Розвиток наукових основ пресування профілів з тонкостінними елементами з алюмінієвих сплавів і методів розрахунку плоских форкамерних матриць
Розгляд причин зростання споживання пресованих профілів з алюмінієвих сплавів. Знайомство з головними методами розрахунку плоских форкамерних матриць. Аналіз етапів розробки двовимірного математичного опису пластичної течії металу при пресуванні.
Рубрика | Производство и технологии |
Вид | автореферат |
Язык | украинский |
Дата добавления | 27.07.2014 |
Размер файла | 63,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Розвиток наукових основ пресування профілів з тонкостінними елементами з алюмінієвих сплавів і методів розрахунку плоских форкамерних матриць
Вступ
В останнє десятиріччя в будівництві і машинобудуванні істотно зросло споживання пресованих профілів з алюмінієвих сплавів. Значну частину цієї продукції складають суцільні тонкостінні профілі зі зниженою металоємністю і складною формою поперечного перерізу, до точності геометричних розмірів яких висуваються високі вимоги. Пресування таких профілів з алюмінієвих сплавів низької і середньої міцності ведеться крізь плоскі матриці з форкамерою.
Актуальність теми. Існуючі уявлення про залежність формозміни металу від конструкції інструмента при пресуванні профілів з алюмінієвих сплавів і засновані на них методи розрахунку плоских форкамерних матриць не дозволяють врахувати комплексний вплив на характер течії металу ряду важливих факторів, таких як зміщення середньої лінії каналу відносно середньої лінії форкамери, зміщення каналу відносно центра матриці, довжина паска, глибина і ширина форкамери, поперечний розмір контейнера. Зазначена обставина не дає в загальному випадку розрахувати всі необхідні геометричні розміри елементів матриці. Це приводить до змушеного визначення деяких параметрів конструкції, виходячи з досвіду. Внаслідок цього інструмент не завжди може забезпечити прямолінійність виходу профілю з матриці і точність його поперечних геометричних розмірів. Тому нова матриця проходить одне чи декілька пробних пресувань (обпресувань), що знижує продуктивність преса, підвищує витрату металу та енергоспоживання. Через високу нерівномірність деформації задача забезпечення точності виробів стоїть особливо гостро при прямому пресуванні тонкостінних профілів крізь плоскі матриці.
Таким чином, робота, що спрямована на визначення закономірностей формозміни металу в залежності від геометричних розмірів елементів плоских форкамерних матриць при пресуванні суцільних профілів з тонкостінними елементами з алюмінієвих сплавів і розвиток на основі отриманих залежностей методу розрахунку параметрів конструкції таких матриць, є актуальною.
Зв'язок роботи з науковими програмами, планами, темами. Виконання дисертаційної роботи пов'язано з тематичними планами наукових досліджень Національної металургійної академії України (НМетАУ). Дослідження виконані в рамках програм і відповідної тематики держбюджетних науково-дослідних робіт кафедри обробки металів тиском НМетАУ, ДР № 0198U000448, № 0100U000768, № 0103U003217. Автор був виконавцем цих робіт.
Мета і задачі дослідження. Метою роботи є вивчення закономірностей формозміни металу в залежності від геометричних параметрів конструкції інструменту і вдосконалення на основі отриманих даних методу розрахунку плоских форкамерних матриць для пресування тонкостінних профілів з алюмінієвих сплавів, що забезпечує поліпшення показників якості з геометричних розмірів прес-виробів і ресурсозбереження.
Для досягнення поставленої мети сформульовані такі задачі:
розробити двовимірний математичний опис пластичної течії металу при пресуванні на основі методу кінцевих елементів і реалізувати його у вигляді комп'ютерної програми;
визначити експериментально і теоретично діапазон працездатності розробленої моделі;
проаналізувати конструкцію плоских форкамерних матриць і виділити комплекс безрозмірних геометричних параметрів пресового інструменту;
провести теоретичне дослідження впливу на кривизну елемента профілю таких факторів, як глибина і ширина форкамери, ширина каналу і довжина паска, поперечний розмір контейнера, зміщення каналу відносно осі контейнера, зміщення середньої лінії форкамери відносно середньої лінії каналу;
проаналізувати результати досліджень і одержати математичний опис залежності кривизни елемента профілю, що виходить із матриці, від параметрів конструкції матриці;
розвинути метод розрахунку геометричних параметрів конструкції інструменту і розробити методику проектування плоских форкамерних матриць для пресування алюмінієвих профілів з тонкостінними елементами;
розробити за запропонованою методикою плоскі форкамерні матриці і використати їх на промислових горизонтальних гідравлічних пресах.
Об'єкт дослідження. Процес прямого пресування суцільних профілів з тонкостінними елементами з алюмінієвих сплавів низької і середньої міцності.
Предмет дослідження. Залежність формозміни металу при пресуванні від геометричних параметрів плоских форкамерних матриць.
Методи дослідження. Теоретичні дослідження засновані на фундаментальних закономірностях теорії обробки металів тиском і теорії пластичності. Натурні експерименти проводилися в лабораторних умовах з використанням сучасної вимірювальної апаратури. При проведенні досліджень використані методи математичного моделювання і статистичної обробки даних із застосуванням комп'ютерної техніки.
Наукова новизна. Наукову новизну мають перелічені нижче результати теоретичних і експериментальних досліджень, які вперше отримані в дисертації:
1. Вперше теоретично визначені залежності кривизни тонкостінних елементів профілів з алюмінієвих сплавів від комплексу безрозмірних геометричних параметрів конструкції інструменту при пресуванні.
До даної роботи подібні теоретичні залежності не були відомі. Результати, що були отримані, дозволяють підвищити точність геометричних розмірів продукції, яку одержують пресуванням крізь плоскі форкамерні матриці.
2. Дістав розвиток метод розрахунку плоских матриць з форкамерою для пресування суцільних профілів з тонкостінними елементами з алюмінієвих сплавів.
Розробка відрізняється урахуванням комплексного впливу на характер течії металу ряду параметрів конструкції інструмента, таких як зміщення середньої лінії каналу відносно середньої лінії форкамери, зміщення каналу відносно центра матриці, довжина паска, глибина і ширина форкамери, поперечний розмір контейнера. Використання удосконаленого методу розрахунку дозволяє оптимізувати вказані розміри матриць для пресування профілів з тонкостінними елементами і забезпечити ресурсозбереження і поліпшення показників якості з геометричних розмірів прес-виробів.
3. Дістав подальший розвиток метод експериментального визначення залежності кривизни профілю від коефіцієнта витяжки при асиметричному пресуванні крізь складену форкамерну матрицю.
Розробка відрізняється використанням в експериментах з асиметричного пресування складеної матриці з форкамерою і високими коефіцієнтами витяжки (30…110). Експериментально визначена залежність кривизни профілю від коефіцієнта витяжки дозволяє підвищити точність геометричних розмірів прес-виробів з тонкостінними елементами.
4. Вперше при рішенні задачі пластичної течії металу в процесі пресування методом кінцевих елементів дійсні поля швидкостей і середньої гідростатичної напруги визначені шляхом аналітичного обчислення локальної матриці жорсткості для прямокутного мультиплекс-елемента.
Розробка відрізняється аналітичним обчисленням локальної матриці жорсткості для прямокутного мультиплекс-елемента при розрахунку формозміни в ході пресування на основі функціонала варіаційного принципу Маркова. Отриманий результат дозволяє формалізувати відповідний етап розрахунку напружено-деформованого стану металу методом кінцевих елементів для використання в рішенні задач інших процесів обробки тиском.
Практична цінність отриманих результатів. Дослідження процесу пресування суцільних профілів з тонкостінними елементами крізь плоскі матриці з форкамерою дозволили:
створити методику проектування плоских форкамерних матриць, що забезпечують поліпшення геометричних характеристик і ресурсозбереження при пресуванні профілів з тонкостінними елементами з алюмінієвих сплавів;
визначити залежності скривлення профілю від комплексу геометричних параметрів пресового інструменту, що дозволяють обґрунтувати зміни, які необхідно внести в конструкцію плоских форкамерних матриць у випадку потреби в коректуванні;
оптимізувати величину співвідношення глибини і ширини форкамери, що забезпечує зменшення скривлення профілю, який виходить із матриці;
розробити методику проектування і створити плоску форкамерну матрицю для пресування вигнутих профілів (деклар. пат. України №60655А);
розробити матрицю для багатоканального пресування, що може бути використана для виробництва профілів з тонкостінними елементами (деклар. пат. України 60591А).
Результати дисертаційної роботи використані на заводі ЗАТ з ІІ ВО ”Югчермет”, де розрахунок параметрів конструкції плоских форкамерних матриць для пресування профілів з тонкостінними елементами з алюмінієвого сплаву АД31 здійснюється за запропонованою у роботі методикою (акт від 25.12.2003 р.).
Результати роботи використані в Інституті матеріалознавства Ганноверського університету (Німеччина) при проектуванні плоскої форкамерної матриці для пресування П-подібного профілю, яка використовується для розробки технологічних режимів пресування магнієвого сплаву AZ31 (довідка від 29.12.2003 р.).
Розробки, що були виконані в дисертації, використовуються в навчальному процесі на кафедрі обробки металів тиском НМетАУ при читанні курсу “Виробництво металовиробів, пресованих і гнутих профілів”, а також при виконанні студентами дипломних проектів і випускних магістерських робіт (довідка від 09.01.2004 р.).
Особистий внесок здобувача. У дисертації не використані ідеї співавторів публікацій. Усі принципові теоретичні та експериментальні результати, що були отримані в дисертації, засновані на дослідженнях, проведених автором. Особистий внесок здобувача в публікаціях зі співавторами полягає в наступному: [2] - теоретична оцінка незалежного впливу на характеристики формозміни зміщення каналу матриці відносно осі контейнера і глибини форкамери; [3] - аналіз конструкції інструменту і виділення обмеженого числа факторів, що впливають на пластичну течію металу, теоретичний аналіз залежності кривизни профілю від взаємозалежної зміни зміщення середньої лінії каналу відносно осі контейнера і глибини форкамери; [4] - теоретичні дослідження закономірностей формозміни в залежності від поперечного розміру контейнера, ширини форкамери і зміщення середньої лінії форкамери відносно середньої лінії каналу; [5] - організація і проведення експериментів, розробка конструкції складеної експериментальної матриці, обробка отриманих даних; [6] - аналіз зарубіжних літературних джерел; [7] - аналіз впливу калібруючих пасків на параметри формозміни металу; [8] - одержання шляхом теоретичного аналізу залежності кривизни елемента прес-виробу від глибини і ширини форкамери; [9] - розробка конструкції плоскої матриці для багатоканального пресування суцільних профілів; [10] - одержання математичної залежності, що лягла в основу методики проектування матриць для пресування вигнутих профілів, промисловий експеримент по впровадженню результатів досліджень.
Апробація результатів дисертації. Матеріали дисертації доповідалися і обговорювалися на: V Міжнародній науково-технічній конференції "Теоретичні проблеми прокатного виробництва" (Дніпропетровськ, 2000); Науковій конференції, присвяченій 50-річчю Відділення металургії та матеріалознавства Честоховської політехніки "Nowe technologie i osi№gnкcia w metalurgii i inїenerii materiaіowej" (Польща, 2000); Міжнародній науково-технічній конференції "Павловские чтения" (Москва, 2000); Міжнародній науково-технічній конференції "Удосконалення процесів та обладнання обробки тиском в металургії і машинобудуванні" (Краматорськ, 2001); ІІ Міжнародній конференції "Прогресивна техніка і технологія - 2001" (Севастополь, 2001); ІІІ Міжнародній науковій конференції "Nowe technologie i osi№gnкcia w metalurgii i inїenerii materiaіowej" (Польща, Честохов,2002); Міжнародній науково-технічній конференції "Проблеми і перспективи розвитку процесів і машин обробки тиском" (Краматорськ, 2002); ІІІ Міжнародній конференції "Прогресивна техніка і технологія - 2002" (Севастополь, 2002); VІ Міжнародній науково-технічній конференції "Пластична деформація металів" (Дніпропетровськ, 2002); Міжнародній науково-технічній конференції "Удосконалення процесів та обладнання обробки тиском в металургії і машинобудуванні" (Краматорськ, 2003); IV Міжнародній конференції "Прогресивна техніка і технологія - 2003" (Севастополь, 2003) та на об`єднаному науковому семінарі кафедри обробки металів тиском НМетАУ і прокатних відділів ІЧМ НАНУ (Дніпропетровськ, 2000, 2001, 2002, 2003, 2004 р.р.).
Публікації. Матеріали дисертації опубліковані в 5 статтях у спеціалізованих виданнях, а також додатково в 3 статтях у тематичних збірниках і в 2 деклараційних патентах України.
Структура дисертації. Робота складається зі вступу, п'яти розділів і висновків, викладена на 118 сторінках, містить: таблиць - 6, рисунків - 55, список використаних джерел з 80 найменувань, додатків - 9.
У вступі представлена загальна характеристика роботи: обґрунтована актуальність теми, визначені мета, задачі, об'єкт, предмет і методи досліджень, висвітлені наукова новизна і практичне значення отриманих результатів, особистий внесок здобувача, публікації, апробація отриманих результатів і структура дисертації.
1.Аналіз формозміни металу при пресуванні суцільних профілів з алюмінієвих сплавів і методів розрахунку плоских матриць
алюмінієвий сплав форкамерний матриця
Основною особливістю пресування профілів складної форми з круглих заготовок є виникнення додаткових деформацій і напруг, що приводять до викривлення форми профілю або навіть до появи тріщин на його поверхні. Це пов'язано з нерівномірністю швидкостей течії металу усередині контейнера через тертя об інструмент, прагненням елементів профілю з меншим питомим периметром (співвідношенням периметра стінок елементу каналу до його площини) до витікання з більшою швидкістю та іншими факторами. Для запобігання викривлень форми профілю необхідно забезпечити прямолінійність і рівномірність пластичного витікання металу по кожному з елементів каналу матриці. Цього можна добитись шляхом раціонального розташування каналу на дзеркалі матриці, завдання перемінної товщини калібруючого паска по елементах каналу, вибору оптимальної форми і розмірів форкамери.
Раціональне розташування каналу дозволяє лише зменшити, але не усунути нерівномірність деформації по елементах профілю.
Вирівнювання швидкостей витікання за рахунок зміни довжини паска на різних ділянках профілю можливо шляхом збільшення цієї довжини в елементах з малим питомим периметром, а на ділянках з великим питомим периметром - навпаки. Відомий ряд формул і методик для розрахунку довжини паска, такі як формули Матвєєва-Журавського, Кс. Чанга, А. Кастла, методика В.П. Альошина та ін. Крім окремих недоліків, указані формули і методики не враховують можливої наявності форкамери, що також впливає на формозміну металу.
Форкамера дає можливість здійснювати процес пресування у режимі “заготовка за заготовкою” і дозволяє вирівнювати швидкості витікання по різних ділянках каналу. Ранні формули, що враховують вплив геометрії форкамери на формозміну, засновані на даних, отриманих з виробничого досвіду, а більшість розробок останнього десятиріччя - на результатах математичного моделювання пластичної течії металу.
Існуючі методи розрахунку плоских форкамерних матриць є неповними і не дозволяють врахувати комплексний вплив на течію металу таких параметрів конструкції інструменту, як зміщення середньої лінії каналу відносно середньої лінії форкамери, зміщення каналу відносно центра матриці, довжина паска, глибина і ширина форкамери, поперечний розмір контейнера. Тому виникає задача одержання залежностей формозміни металу від параметрів конструкції інструмента для пресування тонкостінних профілів з алюмінієвих сплавів і подальшого удосконалення методів розрахунку плоских форкамерних матриць.
2.Математична модель пластичної формозміни металу в процесі пресування крізь плоску матрицю
Незважаючи на підвищений інтерес до об'ємного моделювання, дослідження, пов'язані з великою кількістю розрахунків, доцільно здійснювати на двовимірних моделях, оскільки вони мають більшу гнучкість, забезпечують менший час розрахунку при тій самій точності, а також дозволяють виділити обмежене число окремих факторів, що впливають на формозміну металу. Виходячи з цього, була розроблена двовимірна математична модель для дослідження процесу пресування профілів при великих коефіцієнтах витяжки (40 і більше).
В основу математичної моделі покладені наступні припущення: деформований стан при видавлюванні матеріалу з контейнера приймається плоским; процес прямого пресування вважається умовно сталим (квазістаціонарним) і ізотермічним; матеріал, що деформується - нелінійно-в'язкий і нестисливий, опір деформації якого залежить від ступеня, швидкості деформації і температури.
Задача пластичної течії розв'язується шляхом дискретизації методом кінцевих елементів функціонала варіаційного принципу Маркова, який для випадку плоскої деформації має вид:
,
де - умовна в'язкість металу, що визначається по формулі:
,
- залежність інтенсивності напруг зсуву від інтенсивності швидкості деформації зсуву , деформації зсуву і температури ; S - площина перетину тіла, що деформується; - швидкість відносної зміни об'єму; - середня гідростатична напруга; і - напруга тертя і швидкість ковзання металу по інструменту; l - довжина поверхні контакту металу з інструментом. Дійсні поля швидкостей і середньої гідростатичної напруги визначаються, виходячи з умови стаціонарності функціонала (1), коли варіації функціонала по вузлових швидкостях і середній гідростатичній напрузі по елементу дорівнюють нулю. Для дискретизації зони деформації обрано прямокутний мультиплекс-елемент, що дозволяє обчислити коефіцієнти локальної матриці жорсткості аналітичним шляхом. Кінематичне співвідношення описується рівнянням Стокса. У результаті підстановок у функціонал функцій, що апроксимують швидкості на прямокутному мультиплекс-елементі, варіювання функціонала та інтегрування виразів одержуємо систему з дев'яти лінійних алгебраїчних рівнянь (3), коефіцієнти при швидкостях і гідростатичній напрузі якої складають локальну матрицю жорсткості.
де 2а і 2b - розміри елемента, Ui і Vi - швидкості у вузлах елемента в напрямку осей oX і oY, відповідно.
Отримана локальна матриця жорсткості може використовуватися для кінцево-елементного моделювання формозміни матеріалу не тільки при пресуванні, але і стосовно до інших процесів обробки тиском у випадку розбивки області на прямокутні мультиплекс-елементи.
У рамках моделі використовується теорія пластичності Сен-Венана-Леві-Мізеса, що встановлює зв'язок між компонентами тензора швидкостей деформації і тензора напруг.
Реологічні властивості металу описуються за допомогою методу термомеханічних коефіцієнтів. Для урахування нелінійності реологічних властивостей матеріалу використано метод гідродинамічних наближень.
Математична модель реалізована у вигляді спеціалізованої комп'ютерної програми. Крім розрахункового модуля в пакет програм увійшла програма генерації кінцево-елементної сітки і програма-візуалізатор, за допомогою якої по отриманому дійсному полю швидкостей розраховується скривлення профілю на виході з матриці і представляється на дисплеї комп'ютера. Також як візуалізатор може використовуватися стандартна програма Surfer32. Спеціалізовані комп'ютерні програми реалізовані на мові програмування С++. Тестування моделі здійснювалось на задачі Пуазейля і при моделюванні прямого пресування. Задача Пуазейля є задачею течії лінійно-в'язкого нестисливого середовища в напівобмеженому контейнері з паралельними стінками, з відомим аналітичним рішенням розрахунку розподілу швидкості потоку по висоті каналу на ділянці сталої одномірної течії. Порівняння результатів обчислень по аналітичній формулі і двовимірній математичній моделі на безрозмірному віддаленні від входу в канал, рівному 3, показало, що максимальна погрішність розрахунку склала 1,8%. Таким чином, тестування розробленої моделі на задачі Пуазейля довело досить високу точність чисельного рішення. Моделювання процесу пресування проводилось на штабі товщиною 2 мм із контейнера з поперечним розміром 160 мм. Довжина контейнера 190 мм. Матриця виконана безпасковою, з форкамерою глибиною 15 мм. Середня лінія каналу і вісь контейнера співпадають. Швидкість пресування 10 мм/с, температура металу 480 С. Моделювалась течія алюмінієвого сплаву AlMgSi. Теоретичне рішення показало, що профіль виходить з матриці прямолінійно. Швидкість течії по висоті прес-виробу розподілена рівномірно і дорівнює 793,6 мм/с.
На наступному етапі тестування середня лінія каналу зміщалась відносно осі контейнера на 40 мм. Інші параметри залишались без зміни. У результаті розрахункова кривизна профілю на базовій довжині 98 мм склала 28,27 мм/м. Скривлення прес-виробу відбувається в напрямку від осі контейнера. Швидкості по верхньому і нижньому вузлах сітки на кінці профілю дорівнюють 777,7 мм/с і 787,8 мм/с, відповідно. Рішення тестової задачі прямого пресування показало адекватність результатів, що одержуються, фізичним особливостям процесу. Перевірка виконання умови нестисливості встановила, що втрати об'єму металу не перевищили 1%, що є припустимим результатом для великих деформацій, які мають місце при пресуванні.
3.Експериментальне дослідження течії металу при пресуванні крізь плоску форкамерну матрицю
Результати експериментальних досліджень процесу асиметричного пресування, проведені раніше Б.О. Прудковським, В.М. Щєрбою та ін., мають якісний характер і відносяться до малих значень коефіцієнта витяжки (1,33...4).
Експеримент було проведено в умовах лабораторії кафедри ОМТ НМетАУ на вертикальному гідравлічному пресі зусиллям 10 МН. Використовувався контейнер внутрішнім діаметром 77,8 мм і плоска складена форкамерна матриця. Конструкція матриці дозволяє змінювати товщину профілю-штаби в залежності від товщини вставок 2. Пресування здійснювали без нагрівання заготовки і без використання мастила. Швидкість переміщення прес-штемпеля 0,5 мм/с, матеріал заготовки- свинець марки С1.
Для умов, ідентичних умовам проведення експерименту, було здійснено розрахунок скривлення профілю за допомогою двовимірної математичної моделі. З метою урахування зміни поперечного розміру круглого контейнера уздовж ширини профілю поперечний розмір контейнера прийняли рівним 75,8 мм, виходячи з умови рівності площін частини кола без двох сегментів, обмежених хордами, що проходять через бічні лінії каналу, і прямокутника з шириною, рівній ширині каналу.
Як показали дослідження, при асиметричному пресуванні профіль після виходу з матриці згинається по радіусу в напрямку від осі контейнера. При відношенні ширини штаби до її товщини (Lп/s) більше 12 експериментальні та отримані за допомогою двовимірної математичної моделі дані досить близькі друг до друга: відносна погрішність розрахунку не перевищує 10%. Далі тонкостінними елементами профілю будемо вважати його ділянки з відношенням Lп/s 12.
Також було проведено порівняльне моделювання пластичної течії металу при гарячому пресуванні алюмінієвого сплаву на двовимірній і тривимірній кінцево-елементних моделях. Остання розроблена А.А. Міленіним і реалізована у вигляді програми Extrusion3D. Порівняльний аналіз результатів роботи цих моделей показав прийнятність використання для дослідження процесу пресування тонкостінних профілів моделі, в основі якої лежить допущення про плоский деформований стан матеріалу. Одержані якісні картини формозміни відповідають фізичним уявленням про течію металу при пресуванні і відомим експериментальним даним. Відносна розбіжність результатів розрахунків кривизни профілю при асиметричному пресуванні по двовимірній і тривимірній математичним моделям не перевищила 10 %.
4.Теоретичне дослідження впливу параметрів конструкції плоскої форкамерної матриці на пластичну течію металу при пресуванні
Аналіз геометричних розмірів пресового інструменту дозволяє виділити сім характерних розмірів, що чинять безпосередній вплив на течію металу: поперечний розмір контейнера, D; відстань від осі контейнера до середньої лінії каналу (ексцентриситет), e; глибина H і ширина B форкамери; зміщення середньої лінії форкамери відносно середньої лінії каналу, b; ширина каналу (товщина штаби), s; довжина паска, h. Виділимо шість безрозмірних геометричних параметрів конструкції: 2e/D, B/H, b/B, h/s, B/s, Dк/s.
Для аналізу впливу цих параметрів на пластичну течію металу прийняті наступні базисні вихідні умови розрахунків: профіль - штаба; D = 160 мм; довжина заготовки 190 мм; s= 2 мм; Н = 10 мм; B = 12 мм; b = 0; е = 40 мм; h = 0; швидкість пресування стано-вить 10 мм/с; температура металу - 480 С; алюмінієвий сплав, що пресується - АД31. При дослідженні закономірностей формозміни в залежності від зміщення середньої лінії форкамери відносно середньої лінії каналу остання сполучалася з віссю контейнера (2е/D = 0), оскільки b/B - єдиний параметр, здатний змінювати напрямок вигину прес-виробу.
Слід зазначити, що профіль, що виходить з матриці, згинається по радіусу. Тому найбільш об'єктивною характеристикою скривлення профілю, що відображає реальне викривлення геометричної форми, служить його радіус вигину (r). Більш звична для оцінки кривизни характеристика відхилення від осі пресування на одиниці довжини () може бути розрахована по визначеному радіусу.
Для кожного з указаних безрозмірних геометричних параметрів конструкції інструменту проведено теоретичний аналіз його впливу на вигин профілю після виходу з матриці шляхом математичного моделювання з використанням двовимірної моделі, розглянутої вище.
5.Практичне використання методу розрахунку плоских форкамерних матриць для пресування профілів з тонкостінними елементами
З наведених у четвертому розділі безрозмірних геометричних параметрів конструкції інструменту лише один може компенсувати вигин елементу профілю, що виходить з матриці, обумовлений його зміщенням відносно осі контейнера е. Це - зміщення середньої лінії форкамери відносно середньої лінії каналу, що характеризується відношенням ?b/B. Інші фактори (H/B, D/s, B/s, h/s) впливають тільки на абсолютне значення цього вигину.
Запропоновано удосконалений метод розрахунку плоских форкамерних матриць, який містить наступні основні етапи: 1) визначення габаритних розмірів матриці; розрахунок виконавчих розмірів каналу; 2) розміщення каналу на дзеркалі матриці; обчислення довжини паска; 3) розподіл площі дзеркала матриці на області лініями розділу зон течії подібно до методики, запропонованій Ю.П. Глєбовим для проектування рельєфних матриць; 4) розподіл областей дзеркала матриці на ділянки лініями, перпендикулярними середній лінії каналу так, щоб стінка або полиця розбивалися на кілька рівних частин; 5) розрахунок центрів ваги ділянок дзеркала матриці і відстані від них до середньої лінії відповідного елементу каналу - ексцентриситету е; 6) визначення середнього розміру ділянки дзеркала матриці D як довжини перпендикуляра до середньої лінії каналу, що проходить через середину елемента каналу до границі ділянки дзеркала матриці; 7) призначення ширини форкамери В; 8) призначення глибини форкамери і параметра Н/В для кожного елемента каналу, виходячи з того, що мінімальна кривизна профілю, що виходить з матриці, забезпечується при H=(0,8…0,85)B; 9) обчислення кривизни елемента профілю в залежності від параметрів 2е/D, H/B, D/s, B/s, h/s, визначених вище.
Кривизна елемента прес-виробу в залежності від зазначених п'яти параметрів визначається як:
де 0 = 945 мм/м - базисне значення кривизни, визначене теоретично при базисних вихідних умовах (див. вище); kе, kH, kD, kB, kh - коефіцієнти, що враховують вплив безрозмірних параметрів 2е/D, H/B, D/s, B/s, h/s, відповідно. Коефіцієнти, що враховують вплив безрозмірних параметрів:
; (5)
; (7)
Коефіцієнт кореляції при визначенні коефіцієнта kе дорівнює 0,991. Відношення кореляції при обчисленні інших коефіцієнтів склало: kD - 0,971, kh - 0,999, kB - 0,899, kH - 0,955.
Значення коефіцієнтів у рівняннях регресії:
Таблиця
a0 |
a1 |
a2 |
a3 |
||
кD |
0,0005258 |
-0,0001359 |
0,7007 |
0,0001205 |
|
кh |
0,385 |
0,0375 |
0,061 |
- |
|
ке |
-0,037 |
1,99 |
- |
- |
|
кB |
0,013253 |
-0,025832 |
0,03123 |
0,18 |
|
кH |
4,924 |
-8,147 |
4883 |
- |
10) Визначення величини кривизни , що виникає від зміщення середньої лінії форкамери відносно середньої лінії каналу, необхідного для компенсації вигину, що виникає внаслідок ексцентриситету елемента, здійснюється по формулі:
Коефіцієнти в рівнянні регресії (10): а0 = -46,68; а1 = 56930; а2 = 19,762. Відношення кореляції при визначенні склало 0,978.
Обчислення коефіцієнтів рівнянь регресії, а також розрахунок кореляційного відношення виконувалося за допомогою стандартної програми STATISTICA 5.0.
11) Підбір величини зміщення середньої лінії форкамери відносно середньої лінії каналу здійснюється так, щоб . Зміщення середньої лінії форкамери здійснюється у напрямку від центру ваги ділянки дзеркала матриці.
Виявлений ефект вигину профілю при відсутності ексцентриситету, але при існуючому зміщенні середньої лінії форкамери відносно середньої лінії каналу використаний при розробці методики проектування і створенні конструкції матриці для пресування вигнутих профілів.
В умовах ВО “Югчермет” на горизонтальному гідравлічному пресі зусиллям 13,5 МН було здійснено промисловий експеримент по пресуванню крізь спроектований по наведеній вище методиці інструмент профілів “штапик” і “карниз” зі сплаву АД31. Профілі при пресуванні виходили з матриці прямолінійно, точність їхніх геометричних розмірів відповідає вимогам ДСТУ Б В.2.6-3-95.
У рамках спільної науково-дослідної роботи з Інститутом матеріалознавства Ганноверського університету (Німеччина) була розроблена плоска форкамерна матриця для пресування П-подібного профілю. Матриця використовувалася на горизонтальному гідравлічному пресі зусиллям 8 МН у Центрі пресування при Берлінському технічному університеті. Профіль виходив з матриці прямолінійно, відхилення кутів між полками і стінкою від прямого не перевищили 006'.
Висновки
У дисертації отримані теоретичне узагальнення і нове рішення науково-технічної задачі, що полягає у визначенні закономірностей формозміни металу в залежності від геометричних розмірів елементів плоских форкамерних матриць при пресуванні суцільних профілів з тонкостінними елементами з алюмінієвих сплавів і розвиненні на основі отриманих залежностей методу розрахунку параметрів конструкції таких матриць.
На основі аналізу існуючого стану теорії і практики процесу пресування профілів з алюмінієвих сплавів і науково-технічної літератури показано, що дослідження, які спрямовані на визначення залежностей формозміни металу від геометричних розмірів елементів плоских форкамерних матриць для виробництва суцільних профілів з тонкостінними елементами і розвиток на основі отриманих залежностей методу розрахунку параметрів конструкції таких матриць, є актуальними.
Розроблено двовимірний математичний опис пластичної течії металу в процесі пресування на основі дискретизації функціонала варіаційного принципу Маркова методом кінцевих елементів. Модель реалізована у вигляді комп'ютерної програми.
Одержав подальший розвиток метод розрахунку пластичної течії матеріалу при пресуванні з використанням методу кінцевих елементів. Вперше при рішенні задачі формозміни при пресуванні на основі функціонала варіаційного принципу Маркова дійсні поля швидкостей і середньої гідростатичної напруги визначені шляхом аналітичного обчислення локальної матриці жорсткості для прямокутного мультиплекс-елемента.
Одержав розвиток метод експериментального визначення залежності кривизни профілю від коефіцієнта витяжки при асиметричному пресуванні в частині використання складеної матриці з форкамерою і високих коефіцієнтів витяжки (30...110). Експериментально показано, що в зазначеному діапазоні коефіцієнтів витяжки кривизна профілю, що виходить з матриці, монотонно зростає. Крім того, встановлено, що при відношенні ширини штаби до її товщини більше 12 відносна погрішність між експериментальними та отриманими за допомогою двовимірної математичної моделі даними становить менше 10%.
На основі аналізу конструкції плоских форкамерних матриць вперше виділено комплекс безрозмірних геометричних параметрів конструкції інструменту, що впливають на характер пластичної течії металу при пресуванні.
У роботі вперше теоретично отримані залежності кривизни тонкостінних елементів профілів з алюмінієвих сплавів від комплексу геометричних параметрів конструкції інструменту, таких як довжина паска, зміщення середньої лінії каналу відносно осі контейнера, глибина і ширина форкамери, зміщення середньої лінії форкамери відносно середньої лінії каналу, розмір контейнера і ширина каналу при пресуванні.
Удосконалено метод розрахунку параметрів конструкції плоских форкамерних матриць для пресування суцільних профілів з тонкостінними елементами з алюмінієвих сплавів. Використання запропонованого методу забезпечує поліпшення показників якості з геометричних розмірів прес-виробів і зменшення кількості обпресувань, що приводить до зниження метало- і енергоємності процесу. Зокрема, на основі результатів теоретичного аналізу вперше визначена величина співвідношення глибини і ширини форкамери, що забезпечує найменшу кривизну профілю. Використання оптимального значення цього відношення, рівного 0,8...0,85, при проектуванні форкамерних матриць дозволяє досягти триразового зниження кривизни прес-виробу.
Результати роботи використані на заводі ЗАТ з ІІ ВО “Югчермет” при розробці конструкції плоских форкамерних матриць для виробництва тонкостінних прес-виробів з алюмінієвого сплаву АД31 і при коректуванні матриці для виготовлення профілю типу “панель” (акт від 25.12.2003 р.), в Інституті матеріалознавства Ганноверського університету (Німеччина) при проектуванні інструмента для пресування П-подібного профілю (довідка від 29.12.2003 р.), на кафедрі обробки металів тиском Національної металургійної академії України при читанні курсу “Виробництво металовиробів, пресованих і гнутих профілів” і при виконанні студентами кафедри дипломних проектів та випускних магістерських робіт (довідка від 09.01.2004 р.), а також при розробці методики проектування і створенні плоскої форкамерної матриці для виробництва вигнутих профілів (деклар. пат. України №60655А), і розробці матриці для багатоканального пресування, що може бути використана для виробництва профілів з тонкостінними елементами (деклар. пат. України 60591А).
Література
1. Гридин А.Ю. Двумерная математическая модель процесса прессования тонкостенного профиля из плоской матрицы с форкамерой // Удосконалення процесів і обладнання обробки тиском в металургії і машинобудуванні: Темат. зб. наук. пр. ДДМА.- Краматорськ-Хмельницький.- 2002. - С. 16-21.
2. Данченко В.М., Головко О.М., Гридін О.Ю. Дослідження впливу конструкції плоскої матриці на прямолінійність витікання металу при пресуванні // Вестник Национального технического университета Украины "Киевский политехнический институт": Машиностроение. - К.: НТУУ "КПІ". - 2002. - Вып. 43. - С. 51-53.
3. Данченко В.Н., Головко А.Н., Гридин А.Ю. Математическое моделирование формоизменения при прессовании тонкостенных алюминиевых профилей // Сучасні проблеми металургії. Наукові вісті. Том 5. Пластична деформація металів.- Дніпропетровськ: "Системні технології". - 2002. - С. 278-282.
4. Гридин А.Ю., Головко А.Н. Исследование формоизменения металла при прессовании тонкостенных алюминиевых профилей через форкамерные матрицы // Удосконалення процесів і обладнання обробки тиском в металургії і машинобудуванні: Темат. зб. наук. пр. ДДМА.- Краматорськ. - 2003. - С. 370-375.
5. Данченко В.Н., Гридин А.Ю., Головко А.Н. Экспериментальное исследование течения металла при асимметричном прессовании через плоскую форкамерную матрицу // Металлургическая и горнорудная промышленность.- 2003.- № 4. - С. 64-66.
Додатково наукові результати опубліковано у роботах:
6. Головко О.М., Бобух К.О., Гридін О.Ю. Проблеми продуктивності та якості при виробництві алюмінієвих профілів // Металлургическая и горнорудная промышленность. - 2000.- № 8-9. - С. 417-420.
7. Вопросы проектирования плоских матриц для прессования алюминиевых сплавов / А.Н. Головко, А.Ю. Гридин, Х. Дыя, Л.Н. Лесик // Sesja naukowa Nowe Technologie i Osiagniecia w Metalurgii i Inzynierii Materialowej.- Czestochowa.- 2000. - P. 16-21.
8. Danchenko V.N., Golovko A.N., Grydin A.Yu. Research of Influence of Prechember Depth on Rectylineality of Metal Outflow at Extrusion by Mathematical Modelling // Nowe technologie i osi№gnкcia w metalurgii i inїenerii materiaіowej. Seria: Metalurgia.- 2002.-N 25 - P.118-121.
9. Деклар. пат. 60591А Україна, МПК В21С25/02. Матриця для багатоканального пресування профілів / В.М. Данченко, О.М. Головко, О.Ю. Гридін (Україна). - №2003010187; Заявл. 08.01.2003; Опубл. 15.10.2003, Бюл. №10. - 4 с.
10. Деклар. пат. 60655А Україна, МПК В21С25/02. Матриця для пресування вигнутих профілів / В.М. Данченко, А.А. Міленін, О.М. Головко, О.Ю. Гридін (Україна). - №2003010643; Заявл. 24.01.2003; Опубл. 15.10.2003, Бюл. №10. - 4 с.
азмещено на Allbest.ru
...Подобные документы
Використання алюмінію та його сплавів у промисловості, висока та технічна чистота металу. Підвищення вмісту цинку та магнію для забезпечення регуляції їх пластичності та корозійної стійкості. Аналіз сплавів алюмінію за рівнем технологічності їх обробки.
контрольная работа [11,3 K], добавлен 19.12.2010Характеристика методів діагностики різальних інструментів для токарної обробки алюмінієвих сплавів. Розробка системи визначення надійності різця з алмазних композиційних матеріалів при точінні. Розрахунки значень напружень і ймовірності руйнування різця.
реферат [38,6 K], добавлен 10.08.2010Аналіз основних типів і властивостей сплавів – речовин, які одержують сплавленням двох або більше елементів. Компоненти сплавів та їх діаграми. Механічна суміш – сплав, в якому компоненти не здатні до взаємного розчинення і не вступають в хімічну реакцію.
реферат [1,1 M], добавлен 04.02.2011Вплив вуглецю та марганцю на термічне розширення та магнітні властивості інварних сплавів. Композиції, які забезпечили більшу міцність, ніж базового сплаву. Вплив вуглецю і марганцю на магнітну структуру сплавів Fe-Ni. Влив вуглецю на міжатомний зв’язок.
реферат [74,2 K], добавлен 10.07.2010Аналіз шляхів удосконалення конструкцій та методів розрахунку створюваних машин. Особливості вибору електродвигуна і визначення головних параметрів його приводу. Методика розрахунку роликової ланцюгової та закритої циліндричної косозубої зубчатої передач.
контрольная работа [192,8 K], добавлен 05.12.2010Отримання експериментальних даних про вплив іонізуючого опромінення на структуру та магнітні властивості аморфних і нанокристалічних сплавів на основі системи Fe Si-B. Результати досідження, їх аналіз та встановлення основних механізмів цього впливу.
реферат [32,4 K], добавлен 10.07.2010Основні формули для гідравлічного розрахунку напірних трубопроводів при турбулентному режимі руху. Методика та головні етапи проведення даного розрахунку, аналіз результатів. Порядок і відмінності гідравлічного розрахунку коротких трубопроводів.
курсовая работа [337,2 K], добавлен 07.10.2010Характеристика алюмінію та його сплавів. Розповсюдженість алюмінію у природі, його групування на марки в залежності від домішок. Опис, класифікація за міцністю та сфери використання сплавів магнію. Основні механічні й технологічні властивості міді.
курсовая работа [1,3 M], добавлен 22.01.2012Характеристика и применение плоских прямых пружин, их конструирование. Порядок расчета плоских пружин. Процесс проектирования и получения биметаллических плоских пружин. Применение спиральных пружин, мембран, сильфонов и трубчатых пружин, амортизаторов.
реферат [262,8 K], добавлен 18.01.2009Історія розвитку зварювання. Діаграма технологічної пластичності жароміцних нікелевих сплавів. Суть, техніка та технологія дифузійного зварювання. Вплив температури на властивості з'єднань при нормальній температурі сплавів. Процес дифузійного зварювання.
реферат [1,3 M], добавлен 02.03.2015Знакомство со способами отливки серого чугуна 190 НВ. Рассмотрение основных особенностей фрезерования плоских поверхностей. Анализ эскиза обработки вала шлифованием с радиальной подачей. Общая характеристика конструктивных элементов шлифовального станка.
контрольная работа [681,2 K], добавлен 22.11.2013Основные понятия и определение машин, механизмов, звеньев и кинематических пар. Группы Ассура. Расчет числа степеней свободы плоских и пространственных механизмов, анализ структуры плоских рычажных механизмов. Пассивные связи и избыточные подвижности.
шпаргалка [3,6 M], добавлен 15.12.2010Види зовнішніх навантажень на зварні з’єднання і матеріали. Машини для випробувань на тривалу міцність. Продовження штанги для закріплення зразків. Форма запису результатів випробувань металів і сплавів на тривалу міцність, допустимі відхилення.
курсовая работа [1,0 M], добавлен 01.06.2014Знайомство з особливостями створення машин, що відповідають потребам народного господарства. Аналіз кінематичних параметрів передачі двигуна. Проблеми вибору матеріалів черв`ячних коліс. Етапи проектного розрахунку циліндричної зубчастої передачі.
курсовая работа [1,7 M], добавлен 11.09.2014Знайомство з конструктивними особливостями дробилок з гладкими або рифленими валками, аналіз схеми. Розгляд способів попередження утворення рівчаків на поверхні валків. Характеристика етапів визначення передавального числа клиноремінної передачі.
курсовая работа [2,6 M], добавлен 07.08.2013Наявність каркасу з елементами огорожі та піддоном - конструктивна особливість барабанних мийних машин. Методика розрахунку швидкості переміщення продуктів в барабані в осьовому напрямку. Величина контактних напружень на робочих поверхнях зубців.
курсовая работа [4,7 M], добавлен 02.05.2019Исследование равновесия плоских шарнирных ферм, определение реакций внешних связей. Определение усилий в стержнях фермы методом вырезания узлов и методом Риттера. Система уравнений для определения реакций внешних и внутренних связей, значения реакций.
курсовая работа [907,0 K], добавлен 12.10.2009Устройство и принцип работы тисков для базирования и закрепления заготовок плоских деталей при обработке их на фрезерных и сверлильных станках. Расчет погрешности базирования заготовки в приспособлении. Определение экономической эффективности тисков.
курсовая работа [2,2 M], добавлен 13.02.2016Структурний аналіз механізму. Кінематичне дослідження механізму: побудування плану положень, швидкостей, прискорень, діаграм для крапки В. Визначення сил і моментів сил, що діють на ланки механізму, миттєвого механічного коефіцієнта корисної дії.
курсовая работа [289,3 K], добавлен 21.11.2010Особливості розрахунку гідравлічної схеми дискового розпилювального верстата LL/30 фірми "Бра". Основні етапи розрахунку: вибір гідроциліндрів і гідронасоса, підбір розподільників, клапанів. Підбір необхідної гідроапаратури для заданої гідросистеми.
курсовая работа [56,8 K], добавлен 20.08.2011