Бесконтактное измерение температуры
Контактные и бесконтактные методы для измерения температур. Использование термодатчиков из сплавов двух металлов. Люминесцентный способ определения степени нагрева предмета. Датчики на основе теплового излучения и поглощения света полупроводниками.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 06.09.2014 |
Размер файла | 17,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Введение
Существуют два основных способа для измерения температур -- контактные и бесконтактные. Контактные способы основаны на непосредственном контакте измерительного преобразователя температуры с исследуемым объектом, в результате чего добиваются состояния теплового равновесия преобразователя и объекта. Этому способу присущи свои недостатки. Температурное поле объекта искажается при введении в него термоприемника. Температура преобразователя всегда отличается от истинной температуры объекта. Верхний предел измерения температуры ограничен свойствами материалов, из которых изготовлены температурные датчики. Кроме того, ряд задач измерения температуры в недоступных вращающихся с большой скоростью объектах не может быть решен контактным способом. температура датчик излучение
Бесконтактный способ основан на восприятии тепловой энергии, передаваемой через лучеиспускание и воспринимаемой на некотором расстоянии от исследуемого объема. Этот способ менее чувствителен, чем контактный. Измерения температуры в большой степени зависят от воспроизведения условий градуировки при эксплуатации, а в противном случае появляются значительные погрешности. Устройство, служащее для измерения температуры путем преобразования ее значений в сигнал или показание, называется термометром (ГОСТ 13417-76)
Описание принципа бесконтактного метода измерения температуры
Thermopiles - это термоэлементы включенные последовательно, которые используют известный Seebeck - эффект. Термоэлемент состоит из двух электропроводных материалов, которые расположены в виде проводящих дорожек и которые в одной точке (так называемой hot junction) контактируют друг с другом. Если за счет внешнего воздействия возникнет разница температур между точкой контакта (hot junction) и обеими открытыми концами (cold junction), то на обоих концах термоэлементов появится напряжение в несколько милливольт.
При бесконтактном способе измерения температуры повышение температуры точки «hot junction» вызывается за счет абсорбирования попадающего в эту точку инфракрасного излучения. Каждый объект излучает инфракрасный свет, причем энергия этого света повышается с повышением температуры объекта. Базируясь на этом эффекте Thermopile-модули измеряют излучаемую мощность и таким образом с высокой точностью определяют температуру объекта.
Люминесцентный метод измерения температуры
В основе люминесцентных методов измерения температуры лежит температурная зависимость интенсивности люминесцентного излучения некоторых люминофоров, которое находит применение в различных датчиках измерения температуры и термопокрытиях.
Современные волоконно-оптические датчики позволяют измерять многие характеристики лабораторных и промышленных объектов, в частности температуру. Не смотря на то, что их использование достаточно трудоемко, оно дает ряд преимуществ, использования подобных датчиков на практике: безиндукционность (т.е. неподверженность влиянию электромагнитной индукции); малые размеры датчиков, эластичность, механическая прочность, высокая коррозийная стойкость и т.д.
1. Датчик на основе теплового излучения. В качестве устройств для измерения температуры могут быть использованы волоконно-оптические датчики на основе теплового излучения, сущность которых раскрываемая в частности состоит в следующем. Изучаемое вещество при температуре большей 0 К вследствие тепловых колебаний атомов и молекул испускает тепловое излучение. Энергия излучения увеличивается по мере повышения температуры, а длина волны, на которой излучение максимально, уменьшается. Соответственно для определения температуры можно использовать формулу Планка для энергии теплового излучения черного тела на фиксированной длине волны или в диапазоне волн.
Основным преимуществом данного способа является возможность бесконтактного измерения высоких температур. В зависимости от диапазона измеряемых температур выбирают световые детекторы и оптические волокна. Область измерения температур для волоконно-оптических датчиков излучения находится в пределах от 400 до 2000 °С. При использовании оптических волокон, прозрачных для инфракрасных лучей с длиной волны 2 мкм и более, можно осуществлять измерение и более низких температур.
2. Датчик на основе поглощения света полупроводником. Известны также волоконно-оптические датчики, работа которых основана на оптических свойствах некоторых полупроводников. Используемый полупроводник имеет граничную длину волны спектра оптического поглощения. Для света с более короткой длиной волны, чем у проводника, поглощение усиливается, причем по мере роста температуры граничная длина волны отодвигается в сторону более длинных волн (около 3 нм/К). При подаче на полупроводниковый кристалл луч от источника света, имеющего спектр излучения в окрестности указанной границы спектра поглощения, интенсивность света, проходящего через светочувствительную часть датчика, с повышением температуры будет падать. По выходному сигналу детектора, указанным методом можно регистрировать температуру.
Используя данный метод можно мерить температуру в интервале от 30 до 300 °С с погрешностью ±0,5 °С.
3. Датчик на основе флуоресценции. Данный датчик устроен следующим образом. На торец оптического волокна светочувствительной части нанесено флуоресцентное вещество. Флуоресцентное излучение, возникающее под воздействием ультрафиолетовых лучей, проводимых оптическим волокном, принимается этим же волокном. Температурный сигнал выявляется путем вычисления отношения соответствующих значений интенсивности флуоресцентного излучения для сигнала с длиной волны, сильно зависящего от температуры к интенсивности сигнала с другой длиной волны, слабо зависящего от температуры.
Область измеряемых температур таким датчиком находится в пределах от -50 до 200 °С с погрешностью ±0,1 °С.
Использование волоконно-оптических датчиков, при всей своей привлекательности, позволяет производить измерение температуры только в локальной точке объекта, что несколько сужает область их применения.
Заключение
Температура является одним из основных параметров, подлежащих контролю со стороны систем автоматического управления металлургическими процессами. В условиях агрессивных сред и высоких температур, наиболее подходящими для использования являются фотоэлектрические пирометры. Они позволяют контролировать температуру от 100 до 6000 0С и выше. Одним из главных достоинств данных устройств является отсутствие влияния температурного поля нагретого тела на измеритель, так как в процессе измерения они не вступают в непосредственный контакт друг с другом. Так же фотоэлектрические пирометры обеспечивают непрерывное автоматическое измерение и регистрацию температуры, что позволяет использовать их в системах автоматического управления процессами без дополнительных затрат на приобретение и обслуживание устройств сопряжения.
Представленный в работе обзор люминесцентных методов измерения температуры по сравнению с контактными методами обладает теми же преимуществами, что и оптические методы. В то же время он является менее сложным при организации процесса изучения температуры и не менее точным по сравнению с другими оптическими методами. Кроме того, использование свойств люминесценции делает возможным разработку методов измерения температурных полей объектов сложной геометрической формы.
Из вышеприведенного обзора очевидна необходимость дальнейшей разработки и совершенствования технологий измерения температуры с использованием люминесцентных методов.
Список использованных источников
1. Преображенский В. П. Теплотехнические измерения и приборы. М.: Энергия, 1978, - 704 с
2. Чистяков С. Ф., Радун Д. В. Теплотехнические измерения и приборы. М.: Высшая школа, 1972, - 392
3. Измерения в промышленности: Справ. Изд.
4. Никоненко В.А., Сильд Ю.А., Иванов И.А. Разработка системы метрологического обеспечения измерительных тепловизионных приборов. - Измерительная техника, № 4, 2004, с. 48-51
Размещено на Allbest.ru
...Подобные документы
Контроль температуры различных сред. Описание принципа бесконтактного метода измерения температуры. Термометры расширения и электрического сопротивления. Манометрические и термоэлектрические термометры. Люминесцентный метод измерения температуры.
курсовая работа [93,1 K], добавлен 14.01.2015Повышение оперативности управления системой нефтегазового снабжения. Определение температуры вспышки нефтепродуктов на автоматическом приборе. Применение ртутных термометров, термоэлектрических преобразователей. Бесконтактные методы измерения температуры.
курсовая работа [663,4 K], добавлен 28.01.2015Температура и температурные шкалы, условия ее измерения. Классификация термометрических свойств. Выпускаемые пирометрические датчики, промышленные устройства для дистанционного измерения температуры. Расчеты, подтверждающие работоспособность устройства.
курсовая работа [3,2 M], добавлен 31.07.2010Влияние высокотемпературной термомеханической обработки на тонкую кристаллическую структуру аустенитных сталей и сплавов. Закономерности роста зерен металлов и сплавов при высоких температурах. Влияние температуры на характеристики металлов.
курсовая работа [534,9 K], добавлен 28.12.2003Классификация ДСП (Дуговых сталеплавильных печей). Основные технические и эксплуатационные характеристики ДСП. Технологический процесс электродуговой плавки в печи. Методы измерения температуры. Принцип измерения температуры шомпольным термозондом.
курсовая работа [4,2 M], добавлен 13.11.2009Исследование методических печей с подвижными балками. Классификация средств измерения температуры контактным методом. Электрические контактные термометры. Выбор термоэлектрических термометров. Контроль температуры рабочего пространства методической печи.
курсовая работа [1,3 M], добавлен 22.01.2015Сущность пластической деформации металлов и влияние на неё химического состава, структуры, температуры нагрева, скорости и степени деформации. Определение легированных сталей, их состав. Литейные сплавы на основе алюминия: их маркировка и свойства.
контрольная работа [38,4 K], добавлен 19.11.2010Понятия и определения метрологии. Причины возникновения погрешностей и методы уменьшения. Средства измерения давления, температуры, веса, расхода и количества вещества. Расходомеры и счетчики. Динамическая характеристика измерительного устройства.
шпаргалка [2,4 M], добавлен 25.03.2012Порядок определения степени жаропрочности стали и сплавов, применяемых на современном производстве. Особенности использования жаропрочных сталей, изготавливаемые детали. Стали перлитного, мартенситно-ферритного, аустенитного класса, на никелевой основе.
контрольная работа [66,9 K], добавлен 06.05.2011Распространенность металлов в природе. Содержание металлов в земной коре в свободном состоянии и в виде сплавов. Классификация областей современной металлургии в зависимости от методов выделения металлов. Характеристика металлургических процессов.
презентация [2,4 M], добавлен 19.02.2015Понятие твердости. Метод вдавливания твердого наконечника. Измерение твердости по методу Бринелля, Виккерса и Роквелла. Измерение микротвердости. Порядок выбора оборудования. Проведение механических испытаний на твердость для определения трубных свойств.
курсовая работа [532,5 K], добавлен 15.06.2013Классификация и применение процессов объемного деформирования материалов. Металлургические и машиностроительные процессы обработки металлов давлением. Методы нагрева металла при выполнении операций ОМД. Технология холодной штамповки металлов и сплавов.
контрольная работа [1,2 M], добавлен 20.08.2015Классификация методов измерения. Анализ влияния факторов на измерение. Измерительные схемы газоанализаторов и их основные узлы. Оптико-акустические приемники излучения. Рабочие и фильтровые кюветы. Разработка программы калибровки измерительных сигналов.
курсовая работа [4,1 M], добавлен 08.01.2014Стандартизация в авиастроении, содержание работ в этой области на предприятии. Методы и средства измерений и контроля; применение вычислительной техники. Основы метрологической экспертизы документации. Контактные и бесконтактные средства измерений.
отчет по практике [21,5 K], добавлен 29.03.2013Понятие, сущность и основные особенности спирометрии. Применение удельного веса для суждения о процентном содержании. Прибор для отгонки спирта из спиртовых жидкостей. Способ определения процентного содержания алкоголя и определения температуры кипения.
реферат [942,9 K], добавлен 16.02.2009Перемещение дислокаций при любых температурах и скоростях деформирования в основе пластического деформирования металлов. Свойства пластически деформированных металлов, повышение прочности, рекристаллизация. Структура холоднодеформированных металлов.
контрольная работа [1,2 M], добавлен 12.08.2009Температура и температурные шкалы. Технические термометры электроконтактные. Структурные схемы стабилизированных источников электропитания. Разработка и описание работы измерительного канала микропроцессорной системы измерения и контроля температуры.
дипломная работа [3,4 M], добавлен 30.06.2012Сущность и назначение термической обработки металлов, порядок и правила ее проведения, разновидности и отличительные признаки. Термомеханическая обработка как новый метод упрочнения металлов и сплавов. Цели химико-термической обработки металлов.
курсовая работа [24,8 K], добавлен 23.02.2010Источники теплового излучения. Классификация пирометров, сфера их применения и технические характеристики. Показатель визирования. Схема яркостного пирометра с исчезающей нитью накала. Принцип действия болометра. Сферы применения и действие тепловизоров.
курсовая работа [297,9 K], добавлен 05.05.2016Формирование структуры и методы исследования свойств металлов; диаграмма состояния "железо-цементит". Железоуглеродистые сплавы; термическая обработка металлов и сплавов. Сплавы, применяемые в промышленности; выбор сплава на основе цветного металла.
контрольная работа [780,1 K], добавлен 13.01.2010