Прессование металла
Классификация методов обработки металлов давлением. Преимущества и недостатки получения изделий прессованием. Изменение формы тела при деформации. Основные параметры технологического процесса. Расчет коэффициента вытяжки. Принцип действия гидропресса.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 12.10.2014 |
Размер файла | 1,8 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://allbest.ru
Прессование металла
При обработке металлов давлением полуфабрикаты и изделия получают пластическим деформированием исходной заготовки без снятия стружки. Этот процесс отличается значительной экономичностью, высоким выходом годного и большой производительностью. Обработка давлением можно изготовить детали самых различных размеров (от миллиметра до нескольких метров) и формы.
Обработка металлов давлением обычно преследует две основные цели: получение изделий сложной формы из заготовок простой формы и улучшение кристаллической структуры исходного литого металла с повышением его физико-механических свойств. Давлением обрабатывают примерно 90% всей выплавляемой стали, а также большое количество цветных металлов и их сплавов.
К обработке металлов давлением относят прокатку, волочение, прессование, ковку, штамповку, и некоторые специальные процессы, например, отделочную и упрочняющую обработку пластическим деформированием и т.д. Методы обработки металлов давлением классифицируют по схемам технологического процесса.
При прессовании металл выдавливают из замкнутой полости через отверстие, получая пруток или трубу с профилем, соответствующим сечению отверстия инструмента. Исходный материал для прессования - слитки или отдельные заготовки. Существуют два метода прессования - прямой и обратный. При прямом прессовании движение пуансона пресса и истечение металла через отверстие матрицы происходят в одном направлении. При обратном прессовании заготовку закладывают в глухой контейнер, и она при прессовании остается неподвижной, а истечение материала из отверстия матрицы, которая крепится на конце полого пуансон, происходит в направлении, обратном движению пуансона с матрицей.
Обратное прессование по сравнению с прямым требует меньших усилий и прессостаток в этом случае меньше, однако меньшая деформация при обратном прессовании приводит к тому, что прессованный пруток сохраняет следы структуры литого металла. Основное преимущество прессованных изделий - точность их размеров. Кроме того, ассортимент изделий, получаемый прессованием, весьма разнообразен, и этим методом можно получить очень сложные профили.
Основные положения обработки металлов давлением
В основе обработки металлов давлением лежит процесс пластической деформации, при котором изменяется форма без изменения массы. Все расчеты размеров и формы тела при обработке давлением основаны на законе постоянства объема, суть которого заключается в том, что объем тела до и после пластической деформации принимается неизменным: V1=V2=const (V1 и V2 - объемы тела до и после деформации).
Изменения формы тела может происходить в направлении трех главных осей; при этом каждая точка стремится перемещаться в том направлении, в котором создается наименьшее сопротивление ее перемещению. Это положение в теории обработки металлов давлением носит название закона наименьшего сопротивления.
При свободном формоизменении тела в различных направлениях наибольшая деформация происходит в том направлении, в котором большинство перемещающихся точек встречает наименьшее сопротивление своему перемещению.
Законы постоянства объема и наименьшего сопротивления распространяются на все способы обработки металлов давлением. При этом закон постоянства объема используют для определения размеров заготовок, а закон наименьшего сопротивления позволяет определить, какие размеры и форму поперечного сечения получит заготовка с тем или иным сечением в процессе обработки давлением. Любой процесс обработки металлов давлением характеризуется очагом деформации и коэффициентом деформации.
Прессование металла
Рис.2. Схема прямого прессования Т-образного профиля
1 - контейнер (толстостенная цилиндрическая втулка);
2 - пресс-шайба;
3 - матрица;
4 - отверстие матрицы;
5 - форма поперечного сечения готового пресс-изделия (профиля);
6 - деформируемая заготовка;
7 - пресс-штемпель;
P - сжимающие силы.
Согласно схеме на рис.2, деформируемая заготовка б заключена в толстостенную цилиндрическую втулку 1, называемую контейнером 1. Контейнер с одного конца прочно закрыт матрицей 3, имеющей отверстие (канал) 4. С противоположного конца в контейнер 1 вставлена пресс-шайба 2 в форме диска, передающая заготовке усилие Р от пресс-штемпеля 7, Металл заготовки под действием усилия Р, не имея другого выхода, кроме канала в матрице, выдавливается из последнего в виде длинномерного профиля с сечением, повторяющим сечение канала матрицы. Поскольку форма канала матрицы может быть весьма сложной, прессованием наряду с простыми профилями (круглого, квадратного, прямоугольного и др. сечений), можно получить очень сложные конструкционные пресс-изделия, изображенные на рис.3.
Рис.3. Типовые представители пресс-изделий
Прогресс современной техники (появление новых летательных аппаратов, автомобилей, железнодорожных вагонов, поливальной передвижной установки и т.п.) немыслим без металлопродукции (рис.3), которую получают прессованием.
Прессование металла это вытеснение с помощью пуансона металла исходной заготовки (чаще всего цилиндрической формы), помещенной в контейнер, через отверстие матрицы. Этот способ пластической обработки находит широкое применение при деформировании как в горячем, так и в холодном состоянии металлов, имеющих не только высокую податливость, но и обладающих значительной природной жесткостью, а также в одинаковой мере применим для обработки металлических порошков и неметаллических материалов (пластмасс и др.). Прессованием изготовляют прутки диаметром З.250 мм, трубы диаметром 20.400 мм при толщине стенки 1,5.12 мм, полые профили с несколькими каналами сложного сечения, с наружными и внутренними ребрами, разнообразные профили с постоянным и изменяющимся (плавно или ступенчато) сечением по длине. Профили для изготовления деталей машин, несущих конструкций и других изделий, получаемые прессованием, часто оказываются более экономичными, чем изготовляемые прокаткой, штамповкой или отливкой с последующей механической обработкой. Кроме того, прессованием получают изделия весьма сложной конфигурации, что исключается при других способах пластической обработки.
К основным преимуществам прессования металла относятся: возможность успешной пластической обработки с высокими вытяжками, в том числе малопластичных металлов и сплавов; возможность получения практически любого поперечного сечения изделия, что при обработке металла другими способами не всегда удается; получение широкого сортамента изделий на одном и том же прессовом оборудовании с заменой только матрицы; производство изделий с высокими качеством поверхности и точностью размеров поперечного сечения, что во многих случаях превышает принятую точность при пластической обработке металла другими способами (например, при прокатке).
К недостаткам получения изделий прессованием следует отнести: повышенный расход металла на единицу, изделия из-за существенных потерь в виде пресс-остатка; появление в некоторых случаях заметной неравномерности механических и других свойств по длине и поперечному сечению изделия; сравнительно высокую стоимость прессового инструмента. Основным признаком разновидностей процесса прессования является наличие или отсутствие поступательного перемещения металла относительно стенок приемника (контейнера), за исключением небольших участков вблизи матрицы, называемых мертвыми зонами, где перемещение металла отсутствует. Наряду с наиболее распространенным методом прессования. с прямым истечением, которое используется для получения сплошных и полых изделий, широкое применение получил обратный (обращенный) метод, а также другие схемы истечения металла. Каждый из этих методов имеет определенные преимущества.
Так, например, при боковом истечении металла помимо удобств приема пресс-изделия обеспечивается минимальная разница механических свойств изделия в поперечном и продольном направлениях. Процесс прессования выполняется в условиях неравномерного всестороннего сжатия металла, что положительно сказывается на увеличении его пластичности. Поэтому прессованием можно обрабатывать металлы и сплавы с низкой природной пластичностью. Однако трехосное сжатие вызывает необходимость значительных усилий при обработке. Поэтому прессование требует повышенного расхода энергии на единицу объема деформируемого тела.
Как отмечалось, при прессовании в местах перехода контейнера в матрицу появляются так называемые мертвые углы, т.е. такие зоны, которые испытывают лишь упругую деформацию. Течение металла в мертвых зонах отсутствует, пока размер пресс-остатка не будет достаточно мал. Эти мертвые зоны при прессовании прутков большой длины в известной мере играют положительную роль, так как оказывают фильтрующее воздействие: в мертвых углах задерживаются различные загрязнения, что предохраняет от вдавливания посторонних включений в поверхностные слои изделия. При неправильно выбранном размере пресс-остатка загрязнения мертвых углов могут попасть в изделие и вызвать заметное понижение его качеств. Все это необходимо учитывать при разработке технологического процесса прессования.
Практикой установлено, что при нормальных условиях прессования минимальная высота пресс-остатка составляет 0,10.0,30 диаметра исходной заготовки. Силовые условия прессования определяются свойствами деформируемого металла, температурным режимом, размерами заготовки, скоростью и степенью деформации, значением контактного трения, геометрией инструмента и др. К сожалению, еще не разработана методика, позволяющая связать все эти факторы в математическую зависимость для определения усилий прессования. Поэтому приходится пользоваться методами расчета, лишь приближенно отражающими условия деформации.
Технологический процесс прессования
В настоящее время применяют различные методы и способы прессования, в том числе прямое прессование труб, прутков и профилей, обратное прессование прутков и профилей, совмещенное прессование труб с прошивкой при закрытом контейнере, прессование профилей переменного сечения, прессование с противодавлением, вакуумное прессование. Процесс прессования характеризуется следующими основными параметрами: коэффициентом вытяжки, степенью деформации и скоростью истечения металла из очка матрицы.
Коэффициент вытяжки л определяют как отношение площади сечения контейнера FК к площади сечения всех отверстий матрицы FМ.
Степень деформации определяется как отношение разности площадей контейнера и всех отверстий матрицы к площади сечения контейнера:
е = (FK-FM) 100/FK %.
Скорость истечения металла из очка матрицы пропорциональна коэффициенту вытяжки и может быть определена по формуле:
VИ=FKVП/FM=лVП,
где VП - скорость прессования, то есть скорость движения поршня и пресс шайбы.
При всех процессах прессования вид напряженного состояния в очаге деформации определяется тремя главными нормальными напряжениями сжатия и иногда (в основном, у контактных поверхностей) двумя главными нормальными напряжениями сжатия и одним нормальным напряжением растяжения.
Все процессы прессования протекают при значительной неравномерности деформаций. Прессование через многоканальную матрицу характеризуется большей неравномерностью деформаций по сравнению с прессованием через одноканальную матрицу без принципиальных отличий в прохождении процесса. Основным условием успешного применения прессования является правильный выбор температурно-скоростного режима с учетом свойств прессуемых металлов и сплавов.
В качестве основного инструмента при прессовании применяют матрицы, матрицедержатели, пуансоны, иглы, иглодержатели, прессшайбы, втулки (рубашки-приемники) и другой инструмент, работающий в исключительно тяжелых механических и температурных условиях. Вследствие этого для изготовления рабочего инструмента применяют специальные стали.
Матрицы для прессования прутков имеют одно или несколько отверстий. Последние применяют для прессования изделий небольшого поперечного сечения.
При прессовании труб для прошивки отверстия в заготовке применяют иглы, которые устанавливают в иглодержателе. Внутренний диаметр трубы определяется диаметром иглы. Процесс прессования трубы проходит в следующей последовательности. В начале прессования заготовка распрессовывается так, что заполняет контейнер, затем слиток прошивается иглой, причем выдавленная часть металла в момент распрессовки и прошивки и прошивки выходит из матрицы в виде прутка-пробки. Размер пробки зависит от размеров труб. Так, например, при прессовании труб диаметром более 250 мм масса пробки может достигать 40% массы заготовки. Для уменьшения размеров пробки используют следующий технологический прием. Вместо матрицы устанавливают глухую пробку, с которой прошивается слиток. При этом вытесняемый иглой металл идет на увеличение длины слитка. В конце хода пробку убирают и в матрице осуществляется окончательная допрошивка слитка. В конце операции прессования в контейнере остается часть металла, называемая прессостатком, величина которого определяется размером изделий, свойствами прессуемого металла или сплава, а также конструкцией пресса.
Стальные трубы рекомендуется прессовать при максимально высоких температурах и скоростях, так как в этом случае меньше вероятность образования трещин и расслоений. Поэтому скорости прессования стальных труб достигает 5м/с и более. Стальные трубы прессуют со смазкой, так как при отсутствии смазки горячий металл заготовки налипает на инструмент, а в местах повышенного разогрева даже приваривается к нему. В качестве смазки рекомендуется применять графитовую пасту. При прессовании труб из низкопластичной стали используют металлическую смазку в виде тонкого слоя меди между вытекающим металлом и инструментом.
При прессовании труб из коррозионно-стойкой, жаропрочной, жаростойкой и других высоколегированных сталей и специальных сплавов в качестве смазки применяют стекло. Применение стекла в два-три раза уменьшает коэффициент трения по сравнению с графитовой смазкой. При этом стекло является еще и теплоизолирующим материалом.
Смазку, уменьшающую внешнее трение, следует наносить на инструмент (контейнер, матрицу) равномерным слоем, чтобы предотвратить тесное соприкосновение трущихся поверхностей и сгладить шероховатости на поверхности инструмента. Кроме этого, она должна выдерживать высокие температуру и усилия прессования, чтобы надежно разъединять трущиеся поверхности. Указанным требованиям полностью удовлетворяют лишь твердые смазки. Однако ими трудно покрыть поверхности контейнера и матрицы, поэтому порошкообразную твердую смазку связывают легковоспламеняющимися и быстро сгорающими жидкими веществами.
Сопоставление процессов прессования
Прессованием называют процессы обработки металлов давлением, при которых деформация происходит под действием сжимающих сил. Все процессы прессования можно условно разбить на три группы. К первой группе относятся процессы, при которых весь объем заготовки деформируется одновременно; например штамповка и ковка всего изделия. Ко второй группе относятся процессы, при которых деформации подвергается лишь часть объема заготовки, при этом металл поступает в очаг деформации периодически. К этой группе также относится ковка и штамповка, но с одного конца заготовки. К третьей группе относятся процессы деформации части объема заготовки с непрерывным поступлением металла в очаг деформации - процессы выдавливания металла в щели разного профиля, т.е. прессование и волочение.
Производство прессованием профилей сложной формы и сечений часто оказывается более экономичным процессом, чем штамповка их с последующей механической обработкой. Это объясняется тем, что прессованием можно получить изделия требуемых размеров с малыми допусками и тем самым сократить до минимума последующую холодную обработку заготовки. Кроме этого, высокая пластичность деформируемых металлов при прессовании благодаря всестороннему сжатию позволяет использовать этот процесс как основной способ производства изделий из цветных металлов и сплавов - труб, прутков и профилей, отличающихся очень большим сортаментом и малыми сериями. В последнее время в связи с возникновением потребности в широком сортаменте профилей из малопластичных легированных сталей, а также из титана и его сплавов применение прессования значительно расширилось.
По сравнению с прокаткой труб, прутков и профилей прессование имеет свои преимущества и недостатки. К преимуществам следует отнести: трехосное сжатие, благодаря которому повышается пластичность металла и, следовательно, деформирование можно проводить с большими степенями деформации; быстрый переход с изготовления одного размера изделий и форм на другие; возможность получения сплошных и полых профилей самых сложных очертаний.
К недостаткам прессования относятся: более высокие потери на отходы; большая неравномерность механических свойств по длине и поперечному сечению изделия, сравнительно меньшие скорости истечения, а следовательно, и производительность.
Гидропрессование
Прессование с обратным истечением было предложено в 1921 году в Англии крупным инженером и изобретателем Р. Джендерсом. Этот метод устраняет трение металла заготовки о стенки контейнера и снижает усилие прессования Р на 30-40%.
Силы трения, а следовательно и усилие прессования, можно существенно уменьшить, применяя смазку внутренней поверхности контейнера и матрицы. Однако еще более эффективно применение гидропрессования (гидроэкструзии).
Гидропрессование - это прессование жидкостью высокого давления, причем для создания давления на деформируемый металл может применяться как одна жидкость, подаваемая в контейнер под давлением 10-30 тыс. кг/см2, так и пресс-штемпель, воздействующий на деформируемую заготовку, и на жидкость, в которой она находится. В последнем случае процесс называют гидромеханическим прессованием. Схемы таких процессов представлены на рис.71. Наличие смазки (рабочей жидкости), разделяющей поверхности слитка и контейнера, приводит к резкому снижению сил трения.
Рис.4. Схема прессования Т-образного профиля с переменной толщиной полки
Рис.5. Схема обратного прессования квадратного прутка
Рис.6. Схемы гидропрессования металлов
При прессовании с обратным истечение неметалл заготовки 1 движется к матрице 2 и, наоборот, матрица, прикрепленная к концу полого пресс-штемпеля 3, надвигается на заготовку 1 (рис.5). В этом случае металл, вытекая через канал в матрице, не скользит по стенкам контейнера. Матрица одновременно играет роль пресс-шайбы. Контейнер 4 закрепляется с. одного конца заглушкой 5. Разновидностью этого метода является процесс, когда контейнер вместе с заготовкой движется на неподвижный полый пресс-штемпель.
Сила трения помощник при прессовании
Силы трения можно заставить помогать прессованию металлов следующим образом.
Контейнер 1 имеет большую скорость перемещения, чем заготовка 2 (рис.7). На поверхности заготовки создаются силы трения Т, совпадающие по направлению с силой Р.
В результате контейнер будет увлекать за собой поверхностные слой заготовки. Такие силы трения называют активными, осуществляющими силовое воздействие.
Рис.7. Схема прессования с активными силами трения
Таким образом, трение способствует выравниванию деформации по объему заготовки, уменьшается расход энергии, повышается качество получаемых профилей.
Для производства различных пустотелых профилей и труб освоено прессование со сваркой.
Этот способ впервые предложен в России в 1898 году. Особенность способа состоит в том, что короткая игла крепится к корпусу самой матрицы на рассекателе (рис.8).
Рис.8. Схема прессования пустотелых профилей со сваркой
В процессе прессования металл заготовки сплошного поперечного сечения на входе в канал матрицы разделяется гребнем рассекателя на два потока. Эти потоки, обтекая рассекатель, под большим давлением свариваются на выходе из канала матрицы.
Из описания, приведенного выше, следует, что процесс прессования обладает рядом существенных Преимуществ по сравнению с сопоставимым по изготавливаемому сортаменту изделий процессом прокатки:
· профили, поученные прессованием, имеют, как правило, более точные размеры и высокий класс чистоты поверхности;
· прессованием можно изготовить профили сложной формы, что прокаткой достичь не удается;
· переход от изготовления одного профиля к другому осуществляется за счет смены матрицы, та что уходит сравнительно немного времени;
· процесс прессования позволяет изготовить профили из мало-пластичных металлов.
Прессование на прессах с гидравлическим приводом
Прессование осуществляют на прессах с гидравлическим приводом. Принцип действия гидропресса основан на законе Паскаля. Согласно этому закону, в любых сообщающихся сосудах, заполненных жидкостью, давление под действием внешних сил во всех частях одинаково.
Рассмотрим гидравлическую систему, состоящую из двух сообщающихся цилиндров 1 и 2: один из них большего диаметра, другой значительно меньшего диаметра. Создать давление в небольшом цилиндре не требует больших усилий Р1.
В большом цилиндре создается такое же давление Р.
Для сообщающихся сосудов
P1/f1=P2/f2=P,
откуда усилие на плунжере
4 Р2=P1f2/f1,
где f1 и f2 - площади поперечных сечений плунжеров 3 и 4.
Усилие, развиваемое гидропрессом, может быть очень большим, так как увеличивая площадь плунжера 4f2, а также рабочее давление Р, можно получить усилие пресса практически любой величины.
Рис.9. Схема прессования на прессах с гидравлическим приводом
В настоящее время давление рабочей жидкости создают с помощью насосов высокого давления.
Головным оборудованием для прессования труб и профилей является горизонтальный гидравлический пресс. Он представляет собой комплекс узлов и силовых элементов, предназначенных осуществит рабочий: цикл прессования слитков и вспомогательные операции по приведению прессов в исходное рабочее состояние.
Основными элементами гидравлического пресса прямого действия при прессовании профилей являются горизонтально расположенные главный рабочий цилиндр 7 и главный рабочий плунжер 2 (рис.10). Их назначение - создать необходимое давление прессования. Давление на плунжере обычно создается при помощи жидкости, подаваемой насосом высокого давления, и аккумуляторов. В качестве жидкости применяют воду, эмульсии или масло. Жидкость находится под давлением 200-500 атм.
На торце главного плунжера 2 через подвижную прессующую траверсу 9 закреплен пресс-штемпель 3, который осуществляет выдавливание слитка 4 из контейнера 5 через матрицу 6 усилием, развиваемым главным плунжером 2 пресек.
Рис.10. Конструкция горизонтального гидравлического пресса прямого действия для прессования профилей
Матрица 6, закрывающая выход из контейнера 5, посредством матрицедержателя 15 установлена в передней неподвижной траверсе 7, закрепленной на станине пресса. Для создания давления прессования в контейнере 5 переднюю траверсу 7 связывают колоннами 8 с главным цилиндром 1. Колонны 8 воспринимают полное усилие прессования и в совокупности с передней траверсой 7 и главным цилиндром 1 создают жесткую замкнутую раму станину являющуюся основанием пресса.
Подвижная траверса 9 совместно с главным плунжером 2 и пресс-штемпелем 3 скользит по направляющим вдоль станины пресса и совершает обратно поступательное движение. Обратный ход, т.е. возврат в исходное положение главного плунжера вместе с пресс-штемпелем, осуществляется благодаря цилиндрам обратного хода 10, установленным в неподвижной передней траверсе 7.
металл прессование давление деформация
Заключение
Таким образом, обработка металлов прессованием - прикладная наука, основной задачей которой является разработка основ построения оптимальной технологии обработки, обеспечивающей максимальную деформацию в каждой операции при минимальной затрате энергии, получение продукции высокого качества.
В данной работе обработки металлов прессованием была изучена физическая природа пластической деформации металлов, влияние различных факторов на процесс деформирования, силовое взаимодействие между инструментом и деформируемым металлом, влияние пластической деформации на строение и свойства обрабатываемого материала и др.
Следовательно, прессование металла является одним из важных технологических процессов, такие отрасли, как транспортное и энергетическое машиностроение, прессостроение и многие другие не могут существовать и развиваться без обработки металлов прессованием.
Размещено на Allbest.ru
...Подобные документы
Крупные изобретения конца XVIII в. в металлургии. Экономичность процесса производства прессованием профилей сложной формы и сечений. Упругая, пластическая и холодная деформация металла. Классификация методов обработки металлов давлением. Роль силы трения.
курсовая работа [2,0 M], добавлен 08.05.2012Сущность процессов упругой (обратимой) и пластической (необратимой) деформаций металла. Характеристика процессов холодной и горячей деформации. Технологические процессы обработки металла давлением: прессование, ковка, штамповка, волочение, прокат.
реферат [122,4 K], добавлен 18.10.2013Физико-механические основы обработки давлением. Факторы, влияющие на пластичность металла. Влияние обработки давлением на его структуру и свойства. Изготовление машиностроительных профилей: прокатка, волочение, прессование, штамповка, ковка, гибка.
контрольная работа [38,0 K], добавлен 03.07.2015Экономическая эффективность обработки металла давлением. Процесс получения поковок горячей объемной штамповки. Расчет режима резания при сверлении. Технология токарной обработки. Преимущества штамповки в закрытых штампах. Точность обработки заготовок.
курсовая работа [92,2 K], добавлен 13.12.2010Деформация – изменение формы и размеров твердого тела под воздействием приложенных к нему нагрузок. Упругой деформацией называют такую, при которой тело восстанавливает свою первоначальную форму, а при пластической деформации тело не восстанавливается.
реферат [404,2 K], добавлен 18.01.2009Закономерности деформации при повышенных температурах. Возврат и рекристаллизация. Закон постоянства объема пластически деформируемого твердого тела. Степень деформации металла при пластическом формоизменении. Расчет параметров штамповки выдавливанием.
курсовая работа [634,1 K], добавлен 22.01.2016Особенности кузнечно-штамповочного производства. Классификация технологических процессов и изделий КШП, применяемое оборудование. Виды деформации металла. Исходные заготовки для поковок, способы их разделки. Характеристики точности и металлоемкости в КШП.
презентация [61,0 K], добавлен 18.10.2013Разновидности методов получения деталей. Прокатка как один из способов обработки металлов и металлических сплавов методами пластической деформации. Определение, описание процесса волочения, прессования, ковки, штамповки. Достоинства, недостатки методов.
контрольная работа [1,7 M], добавлен 11.11.2009Классификация и применение процессов объемного деформирования материалов. Металлургические и машиностроительные процессы обработки металлов давлением. Методы нагрева металла при выполнении операций ОМД. Технология холодной штамповки металлов и сплавов.
контрольная работа [1,2 M], добавлен 20.08.2015Характеристика исходного сырья, вспомогательных материалов и готовой продукции. Описание технологического процесса и его основные параметры. Материальные и энергетические расчеты. Техническая характеристика основного технологического оборудования.
курсовая работа [901,6 K], добавлен 05.04.2009Изготовление изделий из порошков металлов. Методы и средства технологии. Автоматизация всех технологических операций. Способы изготовления порошков. Одностороннее и двухстороннее прессование. Гидростатическое прессование. Защита деталей от коррозии.
учебное пособие [1,6 M], добавлен 17.03.2009Характеристика исходного сырья, вспомогательных материалов и готовой продукции. Описание технологического процесса и его основные параметры. Материальные и энергетические расчеты. Техническая характеристика основного технологического оборудования.
курсовая работа [509,9 K], добавлен 05.04.2009Сущность и методы литья металла под давлением. Технологический процесс формирования отливки, оборудование и инструменты. Общая характеристика литья под низким давлением. Преимущества и недостатки способа, область применения. Режимы получения отливки.
реферат [1,4 M], добавлен 04.04.2011Основные понятия литейного производства. Особенности плавки сплавов черных и цветных металлов. Формовочные материалы, смеси и краски. Технология изготовления отливок. Виды и направления обработки металлов давлением. Механизмы пластической деформации.
презентация [4,7 M], добавлен 25.09.2013Прессование как один из прогрессивных и распространенных процессов обработки металлов давлением, его объекты и необходимый инструментарий. Технологический процесс полунепрерывного прессования, его технические результаты и признаки патентоспособности.
контрольная работа [238,5 K], добавлен 15.06.2009Оценка физико-химических условий, необходимых для протекания процесса формоизменения металлов и сплавов. Анализ напряженно-деформированного состояния в процессах обработки давлением. Интерпретация кривой упрочнения металлов с позиций теории дислокаций.
курсовая работа [1,1 M], добавлен 15.01.2017Импульсные методы обработки металлов давлением. Сведения о взрывчатых веществах: оборудование для штамповки взрывом. Процесс гидровзрывной штамповки. Электрогидравлические установки для штамповки деталей. Сущность магнитно-импульсной обработки металлов.
реферат [811,8 K], добавлен 10.05.2009Основные принципы технологии автоматизированных производств. Силовые режимы и предельные степени деформации вытяжки, предположения и соотношения, условия пластичности. Предельные степени деформации при вытяжке с утонением, принципы их расчета и значение.
контрольная работа [640,7 K], добавлен 01.07.2014Виды сварки с применением давления, механической и тепловой энергии. Основные параметры, используемые в процессах плазменной обработки. Физический принцип и технология плазменной резки металла. Ее основные преимущества. Схема режущего плазмотрона.
реферат [1,1 M], добавлен 19.01.2015Сущность и признаки упругой и пластической деформации металлов - изменения формы и размеров тела, которое может вызываться воздействием внешних сил, а также другими физико-механическими процессами, которые происходят в теле. Виды разрушения металла.
контрольная работа [23,5 K], добавлен 12.02.2012