СО и немного СО2 ) удаляются из конвертера через горло-вину (отходящие конвертерные газы), другие оксиды переходят в шлак;
Ш Шлакообразование. С первых секунд продувки начинает формироваться основной шлак из продуктов окисления составляющих металла (SiO2, MnO, FeO, Fe2O3) и растворяющейся в них извести (СаО), а также из оксидов, вносимых миксерным шлаком, ржавчиной стального лома и растворяющейся футеровкой. Основность шлака по ходу продувки возрастает по мере растворения извести, достигая 2,7-3,6;
Ш Дефосфорация и десулъфурация. В образующийся основной шлак удаляется часть содержащихся в шихте вредных примесей - большая часть (до 90%) фосфора и немного (до 30%) серы;
Ш нагрев металла до требуемой перед выпуском температуры (1600-1660 °С) за счет тепла, выделяющегося при протекании экзотермических реакций окисления составляющих жидкого металла;
Ш расплавление стального лома за счет тепла экзотермических реакций окисления; обычно оно заканчивается в течение первых 2/3 длительности продувки;
Ш д) побочный и нежелательный процесс испарения железа в надфурменной зоне из-за высоких здесь температур (2000-2600°С) и унос окисляющихся паров отходящими из конвертера газами, что вызывает потери железа и требует очистки конвертерных газов от пыли.
4. Отбор проб, замер температуры, ожидание анализа, корректировка. Продувку необходимо закончить в тот момент, когда углерод будет окислен до нужного в выплавляемой марке стали содержания; к этому времени металл дол-жен быть нагрет до требуемой температуры, а фосфор и сера удалены до допустимых для данной марки стали пределов.
Момент окончания продувки, примерно соответствующий требуемому содержанию углерода в металле, определяют по количеству израсходованного кислорода, по длительности продувки, по показаниям ЭВМ. Окончив продувку, из конвертера выводят фурму, а конвертер поворачивают в горизонтальное положение. Через горловину конвертера отбирают пробу металла, посылая ее на анализ, и замеряют температуру термопарой погружения (рис. 5, г). Если по результатам анализа и замера температуры параметры металла соответствуют заданным, плавку выпускают. В случае несоответствия проводят корректирующие операции: при избыточном содержании углерода проводят кратковременную додувку для его окисления; при недостаточной температуре делают додувку при повышенном положении фурмы, что вызывает окисление железа с выделением тепла, нагревающего ванну; при излишне высокой температуре в конвертер вводят охладители - легковесный лом, руду, известняк, известь и т.п., делая выдержку после их ввода в течение 3-4 мин. По окончании корректировочных операций плавку выпускают.
На отбор и анализ проб затрачивается 2-3 мин; корректировочные операции вызывают дополнительные простои конвертера и поэтому нежелательны. металлургия огнеупорный агломерационный шихта
5. Выпуск. Металл выпускают в сталеразливочный ковш через летку без шлака; это достигается благодаря тому, что в наклоненном конвертере, у летки располагается более тяжелый металл, препятствующий попаданию в нее находящегося сверху шлака. Такой выпуск исключает перемешивание металла со шлаком в ковше и переход из шлака в металл фосфора и FeO. Выпуск длится 3-7 мин.
В процессе выпуска в ковш из бункеров вводят ферросплавы для раскисления и легирования. При этом в старых цехах загружают все ферросплавы так, чтобы обеспечивалось раскисление и получение в стали требуемого содержания вводимых элементов (Мn и Si, а в легированных сталях и других элементов). В конце выпуска в ковш попадает немного (1-2 %) шлака, который предохраняет металл от быстрого охлаждения. В новых цехах, где проводят внепечную обработку, в ковш вводят сплавы, содержащие слабоокисляющиеся элементы (Мn, Сr и иногда Si), после чего ковш транспортируют на установку внепечной обработки, где в процессе усредняющей продувки аргоном вводят элементы, обладающие высоким сродством к кислороду (Si, Al, Ti, Ca и др.), что уменьшает их угар. В этом случае в момент слива из конвертера последних порций металла делают "отсечку" шлака, препятствуя попаданию в ковш конвертерного шлака, содер-жащего фосфор, который может переходить в металл, и оксиды железа, которые будут окислять вводимые в металл в процессе внепечной обработки элементы. В ковше для защиты металла от охлаждения и окисления создают шлаковый покров, загружая, например, гранулированный доменный шлак, вермикулит, известь с плавиковым шпатом.
6. Слив шлака в шлаковый ковш (чашу) ведут через горловину, наклоняя конвертер в противоположную от летки сторону (слив через летку недопустим, так как шлак будет растворять футеровку летки). Слив шлака длится 2-3 мин. Общая продолжительность плавки в 100-350т конвертерах составляет 40-50 мин.
2. Режим дутья.
Взаимодействие кислородных струй с ванной. Перемешивание ванны, возникающее при продувке в результате воздействия кислородных струй и потока выделяющихся из ванны пузырьков окиси углерода, интенсифицирует массой теплообмен, ускоряя процессы окисления, рафинирования и нагрева металла и расплавления стального лома.
Под соплами фурмы расположены направленные вниз высокоскоростные потоки кислорода с увлекаемыми в них каплями металла - это первичные реакционные зоны, где весь кислород расходуется на окисление железа. По границам первичной зоны вследствие высокой концентрации кислорода окисляется много углерода с образованием СО и формируется мощный поток всплывающих пузырей СО, увлекающих за собой металл, поэтому циркуляционные потоки направлены здесь вверх. Выше зоны циркуляции металл и шлак перемешиваются всплывающими пузырями СО. Под первичными реакционными зонами, где всплывание пузырей СО затруднено, периодически формируются крупные газовые полости. Их объем при движении вверх возрастает в результате поглощения встречных пузырей СО, и при выходе крупных газовых объемов из ванны образуются всплески металла и шлака.
Уровень ванны изменяется по ходу продувки. В начале и конце продувки, когда скорость окисления углерода невелика, т.е. образуется мало пузырей СО, металл вспенивается незначительно, и фурма находится над ванной. В середине продувки, когда скорость обезуглероживания сильно возрастает, большое количество выделяющихся пузырей СО вспенивают верхнюю часть ванны, и фурма оказывается погруженной в газошлакометаллическую эмульсию, а уровень ванны может достигать верха горловины конвертера. В этот период могут возникать выбросы.
3. Раскисление и легирование
Раскисление кислородно-конвертерной стали производят осаждающим методом в ковше во время выпуска. В конвертер раскислители не вводят во избежание их большого угара.
.В современных конвертерных цехах, оборудованных установками доводки жидкой стали в ковше, при выпуске металла в ковш вводят лишь часть раскислителей - преимущественно слабоокисляющиеся, т.е. имеющие не очень высокое сродство к кислороду (ферромарганец, силикомарганец и реже ферросилиций). Чтобы исключить попадание в ковш содержащего фосфор и оксиды железа конвертерного шлака, в конце выпуска делают его отсечку, а в ковш загружают материалы (гранулированный доменный шлак, вермикулит, смесь извести и плавикового шпата и др.) для создания шлакового покрова, предохраняющего поверхность металла от окисления и охлаждения. Затем ковш транспортируют на установку доводки стали, где в процессе перемешивающей продувки аргоном в металл вводят ферросилиций, алюминий и при необходимости другие сильные раскислители; по результатам анализа отбираемых при внепечной обработке проб проводят корректировку содержания кремния и марганца в металле, что обеспечивает гарантированное получение заданного состава стали. Для лучшего усвоения алюминия желателен его ввод в объем металла с помощью погружаемой штанги или в виде проволоки, подаваемой в ковш сверху с большой скоростью с помощью трайб-аппарата. Отсечку шлака с целью предотвращения его попадания в сталеразливочный ковш при выпуске металла делают несколькими способами. Простейший из них - быстрый подъем конвертера в момент окончания слива металла - не является достаточно эффективным. Еще один способ - отсечка с помощью стальных шаров в огнеупорной оболочке: в конце выпуска шар вводят в конвертер, где он плавает на границе шлак - металл и вместе с последними порциями металла попадает в канал летки, перекрывая его. Более эффективны способы с принудительным закрытием летки: скользящим шиберным затвором, закрепленным на кожухе летки и перемещаемым гидроприводом; пневматическим устройством, представляющим собой чугунное сопло, закрепленное с помощью кронштейна на корпусе конвертера. В нужный момент сопло, через которое идет воздух под давлением, поворотом кронштейна вводят в канал летки снизу, при этом запорный эффект создается сжатым воздухом.
...Подобные документы
Анализ особенностей деятельности предприятия по добыче и обогащению сырья для металлургии, керамических и строительных предприятий на примере ОАО "Вишневогорский ГОК". Экономика обогатительного производства, основные перспективы развития отрасли.
отчет по практике [278,9 K], добавлен 18.10.2012Особенности горно-обогатительного производства. Характеристика перерабатываемых руд. Технология получения железорудных концентратов. Выбор оборудования для дробления, измельчения, обогащения. Технология доменного производства чугуна, выбор доменных печей.
курсовая работа [542,1 K], добавлен 27.12.2012Общая характеристика Новолипецкого металлургического комбината, его производственные мощности и история развития. Особенности доменного цеха, производства динамной стали, горячего и холодного проката. Место предприятия на металлургическом рынке.
отчет по практике [1,6 M], добавлен 07.12.2010Металлургические базы России, размещение производства. Технологическая цепочка производства чёрных и цветных металлов. География золотодобычи. Проблемы и перспективы цветной металлургии. Выбросы вредных веществ в атмосферу отраслями промышленности.
творческая работа [427,8 K], добавлен 30.04.2009Технико-экономические показатели доменного производства. Способы улучшения качества стального слитка. Производство стали в кислородных конвертерах. Интенсификация доменного процесса. Устройство и работа мартеновской печи. Маркировка магния и его сплавов.
контрольная работа [58,8 K], добавлен 03.07.2015Металлургическое производство и его структура. Основные перспективы развития металлургии. Применение продукции металлургического производства. Фрезерование как обработка материалов резанием с помощью фрезы. Классификация фрез по направлению зубьев фрезы.
курсовая работа [720,3 K], добавлен 24.09.2012Характеристика основных технологий в черной и цветной металлургии. Классификация металлургических процессов. Сырье для черной металлургии и его добычи. Продукты металлургического производства. Дуговые электроплавильные печи, конвертеры, прокатные станы.
курсовая работа [773,0 K], добавлен 16.10.2010Современное состояние коксохимического производства ОАО «Алчевсккокс» описание и характеристика предприятия. Перспективная потребность в коксохимической продукции и возможность ее сбыта. Описание применяемого оборудования и программного обеспечения.
отчет по практике [24,0 K], добавлен 12.01.2009Основные характеристики доменных печей ОАО "Новолипецкого металлургического комбината". Основные причины невозможности повышения эффективности работы доменного производства. Производство горячего и холодного проката. Экологическая политика компании.
курсовая работа [1,6 M], добавлен 05.12.2014Современное металлургическое производство чугуна и стали. Схема современного металлургического производства. Продукция черной металлургии. Откатывание (производство окатышей). Образование сплава железа с углеродом при низкой температуре. Восстановление ме
лекция [1,0 M], добавлен 06.12.2008Исследование схем производства булки ярославской сдобной с целью создания высокорентабельной линии производства, позволяющей выпускать продукцию высокого качества. Технологические схемы организации производства изделий и технохимического контроля.
дипломная работа [43,3 K], добавлен 01.12.2010Структура пищевой промышленности РБ. Характеристика современного ассортимента мармеладных изделий. Технологические процессы производства. Качественные показатели. Управление качеством в торговле. Особенности маркировки, упаковки и хранения.
курсовая работа [33,5 K], добавлен 01.05.2006Характеристика коксохимического производства ОАО "ЕВРАЗ ЗСМК". Установка утилизации химических отходов. Определение количества печей в батарее. Технология совместного пиролиза угольных шихт и резинотехнических изделий. Утилизация коксохимических отходов.
дипломная работа [697,3 K], добавлен 21.01.2015Рассмотрение технологической схемы приема, усреднения, отгрузки железорудного сырья. Этапы процесса окусковывания концентратов и колошниковой пыли: подготовка и спекание агломерационной шихты. Изучение устройства и принципа работы агломерационной машины.
курсовая работа [1019,5 K], добавлен 20.06.2010Характеристика печей с электрическим нагревом для расплавления металлов и сплавов. Тепловой баланс плавильных агрегатов. Классификация тепловой работы печей. Физико-химические и эксплуатационные свойства огнеупорных и теплоизоляционных материалов.
реферат [16,6 K], добавлен 01.08.2012Анализ оборудования и технологии производства в кислородном, доменном, кислородно-конвертерном цехах комбината им. Ильича. Системы контроля и автоматизации. Загрузка шихты и распределение материалов на колошнике. Давление в рабочем пространстве печи.
отчет по практике [1,3 M], добавлен 15.03.2015Изучение и анализ деятельности предприятия легкой промышленности - швейной фабрики "Бердчанка". Функции, состав и оборудование экспериментального цеха, особенности подготовительного производства. Организация работы раскройного и швейного цехов фабрики.
отчет по практике [594,8 K], добавлен 22.03.2011Применение инноваций в машиностроении. История предприятия и его роль в экономике страны. Технологические процессы заготовительного, обрабатывающего и сборочного производства. 3D-принтеры на службе у промышленности. Анализ системы менеджмента качества.
курсовая работа [912,9 K], добавлен 25.03.2017Сущность ремонта, его разновидности и значение, принципы организации на металлургическом предприятии. Оценка качества ремонта оборудования. Классификация и характеристика ремонтов доменных печей и другого оборудования металлургического предприятия.
курсовая работа [741,9 K], добавлен 19.04.2010Металлургия-базовая отрасль экономической и социальной стабильности Кузбасса. Другие отрасли: легкая промышленность, угольная. Электроэнергетика Кузбасса. Основные предприятия химической отрасли Кузбасса. Характеристика машиностроительных предприятий.
реферат [44,7 K], добавлен 11.12.2007