Классификация и устройство месильных машин

Классификация месильных машин пищевых сред, их разновидности и функциональные особенности, сферы и условия эффективного практического применения. Физико-химические основы процесса смешивания и факторы, влияющие на него. Тестомесильная машина Прима-375.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 16.09.2014
Размер файла 118,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Введение

тестомесильный пищевой машина

Приготовление теста, его разделка, расстойка и выпечка являются основными производственными процессами хлебопечения, предопределяющими качество готовой продукции. Оборудование для этих технологических процессов составляет производственную линию.

Состав и компоновка тестоприготовительных агрегатов и тесторазделочных линий, принцип действия и конструкции тестомесительных, делительных и формовочных машин зависят от выбранных технологических схем производства и свойств перерабатываемого сырья. Как правило, хлебопекарное оборудование, имеющее одинаковое функциональное назначение, но обрабатывающее ржаные или пшеничные полуфабрикаты, существенно отличается по конструкции и характеру движения рабочих органов.

В производственных линиях хлебозаводов все большее распространение получают машины и аппараты периодического действия, позволяющие четко реагировать на колебания спроса и оперативно изменять ассортимент вырабатываемой продукции. Оборудование производственных линий должно обеспечивать возможность регулирования технологических параметров полуфабрикатов в широких пределах, так как значительное количество поступающего на предприятия основного сырья характеризуется пониженными хлебопекарными качествами.

Создание новых технологий производства хлебных изделий является основой совершенствования технической базы хлебопекарной отрасли, что приводит к повышению качественных показателей выпускаемых машин и аппаратов, расширению номенклатуры оборудования и приборов.

Замес хлебопекарного теста заключается в смешивании сырья (муки, воды, дрожжей, соли, сахара и других компонентов) в однородную массу, придании этой массе необходимых структурно-механических свойств, насыщении ее воздухом и создания, таким образом, благоприятных условий для последующих технологических операций. Замес не простой механический процесс, он сопровождается биохимическими и коллоидными явлениями, повышением температуры замешиваемой массы.

1. Классификация месильных машин пищевых сред

В различных отраслях пищевой промышленности возникает необходимость в перемешивании жидких продуктов: для смешивания двух или нескольких жидкостей, сохранения определенного технологического состояния эмульсий и суспензий, растворения или равномерного распределения твердых продуктов в жидкости, интенсификации тепловых процессов или химических реакций, получения или поддержания определенной температуры или консистенции жидкостей и т.д.

Смешивание пищевых продуктов осуществляется в смесителях следующих типов: шнековых, лопастных, барабанных, пневматических (сжатым воздухом) и комбинированных.

Перемешивающие аппараты классифицируются (рис. 1):

Рис. 1. Классификация смесительных машин

- по назначению: для смешивания, растворения, темперирования и т.д.;

- по расположению аппарата: вертикальные, горизонтальные, наклонные, специальные,

- по характеру обработки рабочей среды: смешивание одновременно во всем объеме, в части объема и пленочное смешивание;

- по характеру движения жидкости в аппарате: радиальное, осевое, тангенциальное и смешанное;

- по принципу действия: механические, пневматические, эжекторные, циркуляционные и специальные;

- по отношению к тепловым процессам: со стеночной поверхностью теплообмена, с погружной поверхностью теплообмена и без использования тепловых процессов.

Для тонкого измельчения и перемешивания мясного сырья используют куттер-мешалку. Кусковые вязкие и вязкопластичные продукты (муку, мясо, мясной фарш, творожно-сырковую массу) перемешивают шнеками, лопастями в барабанных и других смесителях. Жидкие продукты (молоко, сливки, сметана и др.) перемешивают в емкостях лопастными, пропеллерными и турбинными мешалками.

Тестомесильные машины разделяют на машины периодического и непрерывного действия.

Машины периодического действия бывают с месильными емкостями (дежами) - стационарными и сменными (подкатными), а дежи - неподвижными, со свободным и принудительным вращением.

По интенсивности воздействия рабочего органа на тесто тестомесильные машины разделяются на три группы:

- обычные тихоходные (рабочий процесс не сопровождается нагревом теста);

- быстроходные (рабочий процесс сопровождается нагревом теста на 5…7°С);

- супербыстроходные (замес сопровождается нагревом теста на 10…20°С и требуется специальное водяное охлаждение корпуса камеры).

По характеру движения месильного органа различают машины с круговым, вращательным, планетарным и сложным плоским и пространственным движением месильного органа.

Тестомесильные машины непрерывного действия (рис.) разделяют на следующие группы:

Рис. 2. Схемы тестомесильных машин периодического действия с подкатными дежами: а - машины с наклонной осью месильной лопасти и поступательным круговым движением ее; б-машины с наклонной осью вращения месильной лопасти, выполненной в виде трубы с пространственной конфигурацией; в-машины с месильной лопастью, рабочий конец которой совершает криволинейное плоское движение по замкнутой кривой; г-машины с месильной лопастью, совершающей криволинейное пространственное движение по замкнутой кривой в виде эллипса; д - машины со спиралеобразной месильной лопастью, вращающейся вокруг вертикальной оси; е - машины с четырехпалой месильной лопастью, вращающейся вокруг вертикальной оси, и одной неподвижной вертикальной лопастью; ж - машины с горизонтальной цилиндрической или плоской лопастью, вращающейся вокруг вертикальной оси; з - машины с горизонтальной лопастью, вращающейся вокруг вертикальной оси и наклонной осью дежи

- однокамерные с горизонтальным валом и Т-образными месильными лопастями, например машина Х-12 (рис. а)

Рис. 3. Схемы тестомесильных машин периодического действия со стационарными дежами: а - машины с горизонтальными и наклонными цилиндрическими месильными валами; б - машины со спаренными Z-образными лопастями, вращающимися в разные стороны вокруг горизонтальной оси; в-машины с шарнирной Z-образной месильной лопастью; г - машины с многоугольным ротором и витком шнека на дне емкости.

- одновальные с горизонтальным валом, на котором в начале месильной емкости размещены трапецеидальные плоские лопасти, а в конце - винтовой шнек, заключенный в цилиндрический корпус, например тестомесильная машина системы Хренова (рис. б);

- одновальные с горизонтальным валом, на котором вначале размещен смесительный шнек, а затем радиальные цилиндрические лопатки, например тестомесильная машина ФТК-1000 (рис. в);

- одновальные с горизонтальным валом, вначале которого закреплен шнек и затем дисковая диафрагма и четырехлопастный пластификатор (рис. г);

- одновальные с горизонтальной осью вращения, на которой в цилиндрической камере смешения размещен шнековый барабан с независимым приводом, в конической камере на валу закреплены месильные прямоугольные лопатки, а на ее стенках - неподвижные лопатки (рис. д);

- двухвальные с горизонтальными валами, на которых закреплены Т-образные месильные лопасти (рис. е);

- двухвальные с горизонтальными валами, вращающимися в разные стороны и закрепленными на них ленточными лопастями, например тестомесильная машина «Топос» (рис. ж);

- двухкамерные двухвальные, на валах которых закреплены винтообразные лопасти, образующие зоны смешения и замеса, а зона пластификации оборудована двумя четырехугольными звездочками, например тестомесильные машины РЗ-ХТО (рис. з);

- двухкамерные двухвальные, у которых имеется отдельная смесильная камера с приводом, а месильная камера с регулируемым приводом включает две зоны замеса: месильную, снабженную шнеками, и зону пластификации, рабочим органом которой являются кулаки (рис. и);

- с трехлопастным ротором, например тестомесильная машина системы Прокопенко (рис. к);

- с вертикальным цилиндрическим ротором, например тестомесильная машина РЗ-ХТН/1 (рис. л);

- с дисковым ротором, на котором размещены кольцевые выступы, а в щели между ними входят с небольшим зазором кольцевые выступы корпуса (рис. м).

Рис. 4. Схемы тестомесильных машин непрерывного действия

2. Физико-химические основы процесса смешивания

Процесс замеса хлебопекарного теста состоит из трех последовательных стадий: механического смешивания, образования структуры и пластификации. Механическое смешивание завершается образованием трехфазной смеси с высокой равномерностью распределения компонентов, В процессе перемешивания происходит увлажнение сухих компонентов, их диспергирование, агрегация. Эту стадию следует проводить как можно быстрее. В этом случае можно достичь равномерного смешивания компонентов с минимальными затратами энергии.

Вторая стадия - образование структуры - характеризуется выравниванием влагосодержания, диффузией влаги внутрь частиц муки, набуханием белков и переходом в раствор водорастворимых компонентов муки. Здесь заметно возрастает усилие сдвига массы и, следовательно, потребление энергии на привод месильной машины. При набухании большую часть влаги впитывают белковые вещества. Водопоглощение крахмала муки достигает 30%, однако скорость поглощения влаги крах - малом выше, чем белками. Вязкость теста увеличивается.

На скорость течения второй стадии оказывают влияние свойства муки, степень измельчения крахмальных зерен, температура и рецептурные добавки, вносимые в тесто. При поглощении влаги белки сильно увеличиваются в объеме, образуя клейковинный скелет, скрепляющий набухшие крахмальные зерна и нерастворимые частицы муки. Вторая стадия замеса не требует энергичной проработки.

Третья стадия - пластификация - сопровождается структурными изменениями крахмальных зерен и образованием клейковинной решетки, связывающей крахмальные зерна. При этом они частично измельчаются и обволакиваются белковыми пленками, которые также претерпевают структурные изменения. Спиралеобразные молекулы полипептидов раскалываются и разрыхляют структуру белков, образуя клейковинные пленки. Такие структурирование пленки создают хороший газоудерживающий скелет теста. Третья стадия требует усиленного механического воздействия, поскольку с образованием клейковинных пленок одновременно разрушаются молекулы клейковины. На третьей стадии происходят выравнивание структуры теста и ее измельчение, что в дальнейшем при брожении способствует образованию равномерной мелкой пористо. При сравнительной оценке эффективности работы месильных органов необходимо учитывать, что механизм структурообразования при реализации разных видов деформации в процессе замеса существенно различается. При деформации растяжения происходит вытягивание белковых цепей и их ориентация в направлении деформирующих сил. Растяжение обеспечивает получение значительного количества длинных цепей, которые меньше рвутся на отдельные фрагменты, уменьшают количество узлов сетки полимера и вытягиваются на большую длину. Та кой клейковинный каркас обеспечивает большую растяжимость и малую упругость теста. При сдвиговой деформации механическая деструкция полимера протекает более интенсивно, цепи рвутся на относительно короткие фрагменты, которые при взаимодействии образуют достаточно частую сетку, приобретающую большую упругость (прочность) и меньшую растяжимость. Учитывая малые размеры и относительно редкое расположение белковых макромолекул в частицах муки, без приложения деформаций сжатие-сдвиг при замесе макромолекулы развертываются медленно и менее полно, что должно уменьшить долю цепей белка, участвующих в структурообразовании, что особенно наглядно видно при уменьшении количества белка в муке.

Таким образом, деформация сдвига в большей степени повышает вязкоупругие свойства тестовых полуфабрикатов, а растяжения-де формационные. Рациональное сочетание таких воздействий обеспечивает улучшение качества хлеба, в частности, его формоустойчивость, особенно при переработке слабой муки.

Пластификация должна происходить при таких скоростях сдвига материала, когда не нарушается его сплошная среда, а скольжение и трение по рабочим поверхностям сведены к минимуму, исключено значительное перемещение (перебрасывание) рабочими органами пластификатора отдельных объемов теста внутри месильной камеры. Перспективным является такой способ пластификации, когда рабочие органы не скользят в массе обрабатываемого материала, а прокатываются и при защемлении деформируют его.

Увеличение степени механической обработки ускоряет процесс созревания теста, улучшает его реологические свойства и газоудерживающую способность. Это связано с более быстрым образованием клейко вины, накоплением коллоиднорастворимой фазы белков и их водорастворимой фракции. Механическая обработка сказывается также и на свойствах крахмала, связывающего около половины влаги теста. Экспериментально доказано, что механическое воздействие на крахмал, при водящее к повреждению и измельчению крахмальных зерен, значительно усиливает процессы гидролиза крахмала под воздействием кислот и амилолитических ферментов. Интенсивный замес оказывает положительное влияние на водопоглотительную способность муки, обеспечивает возможность выдерживания нормированной влажности теста из муки разного хлебопекарного достоинства и, соответственно, соблюдения установленных норм выхода изделий. В качестве показателя, характеризующего степень механической обработки теста при замесе, принято использовать величину удельной работы замеса

a=А/m

где А - работа замеса, кДж;

m - масса теста в деже, кг;

А=Nj/n

где N - мощность электродвигателя тестомесильной машины, кВт;

j - продолжительность замеса, с;

n - КПД привода;

a=N/(nП),

где П - производительность машины, кг/с.

По величине удельной работы все тестомесильные машины можно разделить на следующие группы: для обычного замеса, а = 2…4 Дж/г; для усиленной механической обработки, а = 9…11 Дж/г; для интенсивного замеса а = 25…40Дж/г.

В качестве дополнительных характеристик используют показатель интенсивности замеса

q=N/(nm)

где n - частота вращения (качания) лопасти.

Установлено, что усиленную механическую обработку целесообразно использовать в сочетании с большими густыми опарами, а интенсивный замес - с жидкими тестовыми полуфабрикатами.

Интенсивная механическая обработка теста при замесе позволяет сократить продолжительность брожения теста перед разделкой до 20…30 мин вместо 1,5…2,0 ч при обычном замесе. Это дает в среднем 1% экономии сухих веществ муки на брожение. Кроме того, удельный объем хлеба повышается на 15…20%, улучшаются структура пористости, цвет и эластичности мякиша. Исследования технологической эффективности интенсивной механической обработки теста в зависимости от качества муки, наличия рецептурных добавок, различного рода улучшителей и схемы тестоприготовления показали, что степень интенсивности механической обработки должна варьировать в широких пределах в зависимости от количественных и качественных показателей клейковины муки.

Так, для теста муки со слабой клейковиной оптимальный уровень энергозатрат на замес примерно в 3 раза меньше, чем для теста из муки с сильной клейковиной. Машины для интенсивного замеса отличаются высокой энергоемкостью, поэтому в условиях значительного роста стоимости электроэнергии их использование целесообразно только после учета всех существующих факторов.

Эффективным методом снижения энергоемкости является двухстадийный способ приготовления теста с выдержкой между стадиями. Сначала необходима гомогенизация компонентов в скоростном смесителе путем быстрого контакта дисперсных частиц муки с дисперсионной средой жидкого полуфабриката. На стадию гомогенизации затрачивается сравнительно небольшая доля энергии. После гомогенизации проводят механическую обработку теста - пластификацию, обеспечивающую максимальный расход энергии на де формацию полуфабриката. Брожение между стадиями не только существенно улучшает технологические свойства теста и качество хлеба, но и вследствие интенсивного протекания биохимических и коллоидных процессов значительно снижает расход энергии на замес.

3. Тестомесильная машина Прима 375

Автоматическая тестомесильная машина с двумя спиральными месильными органами, центральным отсекателем, подкатной вращающейся цилиндрической толстостенной дежой из нержавеющей стали емкостью 375 л предназначена для эксплуатации в 1-3 - сменных режимах в условиях промышленного производства хлеба, хлебобулочных и кондитерских изделий.

Тестомесильная машина в отличии от традиционных спиральных тестомесильных машин интенсивного замеса оснащена двумя месильными органами с индивидуальными приводами. Данная схема замеса позволяет увеличить производительность машины за счет уменьшения времени замеса от 25% до 50% в зависимости от рецептуры замешиваемого теста.

Функция плавного изменения скорости вращения месильных органов и дежи позволяет легко подбирать оптимальные режимы замеса для получения необходимых реологических свойств для всех видов теста. Благодаря интенсивному замесу на «Приме-375» широкого ассортимента пшеничного, ржаного и смешанных видов теста для хлеба, хлебобулочных и кондитерских изделий, принципиально улучшается качество выпекаемой продукции:

· увеличивается объем изделий

· мякиш становится более эластичным

· пористость получается равномерной и мелкой

· корка становится более интенсивно окрашенной

· замедляется очерствение готовых изделий.

Температура теста при замешивании повышается не более чем на 2 С/мин.

Автоматическая система управления на базе промышленного контроллера SIEMENS SIMATIC S7-200 с цветной сенсорной панелью управления обеспечивает: ввод, редактирование, хранение и воспроизведение в автоматическом режиме до ста 10-шаговых программ замеса теста с возможностью задания технологических параметров в каждом шаге тестирование и диагностику работоспособности узлов и агрегатов машины мониторинг аварийных ситуаций с автоматическим отключением машины автоматическое ведение архивов: замесов, аварийных событий с диагностикой неисправностей, учета времени наработки машины контроль нагрузки на приводы рабочих органов машины возможность совместной работы с дозирующими станциями сыпучих и жидких компонентов подключение к технологическому компьютеру с возможностью удаленного управления (опционально) управление загрузчиком опары и автоматом выгрузки теста, при наличии этих устройств.

«Прима-375» имеет:

приводы вращения месителей и привод вращения дежи с функцией плавного изменения их скоростей вращения реверсивное вращение дежи на малой скорости все элементы конструкции, контактирующие с тестом, из нержавеющей стали гидравлический привод подъема - опускания траверсы и фиксации дежи, узлы и агрегаты гидравлической системы - от лучших европейских производителей встроенный датчик температуры с индикацией на сенсорной панели приводы вращения месильных органов - групповую клиноременную передачу привод вращения дежи с плавным пуском двигателя, исключающий повреждение элементов конструкции в случае удара шестерен привода «зуб в зуб» при закатывании дежи Д-375 с возможностью установки в положение с наклоном около 45 град. С для санитарной обработки патрубки на крышке дежи для загрузки сыпучих и жидких компонентов в автоматическом и ручном режимах крышку дежи со смотровым стеклом, конструкция которой позволяет практически исключить распыл муки при замешивании силовой шкаф с пультом управления с возможностью установки на корпусе машины как справа (серийно), так и слева удобный доступ ко всем узлам, механизмам и агрегатам для технического обслуживания мотор-редуктор привода вращения дежи, работающий без замены смазки в течение всего срока службы лучшие образцы пускорегулирующей аппаратуры иностранного производства, обеспечивающие минимальное техническое обслуживание и высокую надежность в эксплуатации в комплект поставки включен ЗИП. Гарантийный срок эксплуатации тестомесильной машины «Прима-375» - 1 год.

Для подъема, опрокидывания и опускания деж Д-375 тестомесильных машин «Прима-375» применяется дежеподъемоопрокидыватель «Восход-ДО-6».

Технические характеристики

Объем используемой дежи, л 375

Максимальная масса теста*, кг/замес 250

Минимальная масса теста, кг/замес 20

Номинальная потребляемая мощность, кВт 49

Номинальное напряжение, В 3NPE~380

Габаритные размеры, мм 1940x1425x1625

Масса, кг, не более (без дежи Д-300) 1570

- масса дежи Д-375, кг, не более 270

Заключение

В реалиях современной рыночной экономики к производственному оборудованию предъявляются повышенные технико-экономические требования. Из-за частых изменений рынка спроса на новые виды продукции и потребительского прогресса оборудование должно быть универсальным и позволять выпускать широкий спектр продукции. Позволять беспрепятственно переориентировать средние и малые предприятия пищевой промышленности на выпуск нового ассортимента актуального нынешней потребности рынка.

Размещено на Allbest.ru

...

Подобные документы

  • Понятие и классификация погрузочных машин, их разновидности и выполняемые функции, особенности и условия практического применения. Буропогрузочные машины: типы и внутреннее устройство, сферы использования на сегодня. Погрузочно-транспортные машины.

    реферат [880,6 K], добавлен 25.08.2013

  • Классификация тестомесильных машин. Функциональные схемы машин периодического и непрерывного действия. Расчет производительности и расхода энергии на замес теста. Выбор моторредуктора, проектирование приводного вала, его проверка на усталостную прочность.

    курсовая работа [4,9 M], добавлен 18.11.2009

  • Понятие и функциональные особенности погрузочно-разгрузочных машин, сферы их практического применения и значение. Группа режима работы и направления ее исследования. Классификация и типы кранов, их специфика. Устройство, элементы тележки, принцип работы.

    презентация [155,8 K], добавлен 17.05.2013

  • Классификация и устройство стиральных машин барабанного типа. Причины неисправностей стиральных машин, особенности их ремонта. Оборудование, применяемое при ремонте стиральных машин. Конструктивные и режимные параметры стиральных машин барабанного типа.

    курсовая работа [2,1 M], добавлен 23.01.2011

  • Машины для обработки овощей и картофеля, мяса и рыбы, муки и теста, особенности принципа их действия, правила эксплуатации и техника безопасности. Устройство овощерезательной и протирочной машин. Котлетоформовочная и тестомесильная машины, мясорубка.

    презентация [1,3 M], добавлен 13.04.2014

  • К тестоделительным относятся машины, выполняющие операции по разделению теста на куски одинаковой массы. Схема строения тестоделительных машин. Их классификация. Особенности работы машин с различными видами нагнетания. Тестоделительная машина ХДФ-М2.

    курсовая работа [3,3 M], добавлен 01.07.2008

  • Понятие и особенности построения машин глубокой печати, этапы и принципы реализации данного процесса. Внутреннее устройство данных устройств, их функциональные особенности, классификация и разновидности: листовые, рулонные. Основные производители.

    курсовая работа [4,3 M], добавлен 10.10.2014

  • Общие сведения об устройствах автоматического регулирования возбуждения синхронных машин. Факторы, влияющие на напряжение и схема электроснабжения. Устройство токового компаундирования: необходимые изменения характеристики компаундированной машины.

    реферат [624,3 K], добавлен 07.04.2009

  • Понятие и классификация гидравлических машин, их разновидности и функциональные особенности. Общая характеристика и свойства насосов, параметры и факторы, которые на них влияют. Основное уравнение турбомашин. Характеристики центробежного насоса.

    презентация [491,3 K], добавлен 14.10.2013

  • Функциональные схемы тестомесильных машин периодического и непрерывного действия. Общая характеристика тестомесильной машины И8-ХТА-12/1. Расход энергии на замес теста. Расчет привода, зубчатой передачи, подшипников. Подбор и проверка муфт и шпонок.

    курсовая работа [3,5 M], добавлен 12.09.2014

  • Общее описание, функциональные особенности маслоохладителей, их классификация и разновидности, сферы практического применения. Расчет недостающих термодинамических параметров. Тепловой, конструктивный расчеты аппарата. Укрепление отверстий. Выбор крышек.

    курсовая работа [4,4 M], добавлен 24.03.2012

  • Области применения объемного гидропривода машин. Отличительные особенности объёмного гидропривода по сравнению с гидроприводом гидродинамическим. Расчет коэффициента полезного действия объемного гидропривода, его устройство и основные компоненты.

    презентация [160,4 K], добавлен 02.02.2013

  • Общие сведения о бытовых стиральных машинах. Основные сборочные единицы. Описание стиральных машин типа СМ, типа СМП, типа СМА, полуавтоматических стиральных машин барабанного типа. Разновидности марок машин. Ведущие фирмы-производители стиральных машин.

    контрольная работа [36,3 K], добавлен 02.12.2009

  • История развития и классификация стиральных машин, технические требования к ним и сведения о производителях. Принцип действия и устройство автоматической стиральной машины, основные показатели ее качества. Сравнение ARDO FL 105 L и Samsung WF 8590 NFW.

    курсовая работа [640,4 K], добавлен 19.02.2014

  • Понятие и задачи языков программирования общего назначения, их классификация и разновидности, их функциональные особенности и сферы практического применения. Структурные составляющие языка QBasic, принцип его работы, главные операции и возможности.

    презентация [491,3 K], добавлен 30.03.2014

  • Цель и задачи курса ТММ - "Теория машин и механизмов". Место курса в системе подготовки инженера. Машинный агрегат и его составные части. Классификация машин. Механизм и его элементы. Классификация механизмов. Исторический екскурс в теорию механизмов.

    курс лекций [2,5 M], добавлен 22.01.2008

  • Пути улучшения показателей эксплуатационных свойств, применения рациональных и оптимальных режимов эксплуатации машин, применения организационно-технологических мероприятий для сокращения простоев. Обеспечение работоспособного состояния парка машин.

    курсовая работа [176,2 K], добавлен 11.03.2023

  • Технические возможности машин и оборудования. Операции и штампы горизонтально-ковочных машин (ГКМ), взаимодействие механизмов ГКМ и частей штампа в процессе штамповки. Устройство стреловых кранов. Назначение и устройство вертикально-сверлильного станка.

    контрольная работа [200,2 K], добавлен 30.07.2009

  • Понятие и виды производительности горных машин, принципы и критерии ее оценки. Основные показатели качества и надежности горных машин, методика их расчета. Главные физико-механические свойства горных пород, их классификация по контактной прочности.

    реферат [25,6 K], добавлен 25.08.2013

  • Назначение и область применения машин для измельчения. Классификация машин для дробления. Разработка задания на проведение патентных исследований. Экспериментальное исследование влияния рабочих параметров машины на технико-эксплуатационные показатели.

    курсовая работа [1,8 M], добавлен 15.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.