Расчет привода к перемешивающему устройству

Приспособления для снижения амплитуды колебаний вала мешалки. Определение передаточного числа привода и его ступеней, передаточного отношения редуктора. Определение числа зубьев зубчатых колес и числа зубьев звездочек цепной передачи электродвигателя.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 15.06.2014
Размер файла 850,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Государственное бюджетное образовательное учреждение

высшего профессионального образования

«Курский государственный медицинский университет»

Министерства здравоохранения Российской Федерации

Биотехнологический факультет

Кафедра биологической и химической технологии

КУРСОВАЯ РАБОТА

по дисциплине

Прикладная механика

РАСЧЕТ ПРИВОДА К ПЕРЕМЕШИВАЮЩЕМУ УСТРОЙСТВУ

Исполнитель: Цуприкова И.А.

Студентка 3 курса, 2 группы

Руководитель: к.т.н.,доцент,Мишенко В.Я.

Курск 2014

Содержание

Задание на курсовой проект

Введение

1. Выбор эдектродвигателя из каталога

2. Определение передаточного числа привода и его ступеней

3. Силовой расчет привода

4. Определение числа зубьев зубчатых колес и числа зубьев звездочек цепной передачи

Заключение

Список использованной литературы

Задание курсовой работы

Рассчитать привод к перемешивающему устройству согласно рис. П.1.

Подобрать электродвигатель, найти общее передаточное отношение редуктора, разбить его по ступеням, найти крутящие моменты на валах. Определить диаметры валов. Вычертить кинематическую схему.

вал передаточный привод редуктор

Исходные данные:

- мощность на выходном валу привода Рвых, = 1,0 кВт;

- угловая скорость вращения вала щ = 5,0 рад/с

Введение

Различного вида перемешивающие устройства - лопастные, якорные и т. п. - обычно приводятся во вращение от индивидуального электродвигателя через зубчатую передачу.

Приводы обычно устанавливают на крышках аппаратов, в которых мешалка работает, иногда на балках или рамах, укрепленных на крыше. Если вал длинный, то на днище сосуда монтируется дополнительная опора. В современных конструкциях привод обычно осуществляется непосредственно от электродвигателя, через редуктор.

Для комбинированных мешалок применяются приводы типа, изображенного на рисунке 1.

Рисунок 1 Привод комбинированной мешалки

От вала 1 вращение передается через две конические зубчатые передачи: через колеса 3 и 5 в одном направлении и через колеса 2 и 4 в обратном направлении. Если передаточные числа обеих пар одинаковы, то валы колес 4 и 5 будут вращаться с одинаковой скоростью, но в разные стороны.

Если комбинированная мешалка состоит из тихоходной и быстроходной мешалок, ставятся два независимых привода. Якорная мешалка приводится во вращение от электродвигателя через пару конических колес, а турбинная - от своего электродвигателя (валы соединены муфтам).

Если места на крышке сосуда или над ней недостаточно, привод располагают под сосудом, что, однако требует установки хорошего сальникового уплотнения.

Приводы пропеллерных мешалок чаще всего осуществляются в зависимости от скорости вращения: 1.от электродвигателя, непосредственно связанного с валом мешалки; 2.от электродвигателя через шестеренчатую передачу; 3.от электродвигателя со встроенным редуктором; 4.от электродвигателя через клиноременную передачу.

Пример привода первого типа для стационарных пропеллеров показан Применяются также электродвигатели с регулируемым числом оборотов, что делает мешалку более универсальной, в тех случаях, когда в процессе перемешивания резко изменяется вязкость системы. Для вертикальных стационарных пропеллеров, при обычных на практике диаметрах и скоростях вращения валов, считают допустимой длину вала до 1,8 м. Если необходимо иметь большую длину, то принимают следующие меры: 1. Устанавливают стабилизаторы в виде наваренных на лопасти пропеллера крылышек (рисунок 16а) или в виде широкого кольца со спицами, укрепляемого на конце вала (рисунок 16б). 2. Устанавливают концевые подшипники, монтируемые на днище сосуда, как это показано на рисунок 17а и б.

Устанавливают дополнительный подшипник в приводе, или дополнительный вынесенный подшипник на рисунке 2.

Рисунок 2 Привод пропеллерной мешалки

Рисунок 3 - Приспособления для снижения амплитуды колебаний вала мешалки.

Рисунок 4 - Концевые подшипники мешалок.

Рисунок 5 Дополнительные подшипники в приводах мешалок

Для уменьшения длины вала прибегают к установке привода под сосудом. Более короткие валы имеют также боковые мешалки, привод которых устанавливается или на вертикальной стенке сосуда, или на днище в случае горизонтальных сосудов.

Стойки отливают из чугуна или сваривают из углеродистой стали. Они представляют собой цилиндры или усеченные конусы, снабженные верхним и нижним присоединительными фланцами. В обечайке стоек имеются вырезы для удобства монтажа и демонтажа.

в приводах концевые опоры служат для подвижного закрепления нижнего конца вала перемешивающего органа. Опоры состоят (рисунок 6) из стойки 1, к которой болтами 7 прикреплен подшипник 2, в нем закреплена штифтами 5 неподвижная втулка 4. На нижнем конце вала закреплена болтом 6 подвижная втулка 3, которая вращается вместе с валом внутри неподвижной втулки 4.

Втулки изготавливают из чугуна, графита, капрона, текстолита или фторопласта-4, остальные детали из углеродистой стали для нейтральных сред или из коррозионно-стойких материалов для агрессивных сред. С точки зрения распределения нагрузок наиболее рациональны приводы с концевыми подшипниками, однако, во многих случаях из-за коррозионного или абразивного действия среды их нельзя устанавливать. Концевые подшипники в аппарате работают в очень тяжелых условиях: их невозможно смазывать, они плохо доступны для осмотра и ремонта. Конструкция подшипника должна обеспечивать свободную циркуляцию жидкости через него. На рисунке 20а показан типовой концевой подшипник (подпятник). Подпятник, показанный на рисунке 20б применяется для футерованных аппаратов. Коническое основание этого подпятника обеспечивает ему высокую жесткость и предохраняет футеровку вблизи подпятника от разрушения.

1- стойка ; 2- подшипник ; 3- подвижная втулка ; 4- неподвижная втулка ; 5- штифты ; 6,7- болты

Рисунок 6 Опоры концевые внутренние для вертикальных валов перемешивающих устройств

а) типовая конструкция; б) подпятник для футерованных аппаратов

Рисунок 20 Концевые подшипники

При работе мешалки без концевого подшипника возможно появление крутильных колебаний консольного вала мешалки, являющихся следствием динамических нагрузок на вал от перемешиваемой среды, условий закрепления вала в опорах, конструкции мешалки. При неправильном учете в процессе конструирования таких важных критериев надежности, как жесткость и виброустойчивость, эксплуатация аппаратов с мешалками встречает ряд затруднений. Если вал с мешалкой не отбалансирован и в его подшипниковых опорах имеется люфт d, то возможно отклонение нижнего конца вала на величину s. Схема отклонения вала с двумя подшипниковыми опорами изображена на рисунок 22.

1- редуктор; 2- продольно-разъемная муфта; 3- стойка привода; 4- уплотнение; 5- опора привода; 6- маслоуловитель; 7- вал; 8- концевой подшипник

Рисунок 21 Привод


Рисунок 22 Схема колебаний вала

Из подобия треугольников (рисунок 22) получаем соотношение:

(1.37)

, (1.38)

Т.е. колебания вала зависит от величины люфта d и отношения L/l.

Если люфт устранить полностью, то величину отношения L/l можно ограничить. Для надежной работы консольного вала мешалки рекомендуется L/l4. Для уменьшения крутильных колебаний вала после крепления мешалки он должен быть статически отбалансирован. При опасности возникновения крутильных колебаний, которые ведут к нарушению работы сальника, или при больших значениях L/l необходима установка концевого подшипника.

Крутильные колебания вызывают повышенный износ подшипников и сальника. Концевой подшипник устраняет крутильные колебания, улучшая работу сальника и подшипниковых опор. Хотя концевой подшипник работает в агрессивной среде, применение его для нормальной работы аппарата необходимо при большой длине или высокой частоте вращения вала.

Для обеспечения соосности обеих втулок (рисунок 19) может применяться концевой подшипник (рисунок 23), в котором обойма невращающейся втулки имеет шаровую поверхность, что дает возможность устанавливать ось этой втулки в нужном направлении.

1- вал; 2- вращающаяся втулка; 3- невращающаяся текстолитовая втулка; 4- обойма

Рисунок 23 Концевой подшипник с шаровой обоймой

Крепление мешалок.В простейших конструкциях лопасти приваривают непосредственно к валу. Однако, элементы крепятся на валу с помощью разъемных соединений. Обычно мешалка состоит из ступицы, к которой привариваются лопасти. Ступица крепится на валу с помощью шпонки и стопорных устройств, препятствующих осевому смещению. В случае установки мешалки в середине вала ее закрепляют стопорным винтом (рисунок 24а), при установке на конце вала - концевой гайкой (рисунок 24б) или с помощью двух полуколец, которые закладываются в кольцевую выточку на валу (рисунок 24.в).

а) стопорным винтом; б) концевой гайкой; в) полукольцами

Рисунок 24 Способы крепления мешалок на валу

При конструировании мешалок необходимо учитывать условия их монтажа. Мешалки небольших аппаратов (диаметром 1,2 м и менее) обычно собираются совместно с крышкой и вместе с ней устанавливаются в аппарат. Они должны иметь минимум разъемных соединений. Мешалки для крупногабаритных аппаратов целесообразно делать разъемными из частей таких размеров, которые можно пронести через лаз аппарата. Это дает возможность разбирать мешалку при ремонтных и монтажных работах, не снимая крышку и привод. В цельносварных аппаратах мешалка обязательна должна быть разборной.

Муфты служат для соединения вала привода с валом мешалки. Применяют в основном нормализованные муфты двух типов - продольно-разъемные и зубчатые.

1- корпус; 2- накидные фланцы; 3- разрезное кольцо; 4- пружины; 5- болты

Рисунок 25 Продольно- разъемная муфта

1- обойма зубчатая; 2- втулка зубчатая; 3- крышка; 4- уплотнение; 5- масленка

Рисунок 26 Муфты зубчатые для соединения вертикальных валов приводов перемешивающих устройств

Продольно-разъемные муфты применяют для жесткого соединения выходного вала редуктора (мотор-редуктор) с валом перемешивающего устройства с промежуточным валом при любом числе промежуточных опор. Муфта состоит (рисунок 25) из корпуса 1 (образующегося двумя половинами), накидных фланцев 2 и шпилек 5 с шайбамии гайками. Соединяемые концы валов имеют кольцевые проточки, на которые надето разрезное кольцо 3, половинки его скрепляются двумя пружинами 4. Сверху надеты на шпонке половины корпуса, после затяжки шпилек фланцев получается жесткое соосное соединение валов.

Зубчатые муфты применяют для соединения выходных валов мотор-редуктора и электродвигателя (гидромотора) с промежуточным валом при двух промежуточных опорах. Муфта состоит (рисунок 26) из зубчатой обоймы 1, укрепленной шпонкой на валу мотор-редуктора, и зубчатой втулки 2, сидящей на шпонке на промежуточном валу. Зубья втулки входят во впадины обоймы. Муфта передает крутящий момент, но не соединяет валы жестко по оси.

1. Выбор электродвигателя из каталога

Кинематический расчет привода

Для выбора электродвигателя определим его требуемую мощность и частоту вращения по формуле:

где Pвых - мощность на выходном валу;

зобщ - общий КПД привода.

Общий КПД привода равен произведению КПД отдельных звеньев кинематической цепи.

Примем значения КПД отдельных звеньев кинематической цепи з:

- муфта - 0,98;

- открытая коническая передача - 0,96;

- зубчатая цилиндрическая передача - 0,96.

Рассчитаем общий КПД привода:

Угловые скорости валов определяются по следующей формуле

где щi - угловая скорость вращения вала i - той передачи, рад/с;

ni - частота вращения вала i-ой передачи, мин -1

отсюда можем найти частоту вращения выходного вала:

Частота вращения выходного вала:

С учетом и, выбираем из табл.2.2 асинхронный двигатель трехфазного тока АИР80B4, имеющий следующие техническое данные:

- синхронная частота вращения.......................... 1500 мин-1;

1* асинхронная частота вращения вала.................. 1395 мин-1;

2* мощность электродвигателя............................ 1,5 кВт;

3* диаметр вала.................................................. 22 мм.

2. Определение передаточного числа привода и его ступеней

Действительное общее передаточное число привода

Уточняем значения передаточных чисел редуктора.

Оставляем принятые ранее значения uб = 4; uт=2,5.

Действительное передаточное отношение редуктора

uр = 4·2,5 = 10.

Уточняем передаточное число конической зубчатой передачи:

3. Силовой расчет привода

3.1 Определение частоты вращения валов привода

Определяем частоты вращений валов:

мин-1

мин-1

мин -1

мин -1

мин-1

После получения расчетной частоты вращения приводного вала находят погрешность расчета по формуле

3.2 Определение угловой скорости вращения валов привода

Определяем угловые скорости каждого вала по формуле

Следовательно, имеем:

рад/с

рад/с

рад/с

рад/с

рад/с

рад/с

3.3 Определение мощности на валах привода

Находим мощности на валах привода

Находим вращающие моменты на валах привода

Ti=Pi / щi.

Имеем:

Н*м

Н*м

Н*м

Н*м

Н*м

Н*м

3.4 Определение диаметров валов

Из каталога диаметр вала электродвигателя dв1= 22 мм.

Поскольку II вал соединяется муфтой, диаметр его входного конца назначаем равным dв1, то есть dв1=22 мм.

Диаметры остальных валов находим по формуле

где Т1 - вращающий момент на i-м валу;

- пониженное допускаемое напряжение кручения. Принимая

Имеем

мм, принимаем 22 мм

мм, принимаем 28 мм

мм, принимаем 48 мм

Результаты расчетов сводим в таблицу П.1.

Таблица П.1

Результаты энергокинематического расчета привода

Валы

Параметры

ni, мин-1

,рад/с

и

,кВт

,Н·м

de, мм

I

1395

146,01

1

1,2

0,98·0,995

8,2186

22

II

1395

146,01

1,1642

7,9734

22

4

0,96·0,995

III

348,75

36,529

1,1065

30,29

22

2,5

0,96·0,995

IV

139,5

14,601

1,0516

72,02

28

3,117

0,92·0,995

V

47,76

4,9821

0,9995

200,6182

48

VI

47,76

4,9821

0.9795

196,60

48

4. Определение числа зубьев зубчатых колес привода

Принимаем для быстроходной передачи число зубьев шестерни z1 = 18.

Тогда z2 = z1 uб = 18 4 = 72.

Принимаем для тихоходной передачи число зубьев шестерни z3 = 20.

Тогда z4 = z3 uт = 20 2,5 = 50.

Для конической передачи: z1=15, z2= z1 uк= 15 2,921=43,8

Заключение

Вопросами технического обеспечения биотехнологических процессов занимается биоинженерия. Для различных процессов существует огромное разнообразие аппаратуры: собственно для процесса ферментации, а также для выделения и получения готового продукта. Наиболее сложна и специфична аппаратура для ферментационной стадии.

Технически наиболее сложным процессом ферментации является аэробный глубинный стерильный непрерывный (или с подпиткой субстратом). Аппараты для поверхностной и анаэробной ферментации менее сложны и энергоемки.

В современной литературе описаны сотни биореакторов, отличающихся по конструкции, принципу работы и размерам (от нескольких литров до нескольких тысяч кубометров). Многочисленность методов культивирования, чрезвычайное многообразие используемых биологических агентов привели к огромному разнообразию конструктивных решений, которые зависят от ряда факторов: типа продуцента и среды, технологии и масштабов производства, целевого продукта и пр.

Принципиальное отличие биотехнологических процессов от чисто химических заключается:

- в чувствительности биологических агентов к механическим воздействиям;

- наличии межфазового переноса веществ (по типу "жидкость-клетки", "газ - жидкость-клетки");

- требовании условий асептики;

- низких скоростях протекания многих процессов в целом;

- нестабильности целевых продуктов;

- пенообразовании;

- сложности механизмов регуляции биосинтеза.

Рассмотрим некоторые типы ферментационных аппаратов. Аппараты для анаэробных процессов применяются в процессах конверсии растительного сырья, в том числе растительных расходов, а также различных других отходов. При метановом брожении для получения биогаза, а также в ряде других процессов (получения ацетона, шампанских вин) используют ферментационные аппараты (метантенки).

Эти аппараты имеют различную конструкцию (от простой выгребной ямы до сложных металлических дайджестеров или железобетонных сооружений) и объемы (от нескольких до сотен кубометров). Данные аппараты оборудованы системой подачи сырья, системой теплообменных труб для стабилизации температуры, несложным перемешивающим устройством для гомогенного распределения сырья и биомассы продуцента, газовым колпаком и устройством переменного объема (газгольдером) для сбора образуемого биогаза.

Аппараты для аэробной поверхностной ферментации широко применяются для производства органических кислот (жидкофазные) и ферментов (твердофазные). Поверхностная жидкофазная ферментация протекает в так называемых бродильных вентилируемых камерах, в которых на стеллажах размещены плоские металлические кюветы. В кюветы наливают жидкую питательную среду, высота слоя составляет 80-150 мм, затем с потоком подаваемого воздуха среду инокулируют порами продуцента.

В камере стабилизируется влажность, температура и скорость подачи воздуха. После завершения процесса культуральная жидкость сливается из кювет через вмонтированные в днища штуцеры и поступает на обработку. При твердофазной ферментации процесс также протекает в вентилируемых камерах, но вместо кювет на стеллажах размещают лотки, в которые насыпают сыпучую твердую среду слоем 10-15 мм. Для лучшей аэрации среды подаваемый в камеру воздух проходит через перфорированное днище лотков.

Аппараты для аэробной глубинной ферментации наиболее сложны как конструктивно, так и с точки зрения их эксплуатации. Главная задача, возникающая при их конструировании, - обеспечение высокой интенсивности массо- и энергообмена клеток со средой. Массообмен определяется транспортом (переносом) кислорода и других биогенных элементов из среды в микробную клетку и отводом из нее продуктов обмена. Главным показателем массообменных характеристик ферментатора служит коэффициент массопередачи кислорода, так как кислород является основным лимитирующим фактором аэробных ферментационных процессов. Расход кислорода на образование 1 кг биомассы, в зависимости от типа углеродосодержащего сырья и степени его восстановленности, может составлять от 0,75 до 5,00 кг.

Клетки способны утилизировать кислород только в растворенном виде, поэтому необходимо постоянно поддерживать его концентрацию в культуре на уровне, оптимальном для конкретного продуцента. При этом скорость поступления кислорода к клеткам должна превышать скорость его включения в клетки и в околоклеточном пространстве не должно возникать так называемых «концентрационных ям». Кроме этого, концентрации клеток и растворенного субстрата должны быть равномерными по всему объему ферментатора.

Поэтому перемешивание является также одним из основных факторов, обеспечивающих требуемую гидродинамическую обстановку в аппарате. При интенсивном перемешивании пузырьки воздуха дробятся в аппарате и, диспергируясь, увеличивают площадь контакта фаз «среда -клетка». Однако очень сильное перемешивание может вызвать механическое повреждение биологических объектов.

К настоящему времени разработано и применяется огромное количество разнообразнейших перемешивающих и аэрирующих устройств, и классифицировать их практически невозможно. Наиболее удачна, по нашему мнению, попытка классификации ферментационных аппаратов для аэробной глубинной ферментации по подводу энергии для перемешивания (Виестур и др.,1986, табл. 2.4). Согласно этой классификации аппараты такого типа делятся на три группы по подводу энергии: 1- к газовой фазе (ФГ), 2 - к жидкой фазе (ФЖ), 3 - комбинированный подвод (ФЖГ).

Таблица 2.4

Классификация ферментаторов по способу ввода энергии

Ферментаторы с подводом энергии к газовой фазе (рис. 2.7). Их общий признак - подвод энергии в аппарат через газовую фазу, которая является ее носителем. Ферментаторы характеризуются достаточно простой конструкцией (отсутствуют трущиеся, движущиеся узлы), высокой эксплуатационной надежностью, но имеют не очень высокие массообменные характеристики (коэффициент массопередачи кислорода менее 4 кг/м -ч). Данные аппараты представляют собой вертикальную емкость, снабженную газораспределительным устройством одного из известных типов.

Ферментаторы с подводом энергии газовой фазой (группа ФГ)

Рис. 2.7 Ферментаторы с подводом энергии газовой фазой (группа ФГ) а - барботажный: 1-корпус, 2-воздухораспределитель, 3-карман, 4-коллектор; б - барботажно-колонный: 1- корпус, 2 - рубашка, 3-воздухораспределитель; в - барботажно-эрлифтный: 1-корпус, 2-диффузор-теплообменник, 3-воздухораспределитель; г - газлифтный: 1-корпус, 2- диффузор, 3-диспергатор, 4-воздухораспределитель, 5-теплообменник; д - трубчатый: 1-пеногаситель, 2-емкость, 3-трубы, 4-корпус, 5-распределительная перегородка

Барботажный - газораспределительное устройство данного типа обычно устанавливается в нижней части аппарата; подаваемый сверху через распределительную трубу воздух, пройдя через барботер, насыщает кислородом толщу среды. Коэффициент массопереноса кислорода невысок, 1-2 кг/м -ч.

Барботажно-колонный - в нижней части корпуса такого аппарата устанавливается перфорированная пластина с диаметром отверстий 0,0005 м или сопловой эжектор с диаметром сопла 0,004 м.

Барботажно-эрлифтный аппарат характеризуется наличием внутри одного или нескольких диффузоров («стаканов») или нескольких перегородок для принудительного разделения восходящих и нисходящих потоков циркулирующей жидкости; эти элементы расположены равномерно по сечению аппарата или концентрично.

Газлифтный колонный ферментатор состоит из двух колонн разного диаметра, соединенных между собой; одна представляет собой барботажную колонну с восходящим потоком воздуха, другая - циркуляционную с нисходящим потоком. Воздух вводится в нижнюю зону аппарата, в барботажную колонну; камера, соединяющая колонны в верхней части аппарата, образует большую поверхность контакта фаз.

Трубчатый аппарат сконструирован по типу теплообменных труб; взаимодействие газа в трубе при высоких скоростях продувки более интенсивное, чем в большом объеме, поэтому массообмен интенсивнее.

Аппарат с плавающей насадкой позволяет интенсифицировать массообмен за счет увеличения поверхности контакта фаз и турбулизации жидкости при работе с большими скоростями подачи газовой и жидкой фаз. В аппарат введены секционные элементы в виде решеток, оборудованных лопастной насадкой; в центре аппарата находится труба, через которую вводится воздух, а жидкая фаза поступает противотоком сверху. Газ, поступая в лопастную насадку, сделанную обычно из полиэтилена, вращает ее; это существенно увеличивает поверхность контакта газовой и жидкой фаз.

Ферментаторы с вводом энергии жидкой фазой (рис. 2.8) наиболее сложны по конструкции и энергоемки, но обеспечивают более высокие по сравнению с группой ферментаторов ФГ значения коэффициента массопередачи кислорода, свыше 6 кг/м -ч. В данных аппаратах ввод энергии осуществляется жидкой фазой, обычно самовсасывающими мешалками или насосами; в последнем варианте жидкость вводится в аппарат через специальное устройство (сопло, эжектор, диспергатор). Данные аппараты также можно подразделить на ряд типов.

Ферментаторы с вводом энергии жидкой фазой (группа ФЖ)

Рис. 2.8 Ферментаторы с вводом энергии жидкой фазой (группа ФЖ) а - с самовсасывающей мешалкой: 1-корпус, 2-мешалка, 3-циркуляционный контур-обменник; б -- эжекционный: 1-корпус, 2-насос, 3-эжектор, 4-диффузор-теплообменник, 5-воздухозаборник; в -- струйный с затопленной струей: 1- эжектор, 2-теплообменник, 3-корпус, 4-насос, 5-рассекатель, 6-труба с насадкой; г -- струйный с падающей струей: 1- теплообменник, 2-насос, 3-корпус, 4-эжектор

Ферментаторы с самовсасывающими мешалками не требуют специальных воздуходувных машин, так как поступление в них воздуха происходит в результате разрежения в воздушной камере мешалки, соединенной с воздуховодом и с жидкостью, отбрасываемой лопатками мешалки.

В эжекционных ферментаторах возможна рециркуляция газовой фазы, что экономит субстрат, однако требуется наличие специальных насосов для перекачки газосодержащей культуральной среды. Применение эжекционного ввода газовых субстратов в ферментатор может интенсифицировать массообмен на порядок.

Струйные ферментаторы (с затопленной или падающей струей) оборудуются мощными насосами, которые забирают культуральную жидкость из нижней части аппарата и через напорный трубопровод подводят поток к аэрирующему устройству (по типу шахтного перепада или напорно-струйные). Струя жидкости под давлением свободно падает сверху и пронизывает аэрируемую жидкость до дна аппарата.

Происходят интенсивная турбулизация и перемешивание жидкости. Внизу жидкость вновь засасывается насосом и снова подается вверх аппарата, т. е. возникает замкнутый контур циркуляции. Недостатком данных аппаратов являются потери энергии при перекачке жидкости, трудности проектирования в связи с отсутствием надежных методик расчета конструкций и режимов работы струйных и эжекционных устройств.

Третья группа аппаратов - с подводом энергии газовой и жидкой фазы (группа ФЖГ). Основными их конструкционными элементами являются перемешивающие устройства всех известных типов, а также наличие в совокупности насосов и перемешивающих устройств. Это могут быть аппараты с группой самовсасывающих мешалок и насосом для перекачивания культуральной жидкости и другие сочетания перемешивающих и аэрирующих устройств.

Коэффициент массопереноса кислорода в таких ферментаторах может в принципе иметь любой из известных значений.

Ферментаторы периодического действия из групп ФЖГ применяют с 1944 г. в промышленности для получения антибиотиков, витаминов и других биологически активных веществ. Их конструкции обеспечивают стерильность ферментации в течение длительного времени (нескольких суток) при оптимальных условиях для роста и жизнедеятельности продуцента.

Прогресс в области получения клеточных и рекомбинантных культур выдвигает специальные требования к биореакторам. При этом на первый план выдвигаются такие показатели, как стабильность биологических агентов, повышенные требования к асептике, лимитация срезовых условий при перемешивании и др.

В ходе выполнения курсовой работы был подобран электродвигатель к перемешивающему устройству, найдено общее передаточное отношение редуктора и крутящие моменты на валах. Определены диаметры валов. Вычерчена кинематическая схема привода к перемешивающему устройству.

Используемая литература

1. Анурьев, В.И. Справочник конструктора-машиностроителя. В. 3 т. М.: Машиностроение, 2003.

2. Детали машин. Проектирование: Справочное учебно-методическое пособие / Л.В.Курмаз, А.Т.Скойбеда. 2-е изд., испр.: М.: Высш. шк., 2005. 09 с.

3. Дунаев, П.Ф., Леликов, О.П. Конструирование узлов и деталей машин. Учебное пособие. М.: Высшая школа. 2003. 447 с.

4. Яцун С.Ф., Лазурина Л.П., Мищенко В.Я., Кореневский Н.А.. Механика. Учебное пособие. Курск, КГМУ. 2007.ч.1, 200 с, ч.11, 160 с.

5. Чернилевский, Д.В. Детали машин. Проектирование приводов технологического оборудования: Учебное пособие. М.: Машиностроение, 2003. 560 с.

Размещено на Allbest.ru

...

Подобные документы

  • Выбор электродвигателя, кинематический и силовой расчет. Определение коэффициента полезного действия привода передачи. Разбивка передаточного числа привода по ступеням. Частота вращения приводного вала. Выбор твердости, термообработки и материала колес.

    задача [100,5 K], добавлен 11.12.2010

  • Проектирование механизма электромеханического привода, состоящего из электродвигателя и зубчатого коническо-цилиндрического редуктора. Выбор электродвигателя. Определение общего передаточного числа редуктора. Определение числа ступеней механизма.

    контрольная работа [310,7 K], добавлен 12.01.2014

  • Определение общего КПД привода. Расчет мощности и выбор электродвигателя. Определение передаточного числа редуктора, конструктивных особенностей зубчатых колес и деталей редуктора. Расчет тихоходной и быстроходной передач. Ориентировочный расчет валов.

    курсовая работа [366,1 K], добавлен 07.04.2013

  • Разработка кинематической схемы привода к цепному подвесному конвейеру, выбор двигателя; определение передаточного числа и ступеней привода. Расчет зубчатой цилиндрической передачи редуктора, допускаемой нагрузки валов; выбор твердости материала колес.

    курсовая работа [138,4 K], добавлен 15.01.2012

  • Кинематический расчет привода редуктора. Выбор и проверка электродвигателя с определением передаточного числа привода и вращающих моментов на валах. Расчет закрытой цилиндрической передачи привода. Выбор материала зубчатых колес и допускаемых напряжений.

    курсовая работа [377,6 K], добавлен 16.04.2011

  • Кинематический и силовой расчет привода. Расчет мощности электродвигателя. Определение общего передаточного числа привода и вращающих моментов. Выбор материала для изготовления зубчатых колес. Проектный расчет валов редуктора и шпоночного соединения.

    курсовая работа [654,1 K], добавлен 07.06.2015

  • Определение передаточного числа привода, основных параметров валов. Расчет зубчатой передачи. Предварительный выбор угла наклона зубьев. Проектировочный расчет на контактную выносливость. Эскизная компоновка редуктора. Расчет валов на прочность.

    курсовая работа [641,7 K], добавлен 27.01.2015

  • Предварительный расчет привода. Выбор двигателя. Определение передаточного числа привода и его ступеней. Определение силовых и кинематических параметров привода. Расчет червячной передачи. Конструирование корпуса. Посадки основных деталей.

    курсовая работа [2,2 M], добавлен 18.04.2006

  • Определение расчетной мощности электродвигателя, передаточного числа привода. Расчет мощностей, передаваемых валами привода, и крутящих моментов. Проектный расчет тихоходной и конической зубчатых передач, подшипников вала по статической грузоподъемности.

    курсовая работа [190,2 K], добавлен 08.09.2010

  • Определение передаточного числа привода и разбивка его по ступеням. Расчет зубчатых колес. Геометрические параметры быстроходного вала. Конструктивные размеры шестерни и колеса. Подбор подшипников и шпонок для валов. Выбор смазки и сборка редуктора.

    курсовая работа [608,3 K], добавлен 03.02.2016

  • Кинематический расчет привода, определение мощности и частоты вращения двигателя, передаточного числа привода и его ступеней, силовых параметров. Выбор материала, расчет зубчатой конической передачи, открытой клиноременной передачи, компоновка редуктора.

    курсовая работа [3,0 M], добавлен 27.06.2010

  • Проектирование привода пластинчатого конвейера, составление его кинематической и принципиальной схемы, выбор подходящего электродвигателя. Определение общего передаточного числа и разбивка его по ступеням. Расчет ступеней редуктора и цепной передачи.

    курсовая работа [779,5 K], добавлен 26.07.2009

  • Схема привода и прямозубого горизонтального редуктора. Определение передаточного числа зубчатой передачи и частоты вращения ведущего вала. Расчет ширины зубчатых венцов и диаметров колес. Окружная скорость в зацеплении и степень точности передачи.

    курсовая работа [1,1 M], добавлен 20.10.2011

  • Выбор электродвигателя, расчет передаточного числа привода и его разбивка. Поверочный расчет зубьев колеса на выносливость по контактным напряжениям, подшипников на долговечность по динамической грузоподъемности. Определение реакций и моментов.

    курсовая работа [2,3 M], добавлен 01.02.2011

  • Определение номинальной мощности и номинальной частоты вращения двигателя, передаточного числа привода и его ступеней. Расчет клиноременной передачи, зубчатых колес редуктора. Проверка долговечности подшипников. Выбор сорта масла. Сборка редуктора.

    курсовая работа [265,3 K], добавлен 25.11.2010

  • Определение мощности, частоты вращения и крутящего момента вала электродвигателя; общего передаточного числа; основных параметров тихоходной передачи. Расчет быстроходной ступени, цепной передачи, шпоночных соединений. Выбор подшипников качения и муфты.

    курсовая работа [954,3 K], добавлен 16.01.2015

  • Выбор электродвигателя и расчёт привода червячной передачи. Определение общего передаточного числа привода и разбивка его по отдельным передачам. Выбор материалов червяка и червячного колеса. Порядок расчета цепной передачи, проектный расчет валов.

    курсовая работа [246,2 K], добавлен 04.12.2010

  • Кинематический расчет силового привода. Определение передаточного числа для закрытой и открытой передачи. Оценка вращающего момента на валу электродвигателя. Конструктивные размеры зубчатых колёс и корпуса редуктора. Анализ прочности шпоночных соединений.

    курсовая работа [2,0 M], добавлен 10.03.2013

  • Срок службы машинного агрегата. Выбор двигателя: определение мощности и частоты вращения двигателя, передаточного числа привода и его ступеней, силовых и кинематических параметров привода. Расчет зубчатых передач редуктора. Нагрузки валов редуктора.

    курсовая работа [1,0 M], добавлен 31.05.2010

  • Определение основных параметров привода. Требуемая мощность электродвигателя. Расчет цилиндрической косозубой передачи быстроходной ступени. Определение числа зубьев звездочек и шага цепи. Конструктивные размеры крышки и корпуса редуктора, шпонок.

    контрольная работа [691,0 K], добавлен 16.12.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.