Производство алюминия
Алюминий как химический элемент III группы периодической системы Менделеева. Взаимодействие кислорода с углеродом анода. Физико-химические и технологические свойства металла. Температурный коэффициент электросопротивления. Сплавы, повышающие прочность.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 20.10.2014 |
Размер файла | 20,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Производство алюминия. Сплавы алюминия
Содержание
Введение
1. Производство алюминия
2. Свойство алюминия
3. Сплавы алюминия
4. Классификация чугунов
5. Маркировка чугунов по ГОСТу
Задача 1 алюминий химический сплав
Задача 2
Список литературы
Введение
Алюминий - химический элемент III группы периодической системы Менделеева (атомный номер 13, атомная масса 26,98154). В большинстве соединений алюминий трехвалентен, но при высоких температурах он способен проявлять и степень окисления +1. Из соединений этого металла самое важное - оксид Al2O3.
Алюминий - металл, сферы потребления которого постоянно расширяются. В ряде областей промышленности он успешно вытесняет традиционно применяемые металлы и сплавы.
Бурное развитие потребления алюминия обусловлено замечательными его свойствами, среди которых в первую очередь следует назвать высокую прочность в сочетании с малой плотностью, удовлетворительную коррозионную стойкость, хорошую способность к формоизменению путем литья, давления и резания; возможность соединения алюминиевых деталей в различных конструкциях с помощью сварки, пайки, склеивания и других способов; способность к нанесению защитных и декоративных покрытий.
Все это в сочетании с большими запасами алюминия в земной коре делает перспективы развития производства и потребления алюминия весьма широким [5].
1. Производство алюминия
Основным сырьем для производства алюминия служат бокситы, содержащие 32-60% глинозема Al2O3 . К важнейшим алюминиевым рудам относятся также алунит и нефелин. Россия располагает значительными запасами алюминиевых руд. Кроме бокситов, большие месторождения которых находятся на Урале и в Башкирии, богатым источником алюминия является нефелин, добываемый на Кольском полуострове. Много алюминия находится и в месторождениях Сибири.
Алюминий получают из оксида алюминия Al2O3 электролитическим методом. Используемый для этого оксид алюминия должен быть достаточно чистым, поскольку из выплавленного алюминия примеси удаляются с большим трудом. Очищенный Al2O3 получают переработкой природного боксита.
Основное исходное вещество для производства алюминия - оксид алюминия. Он не проводит электрический ток и имеет очень высокую температуру плавления (около 2050 °C), поэтому требуется слишком много энергии.
При электролизе на катоде выделяется алюминий, а на аноде - кислород. Алюминий , обладающий большей плотностью , чем исходный расплав, собирается на дне эликтролизера, откуда его периодически выпускают. По мере выделения металла, в расплав добавляют новые порции оксида алюминия. Выделяющийся при электролизе кислород взаимодействует с углеродом анода, который выгорает, образуя CO и CO2.
Первый алюминиевый завод в России был построен в 1932 году в Волхове [1].
2. Свойства алюминия
Алюминий характеризуется высокой электро- и теплопроводностью, коррозионной стойкостью, пластичностью, морозостойкостью. Важнейшим свойством алюминия является его малая плотность (примерно 2.70 г/куб.см). Температура плавления алюминия около 660 С.
Физико-химические, механические и технологические свойства алюминия очень сильно зависят от вида и количества примесей, ухудшая большинство свойств чистого металла. Основными естественными примесями в алюминии являются железо и кремний. Железо, например, присутствуя в виде самостоятельной фазы Fe-Al, снижает электропроводность и коррозионную стойкость, ухудшает пластичность, но несколько повышает прочность алюминия.
В зависимости от степени очистки первичный алюминий разделяют на алюминий высокой и технической чистоты (ГОСТ 11069-2001). К техническому алюминию относятся также марки с маркировкой АД, АД1, АД0, АД00 (ГОСТ 4784-97). Технический алюминий всех марок получают электролизом криолит-глиноземных расплавов. Алюминий высокой чистоты получают дополнительной очисткой технического алюминия. Особенности свойств алюминия высокой и особой чистоты рассмотрены в книгах
Главное практическое различие между техническим и высоокоочищенным алюминием связано с отличиями в коррозионной устойчивости к некоторым средам. Естественно, что чем выше степень очистки алюминия, тем он дороже.
В специальных целях используется алюминий высокой чистоты. Для производства алюминиевых сплавов, кабельно-проводниковой продукции и проката используется технический алюминий. Далее речь будет идти о техническом алюминии [4].
Электропроводность
Важнейшее свойство алюминия - высокая электропроводность, по которой он уступает только серебру, меди и золоту. Сочетание высокой электропроводности с малой плотностью позволяет алюминию конкурировать с медью в сфере кабельно-проводниковой продукции.
На электропроводность алюминия кроме железа и кремния сильно влияет хром, марганец, титан. Поэтому в алюминии, предназначенном для изготовления проводников тока, регламентируется содержание ещё нескольких примесей. Так, в алюминии марки А5Е при допускаемом содержании железа 0.35%, а кремния 0.12%, сумма примесей Cr+V+Ti+Mn не должна превышать всего лишь 0.01%.
Электропроводность зависит от состояния материала. Длительный отжиг при 350 С улучшает проводимость, а нагартовка проводимость ухудшает.
Таким образом удельное электросопротивление проводников из алюминия примерно в 1.5 раза выше электросопротивления медных проводников. Соответственно электропроводность (величина обратная удельному сопротивлению) алюминия составляет 60-65% от электропроводности меди. Электропроводность алюминия растет с уменьшением количества примесей.
Температурный коэффициент электросопротивления алюминия (0.004) приблизительно такой же, как у меди.
Теплопроводность
Теплопроводность алюминия при 20 oС составляет примерно 0.50 кал/см*с*С и возрастает с увеличением чистоты металла. По теплопроводности алюминий уступает только серебру и меди (примерно 0.90), втрое превышая теплопроводность малоуглеродистой стали. Это свойство определяет применение алюминия в радиаторах охлаждения и теплообменниках [2].
3. Сплавы алюминия
Сплавы, повышающие прочность и другие свойства алюминия, получают введением в него легирующих добавок, таких, как медь, кремний, магний, цинк, марганец.
Дуралюмин (дюраль, дюралюминий, от названия немецкого города, где было начато промышленное производство сплава). Сплав алюминия (основа) с медью (Cu: 2,2-5,2%), магнием (Mg: 0,2-2,7%) марганцем(Mn: 0,2-1%). Подвергается закалке и старению, часто плакируется алюминием. Является конструкционным материалом дла авиационного и транспортного машиностроения.
Силумин - легкие литейные сплавы алюминия (основа) с кремнием (Si: 4-13%), иногда до 23% и некоторыми другими элементами: Cu, Mn, Mg, Zn, Ti, Be). Изготавливают детали сложной конфигурации, главным образом в авто- и авиастроении.
Магналии - сплавы алюминия (основа) с магнием (Mg: 1-13%) и другими элементами, обладающие высокой коррозийной стойкостью, хорошей свариаемостью, высокой пластичностью. Изготавливают фасонные отливки (литейные магналии), листы, проволоку, заклепки и т.д. (деформируемые магналии).
Основные достоинства всех сплавов алюминия состоит в их малой плотностью (2,5-2,8 г/см3), высокая прочность (в расчете на единицу веса), удовлетворительная стойкость против атмосферной коррозии, сравнительная дешевизна и простота получения и обработка.
Алюминиевые сплавы применяются в ракетной технике, в авиа-, авто-, судо- и приборостроении, в производстве посуды, спорттоваров, мебели, рекламе и других отраслях промышленности.
По широте применения сплавы алюминия занимают второе место после стали и чугуна.
Алюминий - одна из наиболее распространенных добавок в сплавах на основе меди, магния, титана, никеля, цинка, железа. Алюминий применяется и для алитирования (алюминирования) - насыщения поверхности стальных или чугунных изделий алюминием с целью защиты основного материала от окисления при сильном нагревании, т.е. повышения жароупорности (до 1100 °C) и сопротивления атмосферной коррозии [4].
4. Классификация чугунов
Чугунами называют сплавы железа с углеродом, содержащие более 2,14% углерода. Они содержат те же примеси, что и сталь, но в большем количестве. В зависимости от состояния углерода в чугуне, различают:
Белый чугун, в котором весь углерод находится в связанном состоянии в виде карбида, и чугун, в котором углерод в значительной степени или полностью находится в свободном состоянии в виде графита, что определяет прочностные свойства сплава, чугуны подразделяют на:
1) серые - пластинчатая или червеобразная форма графита;
2) высокопрочные - шаровидный графит;
3) ковкие - хлопьевидный графит.
5. Маркировка чугунов по ГОСТу
Чугуны маркируют двумя буквами и двумя цифрами, соответствующими минимальному значению временного сопротивления дв при растяжении в МПа-10.
Серый чугун обозначают буквами "СЧ" (ГОСТ 1412-85), высокопрочный - "ВЧ" (ГОСТ 7293-85), ковкий - "КЧ" (ГОСТ 1215-85).
СЧ10 - серый чугун с пределом прочности при растяжении 100 МПа;
ВЧ70 - высокопрочный чугун с сигма временным при растяжении 700 МПа;
КЧ35 - ковкий чугун с дв растяжением примерно 350 МПа.
Для работы в узлах трения со смазкой применяют отливки из антифрикционного чугуна АЧС-1, АЧС-6, АЧВ-2, АЧК-2 и др., что расшифровывается следующим образом: АЧ - антифрикционный чугун:
С - серый, В - высокопрочный, К - ковкий. А цифры обозначают порядковый номер сплава согласно ГОСТу 1585-79 [3].
Задача 1
Внешняя нагрузка вызывает в твердом теле напряжение. Определите напряжение в железном образце. Величина нагрузки (силы) P = 60 MH. Площадь сечения F = 0.2 м2.
Решение: ? = P / F = 60 / 0.2 = 300 MH/ м2.
Задача 2
Определите ударную вязкость образца KCU. Относительная работа разрушения А = 60 кгс/м. Площадь образца до разрушения F = 3.2 м2.
Решение: KCU = A / F = 60 / 3.2 = 18.75 кгс/м.
Список литературы и Интернет-ресурсы
1. Гуляев А.П. Металловедение. - М.: Металлургия, 1977. - УДК669.0(075.8)
2. Большая Советская Энциклопедия - М., 1969-1978.
3. Корниенко Э. Н., Колесников М. С., Разработка высокопрочных чугунов с повышенными специальными свойствами: Монография. - г. Наб. Челны, 1999.
4. http://www.dpva.info/Guide/GuideMatherials/Metalls/Aluminium/AluminiumOwerview/
5. http://xreferat.ru/76/630-1-alyuminiiy-i-ego-splavy.html
Размещено на Allbest.ru
...Подобные документы
Алюминий - химический элемент третьей группы периодической системы элементов Менделеева. Перспективы развития производства и потребления алюминия. Свойства сплавов алюминия и особенности их применения в сферах современной техники, строительстве и быту.
реферат [35,9 K], добавлен 20.03.2012Достоинства алюминия и его сплавов. Малый удельный вес как основное свойство алюминия. Сплавы, упрочняемые термической обработкой. Сплавы для ковки и штамповки. Литейные алюминиевые сплавы. Получение алюминия. Физико-химические основы процесса Байера.
курсовая работа [2,7 M], добавлен 05.03.2015Эксплуатационные свойства металлов. Классификация металлических материалов. Черные и цветные металлы, их сплавы. Стали для режущих и измерительных инструментов. Стали и сплавы со специальными свойствами. Сплавы алюминия и меди. Сплавы с "эффектом памяти".
курсовая работа [1,6 M], добавлен 19.03.2013Характеристика алюминия (серебристо-белого металла), его химическая активность, природные соединения, содержание в земной коре. Модификации оксида алюминия, их получение и применение в технике. Механические свойства и назначение алюминиевых сплавов.
реферат [11,2 K], добавлен 23.11.2010Электролиз алюминия. Определение размеров анода. Размеры конструктивных элементов сборноблочного катодного устройства. Материальный, электрический и энергетический расчет электролизера, его производительность и расход сырья на производство алюминия.
дипломная работа [145,5 K], добавлен 22.01.2009Система алюминий-магний (Al-Mg) как одна из самых перспективных при разработке свариваемых сплавов, основные недостатки и преимущества данной группы. Сплавы алюминия с прочими элементами, их основные характеристики. Области применения алюминиевых сплавов.
контрольная работа [24,6 K], добавлен 21.01.2015Запасы и производство бокситов и другого алюминиесодержащего сырья в России. История развития производства алюминия, основные направления его применения как конструкционного металла. Экологические меры безопасности в производстве алюминия и сплавов.
курсовая работа [41,3 K], добавлен 23.04.2011Основные методы и виды гальванических покрытий на алюминий и его сплавы. Анализ схемы предварительной подготовки алюминия, а также его сплавов. Цинкатный и станнатный растворы. Непосредственное нанесение гальванических покрытий на алюминий и сплавы.
реферат [26,8 K], добавлен 14.08.2011Характеристика алюминия и его сплавов. Технологический процесс производства алюминия и использование "толлинга" в производстве. Состояние алюминиевой промышленности и мировой рынок алюминия в конце 2007 - начале 2008 гг. Применение алюминия и его сплавов.
контрольная работа [6,2 M], добавлен 14.08.2009Механические свойства, обработка и примеси алюминия. Классификация и цифровая маркировка деформируемых алюминиевых сплавов. Характеристика литейных алюминиевых сплавов системы Al–Si, Al–Cu, Al–Mg. Технологические свойства новых сверхлегких сплавов.
презентация [40,6 K], добавлен 29.09.2013Алюминий и его сплавы. Характеристика и классификация алюминиевых сплавов. Деформируемые, литейные и специальные алюминиевые сплавы. Литые композиционные материалы на основе алюминиевого сплава для машиностроения. Состав промышленных дюралюминов.
курсовая работа [2,8 M], добавлен 15.01.2014Общая характеристика и ценные свойства алюминия. Применение алюминия и его сплавов в разных отраслях промышленности. Основные современные способы производства алюминия. Производство глинозема: метод Байера и способ спекания. Рафинирование алюминия.
реферат [35,0 K], добавлен 31.05.2010Понятие о металлах, особенности их атомного строения, физико-механические, химические и технологические свойства. Сплавы золота, серебра, титана, платины и палладия, нержавеющая сталь; их характеристики и применение в ортопедической стоматологии.
презентация [433,4 K], добавлен 01.12.2013Получение глинозёма способом спекания. Физико-химические свойства криолитно-глинозёмных расплавов. Катодный, анодный процессы. Влияние различных факторов на выход по току. Устройство и работа электролизёра для получения, рафинирования и разливки алюминия.
контрольная работа [2,1 M], добавлен 12.03.2015Экспериментальное изучение реакции азотирования алюминия для получения нитрида алюминия. Свойства, структура и применение нитрида алюминия. Установка для исследования реакции азотирования алюминия. Результаты синтеза и анализ полученных продуктов.
дипломная работа [1,1 M], добавлен 12.02.2015Способы получения алюминия. История открытия металла. Разложение электрическим током окиси алюминия, предварительно расплавленной в криолите. Механическая обработка, применение металла в производстве. Изучение его электропроводности, стойкости к коррозии.
презентация [420,5 K], добавлен 14.02.2016Промышленное значение цветных металлов: алюминий, медь, магний, свинец, цинк, олово, титан. Технологические процессы производства и обработки металлов, механизация и автоматизация процессов. Производство меди, алюминия, магния, титана и их сплавов.
реферат [40,4 K], добавлен 25.12.2009Алюминий как основа конструкционных материалов. Технология производства алюминия, методы его очищения. Свойства и достоинства сверхчистого алюминия. Применение сплавов в промышленности, польза их старения. Алюминотермия и разработка фаз-упрочнителей.
реферат [29,4 K], добавлен 23.01.2010Выдвижение гипотез о влиянии примесей на выход алюминия. Оценка зависимости выхода алюминия от содержания азота в каменноугольном пеке. Определение статистической взаимосвязи выхода алюминия и электропроводности анода в алюминиевой промышленности.
курсовая работа [224,8 K], добавлен 04.10.2013Свойства алюминиево-магниевых, алюминиево-марганцевых и алюминиево-медных сплавов, их применение в промышленности. Характеристики порошковых сплавов алюминия и методы их получения в металлургии. Технологическая схема изготовления гранулированных сплавов.
реферат [28,2 K], добавлен 04.12.2011