Проектирование и разработка новых видов изделий
Характеристика развития автоматизации технологической подготовки и ее современного состояния. Особенности плазово-шаблонного метода производства. Основные конструкции крыла и используемых материалов, необходимых для изготовления шаблонов и оснастки.
Рубрика | Производство и технологии |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 15.10.2014 |
Размер файла | 825,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Иногда такие поверхности называют линейчатыми поверхностями с процентной разбивкой.
Частным случаем линейчатых поверхностей является развертываемая поверхность, отличающаяся тем, что прямолинейная образующая, соединяющая две точки на направляющих, и касательные в них компланарны, т.е. поверхность получается путем обкатки плоскостью двух направляющих. Исходя из этого углы наклона касательных, как в начале, так и в конце используемых отрезков двух кривых должны быть равны между собой, а изменение углов наклона вдоль кривых должно быть гладким и непрерывным.
Нелинейчатой будем называть такую поверхность, у которой способ перехода от сечения к сечению в параллельных плоскостях не обеспечивает линейность образующих, однако форма крыла в плане ограничена прямыми линиями. Существенно нелинейчатая поверхность -- это поверхность такого крыла, геометрические параметры которого (форма профиля, толщина и вогнутость его средней линии и другие) значительно изменяются вдоль размаха крыла. Кроме того, форма в плане описывается криволинейными передней и задней кромками. Следует отметить, что такая поверхность позволяет существенно повысить аэродинамические характеристики крыла. Примером такого крыла является, например, крыло сверхзвукового пассажирского самолета Ту-144.
Для получения дополнительного выигрыша в аэродинамических характеристиках (интерференция) фюзеляжа и крыла, а также бол ее полного использования компонуемого объема в последние годы получило широкое распространение объединение поверхности фюзеляжа и крыла в гладкую единую поверхность с обеспечением их плавного сопряжения. Такая компоновка крыла и фюзеляжа получила название интегральной. Это решение реализовано при проектировании американского самолета В1-А.
9.2 Основные геометрические характеристики крыла
Геометрические характеристики крыла в основном можно определить по его форме в плане. Вообще говоря, хорда крыла определяется как условная линия, соединяющая точки передней и задней кромок крыла, полученные в результате их пересечения плоскостью, параллельной плоскости симметрии самолета.
Хорда, взятая в произвольном по размаху месте крыла, называется местной, ее длина равна:
,
где , - координаты передней кромки крыла; , - координаты задней кромки крыла.
Хорда, определяемая при z = 0 в системе координат самолета, называется центральной (корневой) * Бортовая хорда -- это хорда крыла в пересечении его с поверхностью фюзеляжа. В частном случае, например, треугольного в плане крыла концевая хорда вырождается в ноль.
При расчете аэродинамических характеристик крыла чаще пользуются геометрическими параметрами его проекции на базовую или строительную плоскости.
Базовая плоскость крыла (БПК) -- это плоскость, перпендикулярная плоскости симметрии самолета и проходящая через корневую хорду крыла.
Строительной плоскостью крыла (СПК) называют плоскость, проходящую через хорду одного из сечений крыла (чаще всего корневого или бортового) и точку, лежащую на хорде концевого сечения. Тогда при прямолинейности задней кромки крыла СПК будет определяться двумя пересекающимися линиями -- корневой хордой и задней кромкой крыла.
При нулевом значении угла поперечного V крыла базовая и строительная плоскости совпадают. Поэтому будем считать, что крыло в плане ограничено проекциями линий передней и задней кромок на СПК, корневой и концевой .хордами. Площадь, ограниченную этими линиями, будем называть проекционной площадью крыла.
Местный угол стреловидности передней кромки крыла - угол между касательной к линии передней кромки в заданной точке и плоскостью, перпендикулярной к корневой хорде крыла. Аналогично определяется угол стреловидности задней кромки и линии четверти хорды крыла.
Удлинение крыла определяется как отношение квадрата полного размаха к его площади :
.
Другой важной характеристикой формы крыла в плане является сужение, которое определяется как отношение корневой хорды и концевой:
В ряде случаев из конструктивных соображений или по аэродинамическим требованиям законцовку трапециевидного крыла обрезают. В этом случае для определения сужения крыла исходную форму в плане заменяют фиктивным трапециевидным крылом равной площади с совпадающими передней и задней кромками. Концевая хорда такого крыла определяется из условия равенства площадей по формуле:
,
а сужение крыла определяется так:
.
При этом следует отметить, что полученное фиктивное крыло нельзя использовать для расчета таких характеристик, как удлинение и средняя аэродинамическая хорда.
Средняя аэродинамическая хорда (САХ) определяется как хорда прямоугольного крыла, равного по размаху и площади исходному. САХ является одним из важнейших геометрических параметров несущей поверхности, используемых при расчетах аэродинамических и динамических характеристик, и рассчитывается на основании приведенного выше определения так:
.
Формулой (8.5) пользуются для определения САХ сложного по форме в плане крыла. Однако в большинстве случаев форму крыла в плане можно привести к одной или нескольким трапециям. В этом случае САХ рассчитывается по известным геометрическим формулам:
площадь крыла
;
положение САХ по размаху
;
длина САХ
;
положение носка САХ относительно начала координат крыла
.
Если воспользоваться такими характеристиками крыла, как сужение и удлинение, то формулы (8.7) и (8.8) принимают вид
;
.
Для крыла, составленного из двух трапеций, САХ и ее положение определяются по формулам:
;
;
.
Здесь индексом "1" обозначены параметры внутренней, а индексом "2" - внешней секции крыла.
Для многосекционного крыла, состоящего из n трапеций, длина САХ определяется по формуле:
.
Приведенные выше зависимости для определения геометрических характеристик крыла справедливы и для других несущих поверхностей, таких, как вертикальное и горизонтальное оперение, с той лишь разницей, что вместо корневой хорды в них используется бортовая хорда и размах определяется как сумма длин консолей , т.е.
9.3 Геометрические характеристики аэродинамического профиля
Аэродинамический профиль является основой построения поверхности крыла и определяет основные его характеристики. В общем случае профилем крыла следует считать плоский замкнутый контур, полученный в результате пересечения поверхности крыла плоскостью, перпендикулярной строительной плоскости крыла и пересекающей переднюю и заднюю кромки крыла.
Задачу об обтекании крыла потоком теоретическая аэродинамика разделяет на две: задачу об обтекании прямоугольного недеформированного крыла заданной толщины и задачу об обтекании деформированной пластины нулевой толщины. При решении задачи обтекания поверхность крыла и аэродинамический профиль считают симметричными относительно строительной плоскости с наложенными на них деформациями искривления и сдвигом срединной поверхности, т.е. ординаты точек поверхности определяются в виде:
где - ордината верхней поверхности крыла; - ордината нижней поверхности крыла; - положительная ордината симметричной поверхности крыла; - ордината деформированной срединной поверхности.
Одной из основных характеристик профиля крыла является его хорда, которая определяется как расстояние между крайними его точками, являющимися точками вертикальных касательных.
В местной системе координат, начало которой лежит в носке профиля, а ось x направлена вдоль его хорды, ординаты профиля можно представить в виде:
где - ордината верхнего контура профиля; - ордината нижнего контура профиля; - положительная ордината симметричной части профиля; - ордината средней линии профиля.
Преобразуя (8.18), получаем:
;
.
Для удобства сравнения профилей различных форм и размеров были введены безразмерные, или относительные, координаты:
где b - хорда аэродинамического профиля.
Основными геометрическими характеристиками аэродинамического профиля являются: максимальная относительная толщина симметричной части профиля и ее положение на единичной хорде , максимальная кривизна и ее положение .
В практике проектирования несущих поверхностей широко применяется пересчет координат исходного профиля на заданную относительную толщину и кривизну по формулам:
где индексом «3» отмечены параметры и координаты искомого профиля, а индексом «и» - исходного профиля.
Важной характеристикой формы профиля является также относительный радиус скругления носовой части профиля , представляющий собой значение радиуса кривизны контура в точке .
В полете под действием аэродинамических сил происходит деформация крыла: изгиб вдоль размаха и закрутка сечений относительно продольной оси крыла. В результате закрутки сечений происходит увеличение местного угла атаки профиля, причем это увеличение нарастает к концам крыла. На больших углах атаки полета самолета в концевых частях крыла возникает срыв потока и уменьшение подъемной силы.
Под геометрической деформацией крыла понимается закрутка (поворот) каждого текущего сечения крыла на угол относительно принятой оси и отгиб носовой части профиля на угол . Относительную величину носовой части профиля, на которую распространяется деформация отгиба, обозначим
Излом по обводу профиля, особенно в носовой части, недопустим. Поэтому в точке необходимо обеспечить как минимум первый порядок гладкости стыковки. В этом случае при заданном в сечении z угле отгиба деформация будет определяться формулой:
.
Если же необходимо обеспечить второй порядок гладкости в точке , т.е. , то формула для определении деформации при отгибе принимает вид:
.
За ось крутки сечений крыла обычно принимается задняя кромка. В этом случае деформация крутки рассчитывается по формуле:
,
где - ордината несимметричного профиля без крутки.
В ряде случаев для упрощения расчетов ввиду малости углов поворот сечения относительно оси крутки заменяют деформацией аффинного сдвига и величину деформации крутки рассчитывают по формуле:
,
Из технологических соображений удобнее бывает задавать положение передней кромки закрученного крыла . В этом случае формула (8.26) преобразуется к виду:
.
Аэродинамический профиль является исходной информацией при проектировании крыла летательного аппарата, и требование выдерживания его формы в процессе конструирования и изготовления крыла выдвигается на первый план по сравнению с требованиями компоновки, технологичности и т.д. Поэтому вопросам описания обводов типа аэродинамический профиль посвящены многие исследования по проектированию и расчету поверхностей в самолетостроении.
В зависимости от назначения профиля предъявляются соответствующие требования к его форме и геометрическим характеристикам.
1. Дозвуковые профили характеризуются утолщенной носовой частью, смещением максимальной толщины профиля вперед и плавными сходами к хвостовой части (рис. 2.1, а).
2. Околозвуковые профили отличаются несколько более заостренной носовой частью, смещением максимальной толщины в более заднее положение и более плавными формами в районе максимальной толщины (рис. 2.1,6).
3. Появившиеся в последние годы трансзвуковые, или суперкритические, профили характеризуются уплощенной верхней линией профиля и значительным искривлением хвостовой части (рис. 2.1, в).
4. Сверхзвуковые профили обычно представляют собой обводы с заостренными носовой и хвостовой частями (рис. 2.1, г).
5. Гиперзвуковые профили отличаются заостренной носовой частью и резко затупленной хвостовой частью, а также значительным смещением максимальной толщины назад (рис. 2.1, д).
Рисунок 9.1 Профили
При этом следует отметить, что приведенная классификация профилей достаточно условна. Выбор формы профиля диктуется конкретными задачами.
По методам описания обводов аэродинамические профили делятся на две группы:
1) профили, обводы которых имеют аналитическое описание;
2) профили, обводы которых заданы дискретным массивом координат.
Обводы профилей первой группы могут быть получены по заданным аэродинамическим характеристикам в результате решения задачи обтекания кругового цилиндра с использованием конформного отображения (профили Жуковского, Кармана-Трефтца, Мизеса, Карафоли). При этом уравнения контура профиля достаточно сложны. Поэтому были предложены способы описания обводов типа аэродинамический профиль гладкими функциями простого вида (степенными, строфоидами и т.п.) с последующим определением их аэродинамических характеристик экспериментальным путем. Аэродинамические профили этой группы получили распространение в 30-40-х гг. В последующие годы более широкое распространение получили профили, обводы которых получены путем численного решения дифференциальных уравнений обтекания с последующей экспериментальной доводкой на основании исследований в аэродинамических трубах с целью получения заданных характеристик.
Информация об обводах профилей второй группы обычно представляется в виде таблицы значений координат точек, принадлежащих контуру.
Поэтому одной из задач проектирования поверхности крыла является задача описания обвода, заданного дискретным точечным рядом.
Прежде чем приступить к выбору функции, аппроксимирующей заданный аэродинамический профиль, оговорим требования, которым должна отвечать эта функция.
Эти требования определяются, с одной стороны, условиями работы проектируемого аппарата, т.е. необходимостью обеспечения безотрывного обтекания крыла потоком, особенно в носовой его части. С другой стороны, математический аппарат описания обвода должен создавать максимальные удобства проектировщику при работе с ним, представляя собой неотъемлемую часть автоматизированной системы проектирования поверхности. Таким образом, аппроксимирующая функция должна удовлетворять следующим основным требованиям:
1) быть непрерывной и обеспечивать гладкость обвода не ниже второго порядка;
2) обеспечивать по возможности описание наибольшего количества типов профилей;
3) обеспечивать гладкую аппроксимацию профиля без предварительного графического сглаживания исходных данных;
4) обладать минимальным, но достаточным числом параметров, варьируемых для управления формой профиля.
В настоящее время при проектировании плоских контуров типа аэродинамический профиль применяется целый ряд математических зависимостей, таких как полиномиальные функции, кривые второго порядка, степенные уравнения, уравнения специальных контуров, сплайн-функции.
9.4 Проектирование поверхности линейчатого крыла
При проектировании несущих поверхностей наиболее широкое применение получили линейчатые поверхности, что обусловлено простотой алгоритма их построения и высокой степенью технологичности. И если в общем случае линейчатая поверхность не является разворачиваемой, как, например, гиперболоид вращения, то для поверхностей крыльев можно получить развертку с достаточно высокой степенью точности. Это важно при изготовлении обшивки крыла, особенно на участках кессона, где ее толщина велика и, следовательно, в качестве технологического процесса изготовления может быть использована только гибка в случае изготовления из металлов.
Особенно широкое распространение линейчатые поверхности получили также в силу простоты их увязки и построения графическим способом. Однако в последние годы из-за повышения требований к технологии подготовки производства и к точности изготовления оснастки и деталей несущих поверхностей, а также в силу необходимости автоматизации конструкторских работ все большее распространение получают математические методы описания линейчатых поверхностей. При этом применяются алгоритмы проектирования поверхностей на основе как традиционного точечного задания профилей, так и аналитического описания профилей и поверхностей.
Рассмотрим алгоритм расчета линейчатого крыла, направляющие которого заданы аналитически в явном виде как функции от двух переменных:
;
Пусть задана точка А на плановой проекции крыла с координатами , . Необходимо определить третью координату этой точки . Рассмотрим каждый этап этого алгоритма. На первом этапе по задан ной координате определяем значения координат передней и задней кромок, которые заданы как функции одной переменной,
;
.
Используя эти величины, можно легко определить длину текущей хорды, координаты x точки в местной системе координат с началом на передней кромке крыла, а также значение относительной координаты x точки по следующим формулам:
;
;
.
На следующем этапе определяем координаты точек первого и второго теоретических сечений с равнопроцентными координатами x:
.
Умножая каждую относительную координату на величину хорды, получаем абсолютные значения координат х в местной системе координат. Находим координаты у точек на первом и втором теоретических сечениях:
;
;
;
.
Для перехода в систему координат агрегата прибавим к и значения соответствующих координат передней кромки:
;
.
Таким образом, нам известны координаты х двух точек образующей линейчатого крыла, которая проходит через точку А.
Для определения неизвестной координаты у точки А необходимо подставить известные ее координаты в уравнение проекции образующей:
,
,
.
При расчете сечений поверхности линейчатого крыла формулы (8.42) и (8.43) можно использовать при взаимной перпендикулярности плоскости сечения и плоскости хорд крыла. Если эти плоскости не перпендикулярны, то неизвестные координаты точки А определяются из решения системы линейных уравнений:
где , и - некоторые постоянные коэффициенты.
Для решения этой системы можно использовать известный метод Крамера. Рассмотренный алгоритм определения координат произвольной точки можно использовать и для расчета сечений линейчатого крыла по заданной стреле прогиба, т.к. при аналитическом задании профилей можно определить произвольную точку на поверхности.
10. Защита от поражения током электрооборудования
10.1 Причины поражения электрическим током и основные меры защиты
Основные причины несчастных случаев от воздействия электрического тока следующие:
1. случайное прикосновение или приближение на опасное расстояние к токоведущим частям, находящимся под напряжением;
2. появление напряжения на конструктивных металлических частях электрооборудования - корпусах, кожухах и т.п. - в результате повреждения изоляции и других причин;
3. появление напряжения на отключенных токоведущих частях, на которых работают люди, вследствие ошибочного включения установки;
4. возникновение шагового напряжения на поверхности земли в результате замыкания провода на землю.
Основными мерами защиты от поражения током являются: обеспечение недоступности токоведущих частей, находящихся под напряжением, для случайного прикосновения; электрическое разделение сети; устранение опасности поражения при появлении напряжения на корпусах, кожухах и других частях электрооборудования, что достигается применением малых напряжений, использованием двойной изоляции, выравниванием потенциала, защитным заземлением, занулением, защитным отключением и др.; применение специальных электрозащитных средств -- переносных приборов и приспособлений; организация безопасной эксплуатации электроустановок.
Недоступность токоведущих частей электроустановок для случайного прикосновения может быть обеспечена рядом способов: изоляцией токоведущих частей, размещением их на недоступной высоте, ограждением и др.
Электрическое разделение сети - это разделение электрической сети на отдельные электрически не связанные между собой участки с помощью специальных разделяющих трансформаторов. В результате изолированные участки сети обладают большим сопротивлением изоляции и малой емкостью проводов относительно земли, за счет чего значительно улучшаются условия безопасности.
Применение малого напряжения. При работе с переносным ручным электроинструментом -- дрелью, гайковертом, зубилом и т. п., а также ручной переносной лампой человек имеет длительный контакт с корпусами этого оборудования. В результате для него резко повышается опасность поражения током в случае повреждения изоляции и появления напряжения на корпусе, особенно, если работа производится в помещении с повышенной опасностью, особо опасном или вне помещения.
Для устранения этой опасности необходимо питать ручной инструмент и переносные лампы напряжением не выше 42 В.
Кроме того, в особо опасных помещениях при особенно неблагоприятных условиях (например, работа в металлическом резервуаре, работа сидя или лежа на токопроводящем полу и т.п.) для питания ручных переносных ламп требуется еще более низкое напряжение - 12В.
Двойная изоляция -- это электрическая изоляция, состоящая из рабочей и дополнительной изоляции. Рабочая изоляция предназначена для изоляции токоведущих частей электроустановки, обеспечивая ее нормальную работу и защиту от поражения током. Дополнительная изоляция предусматривается дополнительно к рабочей для защиты от поражения током в случае повреждения рабочей изоляции. Двойную изоляцию широко применяют при создании ручных электрических машин. При эксплуатации таких машин заземление или зануление их корпусов не требуется.
Классификация помещений по опасности поражения током. Все помещения делятся по степени поражения людей электрическим током на три класса: без повышенной опасности, с повышенной опасностью, особо опасные.
Помещения без повышенной опасности-- это сухие, беспыльные помещения с нормальной температурой воздуха и с изолирующими (например, деревянными) полами, т. е. в которых отсутствуют условия, свойственные помещениям с повышенной опасностью и особо опасным.
Помещения с повышенной опасностью характеризуются наличием одного из следующих пяти условий, создающих повышенную опасность:
· сырости, когда относительная влажность воздуха длительно превышает 75%; такие помещения называют сырыми;
· высокой температуры, когда температура воздуха длительно (свыше суток) превышает +35°С; такие помещения называются жаркими;
· токопроводящей пыли, когда по условиям производства в помещениях выделяется токопроводящая технологическая пыль (например, угольная, металлическая и т. п.) в таком количестве, что она оседает на проводах, проникает внутрь машин, аппаратов и т.п.; такие помещения называются пыльными с токопроводящей пылью;
· токопроводящих полов -- металлических, земляных, железобетонных, кирпичных и т.п.;
возможности одновременного прикосновения человека к имеющим соединение с землей металлоконструкциям зданий, технологическим аппаратам, механизмам и т. п., с одной стороны, и к металлическим корпусам электрооборудования -- с другой.
Помещения особо опасные характеризуются наличием одного из следующих трех условий, создающих особую опасность:
· особой сырости, когда относительная влажность воздуха близка к 100% (стены, пол и предметы, находящиеся в помещении, покрыты влагой); такие помещения называются особо сырыми;
· химически активной или органической среды, т.е. помещения, в которых постоянно или в течение длительного времени содержатся агрессивные пары, газы, жидкости, образующие отложения или плесень, действующие разрушающе на изоляцию и токоведущие части электрооборудования; такие помещения называются помещениями с химически активной или органической средой;
· одновременного наличия двух и более условий, свойственных помещениям с повышенной опасностью.
Особо опасными помещениями является большая часть производственных помещений, в том числе все цехи машиностроительных заводов, испытательные станции, гальванические цехи, мастерские и т.п. К таким же помещениям относятся и участки работ на земле под открытым небом или под навесом.
10.2 Защитное заземление
Защитное заземление - преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением.
Назначение защитного заземления - устранение опасности поражения людей электрическим током при появлении напряжения на конструктивных частях электрооборудования, т.е. при замыкании на корпус.
Принцип действия защитного заземления - снижение до безопасных значений напряжений прикосновения и шага, обусловленных замыканием на корпус. Это достигается уменьшением потенциала заземленного оборудования, а также выравниванием потенциалов за счет подъема потенциала основания, на котором стоит человек, до потенциала, близкого по значению к потенциалу заземленного оборудования.
Область применения защитного заземления - трехфазные трехпроводные сети напряжением до 1000В с изолированной нейтралью и выше 1000В с любым режимом нейтрали.
Оборудование, подлежащее заземлению. Защитному заземлению подлежат металлические нетоковедущие части оборудования, которые из-за неисправности изоляции могут оказаться под напряжением и к которым возможно прикосновение людей и животных. При этом в помещениях с повышенной опасностью и особо опасных по условиям поражения током, а также в наружных установках заземление является обязательным при номинальном напряжении электроустановки выше 42В переменного и выше 110В постоянного тока, а в помещениях без повышенной опасности - при напряжении 380В и выше переменного и 440В и выше постоянного тока. Лишь во взрывоопасных помещениях заземление выполняется независимо от значения напряжения установки.
10.3 Зануление
Занулением называется преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением.
Нулевым защитным проводником называется проводник, соединяющий зануляемые части с глухозаземленной нейтральной точкой обмотки источника тока или ее эквивалентом. Нулевой защитный проводник следует отличать от нулевого рабочего проводника, который также соединен с глухозаземленной нейтральной точкой источника тока, но предназначен для питания током электроприемников, т.е. по нему проходит рабочий ток.
Задача зануления та же, что и защитного заземления: устранение опасности поражения людей током при замыкании на корпус. Принцип действия зануления - превращение замыкания на корпус в короткое однофазное замыкание, т.е. замыкание между фазным и нулевым проводами с целью создания большого тока, способного обеспечить срабатывание защиты и тем самым автоматически отключить
поврежденную установку от питающей сети. Такой защитой являются плавкие предохранители или автоматические выключатели, устанавливаемые перед потребителями энергии для защиты от токов короткого замыкания. Скорость отключения поврежденной установки, т.е. время с момента появления напряжения на корпусе до момента отключения установки от питающей электросети, составляет 5…7сек при защите установки плавкими предохранителями и 1…2с при защите автоматами.
Кроме того, поскольку зануленные части оказываются заземленными через нулевой защитный проводник, то в аварийный период, т.е. с момента возникновения замыкания фазы на корпус и до автоматического отключения поврежденной установки от сети, появляется защитное свойство этого заземления, подобно тому, как имеет место при защитном заземлении. Иначе говоря, заземление зануленных частей через нулевой защитный проводник снижает в аварийный период их напряжение относительно земли.
Область применения зануления - трехфазные четырехпроводные сети напряжением до 1000В с глухозаземленной нейтралью. Обычно это сети напряжением 380/220В, широко применяющиеся в машиностроительной промышленности и других отраслях, а также сети 220/127В и 660/380В.
Назначение нулевого защитного проводника - создание для тока короткого замыкания цепи с малым сопротивлением, чтобы этот ток был достаточным для быстрого срабатывания защиты, т. е. быстрого отключения поврежденной установки от сети.
Список используемой литературы
1. Завьялов Ю.С., Леус В.А., Скороспелов В.А. Сплайны в инженерной геометрии. - М.: Машиностроение, 1985. - 224с. ил.
2. Давыдов Ю.В., Злыгарев В.А. Геометрия крыла: Методы и алгоритмы проектирования несущих поверхностей. - М.: Машиностроение, 1987. - 136с.: ил.
3. Леньков С.С., Орлов С.Т. Шаблоны и объемная оснастка в самолетостроении. - М.: Оборонгиз, 1962. - 406с.: ил.
4. Горбунов М.Н. Технология заготовительно-штамповочных работ в производстве летательных аппаратов.
5. Охрана труда в машиностроении: Учебник для машиностроительных вузов/Е.Я. Юдин, С.В. Белов, С.К. Баланцев и др.; Под ред. Е.Я.Юдина, С.В. Белова - 2-е изд., перераб. И доп.-М.: Машиностроение, 1983, 432с., ил.
6. Долин П.А. Основы электробезопасности в электроустановках. М.: Энергия, 1979. 408с.
7. Гилой В. Интерактивная машинная графика/ Пер. с англ. М.: Мир.1981. 380с.
8. Зозулевич Д.М. Машинная графика в автоматизированном проектировании. М.: Машиностроение. 1976. 240с.
9. Кашин Г.М., Пшеничников Г.И., Флеров Ю.А. Методы автоматизированного проектирования самолета. М.: Машиностроение. 1979. 166с.
10. Инструкция по использованию графической системы EDS Unigraphics.
11. Инструкция по использованию графической системы CAD/CAM Cimatron it. Bee Pitron Ltd, Санкт-Петербург, 1994г.
12. Крысин В.Н. Технологическая подготовка авиационного производства. М.: Машиностроение, 1984г. 200с.
Размещено на Allbest.ru
...Подобные документы
Характеристика оборудования для изготовления резиновых изделий. Расчет гнездности оснастки, исполнительных размеров формообразующих деталей, параметров шины, установленного ресурса оснастки. Материалы деталей, их свойства, технология переработки.
курсовая работа [649,7 K], добавлен 30.10.2011Оценка технологичности изделия. Обзор методов изготовления деталей. Операции технологического маршрута. Обоснование сортамента заготовки и метода ее изготовления. Расчет режимов резания при токарной обработке. Разработка технологической оснастки.
курсовая работа [812,5 K], добавлен 12.01.2016Расчет и разработка конструкции технологической оснастки для изготовления изделия "Гофра". Расчет гнездности оснастки. Конструирование формообразующих полостей. Расчет усадки и исполнительных размеров формообразующих деталей. Тепловой расчет оснастки.
курсовая работа [1,9 M], добавлен 23.08.2014Автоматизированное проектирование конструкции и технология производства механизма подачи мобильной буровой установки. Увеличение эффективности конструкторско-технологической подготовки производства. Управление процессами технологической обработки изделий.
дипломная работа [2,0 M], добавлен 12.08.2017Анализ направления моды, выбор модели для дальнейшей проработки. Разработка технологической последовательности изготовления и декорирования изделия. Проектирование чертежа конструкции, изготовление лекал. Свойства основных материалов для пошива комплекта.
дипломная работа [5,9 M], добавлен 15.04.2018Разработка конструкции и технологии изготовления ночного прицела, соответствующего сложившимся на современном рынке высоким техническим требованиям. Механическая обработка корпусных деталей оптических приборов. Проектирование технологической оснастки.
дипломная работа [3,0 M], добавлен 09.12.2016Технологический анализ конструкции. Определение типа производства. Оценка структуры технологического процесса, последовательности и содержания операций. Выбор метода контроля точности изготовления изделия, оборудования и технологической оснастки.
курсовая работа [532,8 K], добавлен 09.05.2015Производство изделий из композиционных материалов. Подготовительные технологические процессы. Расчет количества армирующего материала. Выбор, подготовка к работе технологической оснастки. Формообразование и расчет штучного времени, формование конструкции.
курсовая работа [457,2 K], добавлен 26.10.2016Выбор спектра используемых в конструкции изделия материалов (для деталей из природного камня, для декоративных деталей из металла). Состав сборочных единиц. Проектирование технологических операций и переходов. Расчет штучного времени изготовления детали.
курсовая работа [3,6 M], добавлен 27.11.2014Краткая характеристика детали. Определение размеров заготовки. Выбор технологического маршрута изготовления валика, оборудования и технологической оснастки. Выбор режимов резания и нормирование токарной операции. Проектирование конструкции приспособления.
курсовая работа [1,2 M], добавлен 16.01.2015Технологическая подготовка производства в машиностроении. Промышленные изделия машиностроения и этапы их создания. Функции и проблемы технологической подготовки производства. Принципы построения АСТПП. Базовые системы автоматизации проектирования ТПП.
дипломная работа [1,9 M], добавлен 10.01.2009Описание конструкции шкафа для платья. Расчет древесных материалов и количества отходов на 1000 изделий; нормирование расхода древесных материалов на единицу продукции и на программу. Выбор оборудования и составление технологической карты раскроя ДСтП.
курсовая работа [322,2 K], добавлен 03.03.2014Создание новых видов продукции. Методы сравнения технологических процессов. Содержание, организация и этапы подготовки производства. Характеристика основных фондов предприятия. Особенности технологической подготовки производства на примере примере ОАО "МЗ
курсовая работа [53,1 K], добавлен 04.05.2015Исследование технической подготовки производства как комплекса взаимосвязанных работ и мероприятий по конструированию, совершенствованию и выпуску изделий. Определение целей, задач и характеристика подсистем технологической подготовки производства обуви.
реферат [250,0 K], добавлен 28.03.2011Маршрутный технологический процесс изготовления детали, его роль. Разработка технологической операции процесса резания, расчет основных параметров. Анализ составляющих погрешностей технологической обработки детали, определение соотношения их видов.
контрольная работа [43,7 K], добавлен 28.11.2010Общая характеристика и назначение газосиликатных блоков, их классификация и ассортимент. Сырье для производства, технология изготовления. Основные свойства, номенклатура, технические требования. Составление технологической карты производства газобетона.
курсовая работа [1,7 M], добавлен 13.04.2012Описание конструкции и служебного назначения детали. Определение типа производства и его характеристика. Анализ детали на технологичность и разработка технологии обработки. Проектирование технологической оснастки. Организация участка механического цеха.
дипломная работа [643,0 K], добавлен 17.11.2010Конструирование формующего инструмента для изготовления изделий из полимерных материалов. Разработка технологической схемы производства. Расчет мощности нагрева и основных силовых параметров. Определение числа гнезд, усадки изделия и объема впрыска.
курсовая работа [2,3 M], добавлен 29.06.2012Обоснование метода получения композиционных материалов (контактного формования), основные требования к сырью и готовой продукции. Описание спроектированной технологической схемы изготовления и контроля производства, видов брака и способов его устранения.
дипломная работа [477,2 K], добавлен 27.02.2015Особенности изготовления детали "Корпус патрона" в условиях единичного производства. Проектирование технологического процесса для выполнения операции механической обработки. Инструментальная оснастка операции, основные узлы станочного приспособления.
курсовая работа [177,4 K], добавлен 03.11.2014