Основы материаловедения

Газонаполненные пластмассы как вспененные пластические массы, обладающие малой плотностью. Характеристика видов отжига: изотермический, диффузионный, рекристаллизационный. Знакомство с особенностями изготовления неметаллических фрикционных материалов.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 02.11.2014
Размер файла 1,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1.Антифрикционные материалы

Антифрикционные материалы -- это группа материалов, обладающих низким коэффициентом трения или материалы способные уменьшить коэффициент трения других материалов.

Твердые антифрикционные материалы обладают повышенной устойчивостью к износу при продолжительном трении. Используется для покрытия трущихся поверхностей (например, в подшипниках скольжения). Например, такими материалами могут служить латунь, железографит, бронза или баббит.

Эти материалы должны иметь минимальный коэффициент трения, структура покрытия должна обеспечивать антисхватывание и возможность быстрой приработки к телу, механические характеристики материала должны соответствовать эксплуатационным нагрузкам, должны быть достаточно износостойкими и пластичными.

Процесс нанесения антифрикционных покрытий должен обеспечивать выполнение тех же требований, что и для износостойких покрытий, с той лишь разницей, что при его проведении строго не ограничивается толщина покрытия.

Антифрикционные сплавы имеют пластичную основу, в которой равномерно рассеяны более твердые частицы. Подшипниковые материалы делят на следующие группы: белые антифрикционные сплавы на основе олова, свинца (баббиты) и алюминия; сплавы на основе меди, чугуны серые, модифицированные и ковкие; металлокерамические пористые материалы; пластмассы. Баббиты. В оловянном баббите марки Б83 (табл. 1) пластичной основой является твердый раствор сурьмы в меди и олове, а твердыми частицами -- соединения SnSb и Cu3Sn. Микроструктура баббита Б83 приведена на рис. 1 (х200).

Рисунок 1

Таблица 1

Марка

Массовое содержание компонентов, %

Сурьма

Медь

Свинец

Олово

Б83 Б16

10-12 15-17

5,5-6,5 1,5-2,0

Остальное

Остальное 15-17

Баббиты Б83 применяют для заливки подшипников особо нагруженных машин. Оловянные баббиты дороги, поэтому по возможности их заменяют баббитами, состоящими преимущественно из свинца (например, баббитом марки Б16).

В свинцовых баббитах с сурьмой (марки Б16) твердые частицы образуют кристаллы соединений SnSb и Cu3Sn, рассеянные в мягкой основе -- растворе сурьмы и олова в свинце. Эти баббиты уступают по качеству оловянным, однако с успехом применяются для подшипников средней нагруженности (например, в тракторных и автомобильных двигателях).

Другие подшипниковые сплавы. Сплавы алюминия по сравнению с баббитами отличаются меньшей плотностью, большей прочностью и меньшей стоимостью. Недостатком их, является значительная разница в коэффициенте расширения алюминиевых сплавов и стали. Различные марки этих сплавов содержат олово (от 3,5 до 23 %), медь (0,7-8,5 %), кремний (0,3-1,2 %), никель (0,3-3,3 %). Эти сплавы идут для изготовления литых подшипников и прокатных полос с последующей штамповкой из них вкладышей подшипников.

В качестве антифрикционных сплавов применяют бронзы (БрОЦС5-5-5, БрОЦС4-4-17,] БрСЗО) и цинковые сплавы, а в качестве дешевых заменителей металлических материалов для подшипников используют пластифицированную древесину, текстолит и резину.

Пластмассы -- органические материалы, основой которых являются синтетические или природные высокомолекулярные соединения (полимеры). Исключительно широкое применение получили пластмассы на основе синтетических полимеров.

В зависимости от природы полимера и характера его перехода из вязко текучего в стеклообразное состояние при формовании изделий пластмассы делят на:

· Термопласты (термопластичные пластмассы) -- при нагреве расплавляются, а при охлаждении возвращаются в исходное состояние.

· Реактопласты (термореактивные пластмассы) -- отличаются более высокими рабочими температурами, но при нагреве разрушаются и при последующем охлаждении не восстанавливают своих исходных свойств.

Также газонаполненные пластмассы -- вспененные пластические массы, обладающие малой плотностью.

Пластмассы характеризуются малой плотностью (0,85--1,8 г/смі), чрезвычайно низкими электрической и тепловой проводимостями, не очень большой механической прочностью. При нагревании (часто с предварительным размягчением) они разлагаются. Не чувствительны к влажности, устойчивы к действию сильных кислот и оснований, отношение к органическим растворителям различное (в зависимости от химической природы полимера). Физиологически почти безвредны. Свойства пластмасс можно модифицировать методами сополимеризации или стереоспецифической полимеризации, путём сочетания различных пластмасс друг с другом или с другими материалами, такими как стеклянное волокно, текстильная ткань, введением наполнителей и красителей, пластификаторов, тепло- и светостабилизаторов, облучения и др., а также варьированием сырья, например использование соответствующих полиолов и диизоцианатов при получении полиуретанов.

Минерал -- природное тело с определённым химическим составом и кристаллической структурой, образующееся в результате природных физико-химических процессов и обладающее определёнными физическими, механическими и химическими свойствами. Является составной частью земной коры, горных пород, руд, метеоритов.

Существует много вариантов классификаций минералов. Большинство из них построено по структурно-химическому принципу.

По распространённости минералы можно разделить на породообразующие -- составляющие основу большинства горных пород, акцессорные -- часто присутствующие в горных породах, но редко слагающие больше 5 % породы, редкие, случаи нахождения которых единичны или немногочисленны, и рудные, широко представленные в рудных месторождениях.

Наиболее широко используется классификация по химическому составу и кристаллической структуре. Вещества одного химического типа часто имеют близкую структуру, поэтому минералы сначала делятся на классы по химическому составу, а затем на подклассы по структурным признакам. Общепринятая в настоящее время кристаллохимическая классификация минералов подразделяет все их на КЛАССЫ и выглядит следующим образом:

I. Раздел Самородные элементы и интерметаллические соединения

II. Раздел Сульфиды, сульфосоли и им подобные соединения

· 1. класс Сульфиды и им подобные соединения

· 2. класс Сульфосоли

III. Раздел Галоидные соединения (Галогениды)

· 1. класс Фториды

· 2. класс Хлориды, бромиды и иодиды

IV. Раздел Окислы (оксиды)

· 1. класс Простые и сложные окислы

· 2. класс Гидроокислы или окислы, содержащие гидроксил

V. Раздел Кислородные соли (оксисоли)

· 1. класс Нитраты

· 2. класс Карбонаты

· 3. класс Сульфаты

· 4. класс Хроматы

· 5. Класс Вольфраматы и молибдаты

· 6. Класс Фосфаты, арсенаты и ванадаты

· 7. Класс Бораты

· 8. Класс Силикаты

o А. Островные силикаты.

o Б. Цепочечные силикаты.

o В. Ленточные силикаты.

o Г. Слоистые силикаты.

o Д. Каркасные силикаты.

2.Органические соединения

газонаполненный пластмасса неметаллический фрикционный

К металлическим фрикционным материалам относятся чугуны и стали некоторых марок. Для тормозных колодок, например, широко используется серый чугун. Чугуны не склонны к короблению, но при температурах свыше 400--600°С их коэффициент трения резко снижается (это ограничивает температурные условия использования чугунов). Для фрикционных муфт гусеничных машин применяются пары трения из сталей 40, 45, 65Г и др. Существенный недостаток стальных пар трения -- склонность к короблению и схватыванию при перегревах. В качестве фрикционных материалов металлы постепенно заменяются пластмассами.

Неметаллические фрикционные материалы изготовляются главным образом на асбестовой основе; связующим веществом служат каучуки, смолы и т.п. Пластмассовые материалы на каучуковом связующем имеют относительно высокий и устойчивый коэффициент трения до 220--250°С; они применяются для накладок автомобильных тормозов и колец сцеплений. Пластмассовые материалы на смоляном связующем имеют более высокую износоустойчивость, но несколько меньший коэффициент трения. Один из лучших материалов этой группы -- ретинакс, в состав которого входят фенолоформальдегидная смола, барит, асбест и др. компоненты; он предназначен для использования в тормозных узлах с тяжёлым режимом эксплуатации, где температура на поверхности трения может достигать 1000°С (авиационные тормоза).

Спечённые фрикционные материалы получили распространение в тяжелонагруженных тормозных устройствах и фрикционных муфтах, что определяется их высокими износоустойчивостью, коэффициентом трения, теплостойкостью, теплопроводностью и некоторыми др. свойствами. Проявлению хороших эксплуатационных свойств спечённых материалов в тяжёлых условиях работы способствуют входящие в их состав компоненты, одни из которых обеспечивают высокие износостойкость и коэффициент трения (карбиды и окислы металлов и т.д.), а другие -- стабильность фрикционных свойств и отсутствие схватывания (графит, асбест барит, дисульфид молибдена и т.д.). Эти материалы служат для изготовления дисков, секторов, колодок методом спекания предварительно спрессованных заготовок из порошковых смесей. Для повышения прочности спечённых фрикционных материалов их изготовляют на стальной основе, соединение (сварка) с которой обычно достигается в процессе спекания. Наиболее широко применяются спечённые материалы на медной и железной основе. Фрикционные материалы на медной основе, содержащие олово, графит, свинец и др. компоненты, при работе в масле имеют коэффициент трения от 0,08 до 0,12; а при сухом трении -- от 0,17 до 0,25. Температурный предел их применения 300°С.

Фрикционные материалы на железной основе обладают по сравнению с материалами на медной основе большей прочностью, выдерживают большие удельные нагрузки и значительно более высокую температуру. Коэффициент трения для условий работы тормозов в зависимости от состава материала 0,2--0,4. В состав материала обычно входят медь, никель, хром, барит, асбест, графит, карбиды металлов и др. компоненты. Такие материалы допускают повышение температуры на поверхности трения до 1200°С, что особенно важно в тормозных устройствах.

Магнитные материалы, (магнетики) -- материалы, вступающие во взаимодействие с магнитным полем, выражающееся в его изменении, а также в других физических явлениях -- изменение физических размеров, температуры, проводимости, возникновению электрического потенциала и т. д. В этом смысле к магнетикам относятся практически все вещества (поскольку ни у какого из них магнитная восприимчивость не равна нулю точно), большинство из них относится к классам диамагнетиков (имеющие небольшую отрицательную магнитную восприимчивость -- и несколько ослабляющие магнитное поле) или парамагнетиков (имеющие небольшую положительную магнитную восприимчивость -- и несколько усиливающие магнитное поле); более редко встречаются ферромагнетики (имеющие большую положительную магнитную восприимчивость -- и намного усиливающие магнитное поле), о еще более редких классах веществ по отношению к действию на них магнитного поля.

К магнитным материалам с точки зрения техники относят вещества, обладающие определенными магнитными свойствами и используемые в современной технологии. Магнитными материалами могут быть различные сплавы, химические соединения, жидкости.

В основном магнитные материалы относятся к группе ферромагнетиков и делятся на две большие группы -- магнитотвёрдые материалы и магнитомягкие материалы. В то же время в связи с успехом в науках изучающих магнетизм и с развитием большой исследовательской работы в области изучения магнитных материалов, появились новые большие группы магнитных материалов: магнитострикционные материалы, магнитооптические материалы, термомагнитные материалы.

Технически чистое железо устойчиво к коррозии, обладает повышенной электропроводностью и очень высокой пластичностью. Применяется для изготовления сердечников электромагнитов, деталей реле, для производства сплавов.

Железо имеет малое удельное электрическое сопротивление, обладает повышенными потерями на вихревые токи, в связи с чем применение его ограничено: в основном для магнитопроводов постоянного магнитного потока (полюсные наконечники, магнитопроводы реле). Технически чистое железо -- главный компонент большинства магнитных материалов.

В зависимости от способа получения особо чистое железо называется карбонильным или электролитическим.

Карбонильное железо получают при термическом разложении пентакарбонила железа Fe (CO)5 и рафинируют в токе водорода.

Электролитическое железо изготавливают электролитическим рафинированием в расплавленных солях и поставляют в виде порошка (ПЖЭ-1 и ПЖЭ-2) или кусков (ЖЭ-МП). Чистое железо марок 005ЖР и 008ЖР (ТУ 14-1-2033-77) получают из продуктов прямого восстановления .

Технически чистое железо получают в мартеновских и электрических плавильных печах при удлинении процесса выгорания примесей. Общее содержание примесей около 0,16%, в том числе не более 0,025% C, 0,035% Mn, 0,05% Si, 0,015% P, 0,025% S, 0,05% Cu. Плотность 7850% кг/мі, предел текучести 120 МН/мІ, предел прочности 260 МН/мІ, относительное сужение 60%, относительное удлинение 30%, ударная вязкость 2 МДж/мІ, HB = 420 МН/мІ (1 МН/мІ Ч 0,1 кгс/ммІ).

Устойчиво против коррозии, хорошо сваривается, обладает высокой электрической проводимостью, чрезвычайно пластично (поддаётся штамповке и глубокой вытяжке при комнатной температуре). Один из магнитно-мягких материалов. Магнитные свойства зависят от количества примесей, размеров кристаллических зёрен (структуры), упругих и пластических напряжений. Отличается малой коэрцитивной силой -- Hc = 66 а/м (0,7 э), большой магнитной проницаемостью -- max = 10 мгн/м (8000 гс/э).

Применяется при изготовлении электротехнических изделий, работающих в постоянных и медленно меняющихся магнитных полях (сердечники и полюсные наконечники электромагнитов, детали реле и т. п.). В металлургии применяют как основной элемент при изготовлении многих магнитных сплавов и как шихту при производстве легированной стали.

Магнитодиэлектрики, магнитные материалы, представляющие собой связанную в единый конгломерат смесь ферромагнитного порошка и связки -- диэлектрика (например, бакелита, полистирола, резины); в макрообъёмах обладают высоким электрическим сопротивлением, зависящим от количества и типа связки. Материалы могут быть как магнитно-твёрдыми материалами, так и магнитно-мягкими материалами. Магнитно-мягкие материалы вырабатывают в основном из тонких порошков карбонильного железа, молибденового пермаллоя и альсифера с различной связкой. Магнитно-мягкие материалы применяют для изготовления сердечников катушек индуктивности, фильтров, дросселей, радиотехнических броневых сердечников, работающих при частотах 104--108 гц.

Магнитно-твёрдые М. изготовляют на основе порошков из сплавов Fe -- Ni -- Al -- Со, сплавов ферритов. Коэрцитивная сила этих М. ниже, чем массивных материалов, на несколько десятков %, а остаточная индукция меньше почти в 2 раза. Однако они всё больше применяются в телефонии и приборостроении (постоянные магниты, эластичные герметизаторы для разъёмных соединений и др.).

Ферриты (оксиферы) -- химические соединения оксида железа Fe2O3 с оксидами других металлов, обладающие уникальными магнитными (ферримагнетики) свойствами, сочетающие высокую намагниченность и полупроводниковые или диэлектрические свойства, благодаря чему они получили широкое применение как магнитные материалы в радиотехнике, радиоэлектронике, вычислительной технике.

Поликристаллические ферриты производят по керамической технологии. Из ферритового порошка, синтезированного из смеси исходных ферритообразующих компонентов и гранулированного со связкой, прессуют изделия нужной формы, которые подвергают затем спеканию при температурах от 900 до 1500 °C на воздухе или в специальной газовой атмосфере. В качестве исходных материалов применяют смеси оксидов или карбонатов, совместно упаренных растворов солей (нитратов, сульфатов, двойных сульфатов типа шенитов) или совместно осажденных гидроксидов, оксалатов, карбонатов. Монокристаллы ферриты выращивают методами Вернейля, Чохральского, зонной плавки обычно под давлением O2 несколько МПа или неск. десятков МПа. Чаще используют гидротермальное выращивание в растворах NaOH, Na2CO3, NH4Cl или смеси хлоридов под давлением от 20 до 120 МПа либо выращивание из растворов в расплаве (смеси PbO + PbF2, PbO + B2O3, BaO + B2O3 или более сложные) при применении в качестве исходных веществ смеси оксидов.

Пленки ферриты со структурой шпинели выращивают обычно методом хим. транспортных реакций с галогеноводородами (HCl) в качестве носителя. Пленки ферриты- фанатов и гексаферритов выращивают методом жидкостной эпитаксии из растворов в расплаве, а также путем разложения паров, например -дикетонатов металлов.

Аморфные магнетики - магнитные материалы, сочетающие в ограниченном интервале температур магнитную атомную структуру, например, ферромагнитную, с аморфной атомной структурой.

Для аморфного состояние вещества характерно отсутствие дальнего и наличие ближнего атомного порядка, флуктуации атомных магнитных моментов, термодинамическая неравновесность. Поэтому в аморфных магнетиках наблюдаются некоторые особенности магнитного состояния. Со временем в аморфных магнетиках происходит перестройка атомной структуры, вызывающая соответствующие изменения магнитных свойств. Кроме того, введение аморфизующих добавок (неметаллов) снижает намагниченность аморфного магнетика, а снижение температуры магнитного фазового перехода делает их менее термостабильными.

Магнитные свойства аморфных магнетиков сопоставимы со свойствами лучших кристаллических магнитных материалов. Аморфные магнитомягкие материалы являются магнетиками с неупорядоченным расположением атомов, формирующимся наиболее часто в результате быстрой закалки. Металлические аморфные сплавы содержат 75-85% одного или нескольких переходных металлов (Fe, Co, Ni) и 15-25% стеклообразователя, в качестве которого используют бор, углерод, кремний, фосфор. По магнитным свойствам аморфные магнитомягкие материалы близки к электротехническим сталям и пермаллоям. Для получения оптимальных свойств применяют термомагнитную обработку. Магнитомягкие аморфные магнетики получают на основе сплавов 3d- металл - неметалл.

Для создания аморфных магнитотвердых материалов используют эффект резкого возрастания коэрцитивной силы аморфного ферромагнетика, когда энергия одноионной локальной анизотропии становится сравнимой с энергией обменного взаимодействия. В качестве магнитотвердых материалов используют сплавы 3d- и 4f-металлов, например, TbFe2. В аморфных ферро- и ферримагнетиках наблюдаются различные типы доменных структур. Магнитострикция аморфных и кристаллических ферромагнетиков сравнима по величине. Аморфные магнетики не являются макроскопически изотропными и обычно обладают макроскопической магнитной анизотропией.

Аморфные магнетики применяют для создания трансформаторов, магнитных экранов, постоянных магнитов, головок магнитофонов, систем магнитной памяти и других устройств электротехники и радиотехники.

3. Отжиг -- вид термической обработки металлов и сплавов, заключающийся в нагреве до определённой температуры, выдержке и последующем, обычно медленном, охлаждении. При отжиге осуществляются процессы возврата (отдыха металлов), рекристаллизации и гомогенизации. Цели отжига -- снижение твёрдости для повышения обрабатываемости, улучшение структуры и достижение большей однородности металла, снятие внутренних напряжений.

3.Виды отжига

По классификации различают 2 вида отжига:

1. Отжиг 1-го рода -- без фазовой перекристаллизации -- применяется для приведения металла в более равновесное структурное состояние: снимается наклёп, понижается твёрдость, возрастают пластичность и ударная вязкость, снимаются внутренние напряжения (в связи с процессами отдыха и рекристаллизации).

2. Отжиг 2-го рода осуществляется с фазовой перекристаллизацией: сталь нагревается до температуры выше критических точек, затем следует выдержка различной продолжительности и последующее сравнительно медленное охлаждение.

Полный и неполный отжиг.

· Полный отжиг заключается в нагреве стали на 30--50 °C выше верхней критической точки для полного превращения структуры стали в аустенит и последующем медленном охлаждении до 500--600 °C для образования феррита и перлита. Скорость охлаждения для углеродистых сталей около 50--100 °C/ч. Если охлаждение ведётся на воздухе, происходит нормализация.

· Неполный отжиг заключается в нагреве до температур между нижней и верхней критическими точками и последующем медленном охлаждении.

Изотермический отжиг

Для легированных сталей применяют изотермический отжиг, состоящий в нагреве выше верхней критической точки А3 область избыточного аустенита, выдержке, охлаждении до температуры ниже нижней критической точки А1, выдержке, достаточной для полного превращения аустенита в перлит, и охлаждении до комнатной температуры.

Диффузионный отжиг

Диффузионный отжиг состоит в нагреве до температур, значительно превосходящих критические точки, и продолжительной выдержке; используется для выравнивания неоднородностей распределения элементов по объёму изделия. Диффузионный отжиг приводит к достижению более однородных свойств по объёму изделия и особенно улучшению механических свойств в поперечном (по отношению к прокатке) направлении. В необходимых случаях для предотвращения обезуглероживания стали производят отжиг в защитных атмосферах.

Температура нагрева зависит от температуры плавления Т н = 0.9-0.95 Т пл.

Рекристаллизационный отжиг

Рекристаллизационный отжиг -- нагрев до температуры выше рекристаллизации (70-80 % от температуры плавления в зависимости от сплава). Далее осуществляется выдержка и последующее охлаждение. Вследствие процесса рекристаллизации происходит снятие наклепа, и свойства металла соответствуют равновесному состоянию.

Гомогенизационный отжиг

Гомогенизационный отжиг -- термообработка литого материала, обеспечивающая получение равновесной структуры. При гомогенизационном отжиге идут следующие процессы:

1. выравнивание химического состава до равновесного;

2. растворение избыточных фаз;

3. выделение фаз из пересыщенного твердого раствора -- особый случай -- гетерогенизация во время гомогенизации, наблюдается в алюминиевых сплавах, содержащих хром, цирконий и скандий;

4. рост зерна;

5. образование и рост пор.

Закалка стали производится следующим образом: готовое изделие разогревают до светложелтого каления и затем быстро опускают в воду или в масло. Такой быстро охлажденный кусок стали будет хрупок, но тверд, а это не всегда требуется. Поэтому способы закалки различны. Чтобы уменьшить хрупкость и придать стали необходимые свойства, после закалки ее отпускают. Отпуск состоит в том, что изделие вновь нагревают; чем выше будет нагрев, тем сильнее отпустится сталь. Степень нагрева узнают по так называемым цветам побежалости. Если очистить кусок закаленной стали от окалины и начать его осторожно нагревать, то будет видно, что белая поверхность меняет свой цвет. Она становится желтоватой, коричнево-желтой, бурой и, наконец, фиолетово-синей. Можно замочить сталь при любом цвете. В зависимости от цвета, при котором сделана замочка, получится разно закаленный металл. До желтого цвета отпускается различный инструмент. Сталь бурых и синих тонов обладает меньшей твердостью, но зато большей упругостью, что необходимо, например, для рессор, пружин. Иногда отпуск производят не вторичным нагревом, а за счет не остывшей массы металла.

Вот как, например, можно калить зубило. Нагрев его в достаточной степени, замачивают только его конец. Металл сразу потемнеет, но будет еще горячим. Напильником быстро отчищают кусочек на конце и следят за цветами побежалости на этом кусочке. При появлении светложелтого цвета вновь замачивают зубило, но на этот раз целиком, бросив его в воду. Получают твердый, до некоторой степени хрупкий конец и более мягкую, вязкую и не боящуюся ударов молотка остальную часть инструмента. После поковки изделие бывает покрыто темным слоем окалины, которая очень тверда. Это надо учитывать при дальнейшей обработке поковок. Поэтому не следует их опиливать новыми напильниками, которые быстро притупляются. Надо сначала почистить поковку стальными щётками и опиловку начинать старым напильником, чтобы ободрать окалину.

Отпуск -- нагрев закаленной стали до температуры ниже Асу, выдержка при этой температуре и последующее охлаждение. Проводится с целью устранения внутренних напряжений и повышения пластичности.

Рассмотрим превращения, происходящие при нагреве в закаленной на мартенсит стали.

Мартенсит, имеющий после закалки тетрагональную кристаллическую решетку, при нагреве выше 80° С начинает превращаться в кубический. Как всякий пересыщенный раствор, мартенсит неустойчив. Он распадается при комнатной температуре, но скорость распада чрезвычайно мала из-за незначительной тепловой подвижности атомов. При температуре выше 80° С подвижность атомов уже достаточна для того, чтобы углерод частично перешел из пересыщенного раствора в пластинки карбида толщиной всего в несколько атомных слоев за относительно небольшой промежуток времени. Это превращение происходит в интервале 80--170° С. При нем происходит уменьшение искажения кристаллической ре-щетки мартенсита. Внутренние напряжения снижаются, уменьшается удельный объем мартенсита, размеры детали немного сокращаются. Твердость и прочность остаются почти неизменными, а пластические свойства несколько повышаются.

Отпуск в интервале 150--200° С называется низким отпуском. Низкому отпуску подвергают режущий инструмент и детали, работающие на износ, от которых требуется высокая твердость. В результате низкого отпуска получается отпущенный кубический мартенсит.

При нагреве закаленной стали от 200 до 300° С остаточный аустенит превращается в отпущенный мартенсит: это сопровождается некоторым увеличением размеров детали. К концу этого температурного интервала твердый раствор еще несколько пересыщен углеродом, внутренние напряжения практически устранены. Нагрев выше 300° С вызывает дальнейшее выделение углерода из мартенсита, происходит обособление карбидов с образованием очень мелких округлых включений цементита. При температурах выше 400° С карбиды укрупняются.

Отпуск стали -- диффузионный процесс. Превращение однородного мартенсита в карбидо-ферритную смесь с резким различием химического состава происходит в течение определенного времени. Нагреть сталь до заданной температуры отпуска недостаточно. Необходимо еще выдержать ее при этой температуре для завершения диффузионных процессов. Время выдержки при отпуске обычно колеблется от 30 мин до нескольких часов в зависимости от состава стали и размеров детали.

При распаде мартенсита получаются структуры троостита, сорбита и перлита. Они отличаются от тех же структур, получающихся в процессе распада аустенита, размером частиц и механическими свойствами. Форма цементитных включений, образующихся при распаде мартенсита, округлая, тогда как при распаде аустенита получаются пластинки цементита. Различная форма включений цементита обусловливает разные свойства. При одной и той же прочности сталь после отпуска получается более пластичной.

С повышением температуры отпуска твердость, предел прочности и предел текучести монотонно снижаются, а относительное удлинение и ударная вязкость повышаются. Изменяя температуру отпуска, можно получать различные сочетания механических свойств.

Отпуск в интервале 350--500° С называется средним отпуском. Он обеспечивает высокие предел упругости, предел прочности' предел усталости и ударную вязкость. После среднего отпуска получается структура троостита отпуска.

Среднему отпуску подвергают, например, пружины подвесок трубопроводов, рессоры.

Высокому отпуску -- многие детали машин и элементы теплосилового оборудования. В частности, закалке в масле с последующим высоким отпуском подвергают толстостенные паропроводные трубы из некоторых легированных сталей. Углеродистую закаленную сталь при высоком отпуске нагревают до 500--650 С. При этом получают структуру троостита или сорбита отпуска.

Основное назначение высокого отпуска -- получение высоких пластических свойств и ударной вязкости при остаточной прочности и твердости стали. Комплекс механических свойств у стали после закалки с высоким отпуском получается выше, чем после | нормализации или отжига. Двойная термическая обработкам состоящая из закалки и среднего или высокого отпуска, называется улучшением. Такая термическая обработка иногда необходима для шпилек и шпинделей теплосиловой арматуры.

Свойства углеродистой стали после закалки и отпуска определяются температурой и продолжительностью нагрева при о«И пуске. Они не зависят от скорости охлаждения после отпускал

Старение металла -- выделение мелкодисперсных частиц вторичных фаз в сплавах с ограниченной растворимостью. Избыточные компоненты выделяются в виде мельчайших субмикроскспических включений по телу или границам зерен. Эти процессы вызывают повышение твердости и прочности, так как выделения вторичных фаз затрудняют перемещение дислокаций. В большинстве случаев старение сопровождается резким снижением пластичности и ударной вязкости. Для котельных сталей это совершенно недопустимо.

Котельный стальной лист и труба из малоуглеродистой стали проявляют склонность к старению в наклепанном состоянии (после вальцовки, гибки или других операций холодной пластической деформации). При вылеживании при комнатной температуре повышается твердость и прочность, а пластичность и ударная вязкость снижаются. Этот процесс длится многие месяцы и называется естественным старением. Нагрев наклепанного металла до 250--300° С резко ускоряет процесс. Ударная вязкость при этом может снизиться до величины, составляющей 5--10% от исходной. Особенно подвержены старению стали, деформированные на 3--10%.

Окрупчивание металла может привести к авариям, особенно в тех случаях, когда деталь воспринимает ударные нагрузки. Старение -- одна из причин образования кольцевых трещин в трубах из малоуглеродистой стали в местах развальцовки.

Причина старения -- образование при быстром охлаждении пересыщенного раствора углерода и азота в феррите. При температуре 727° С в феррите растворяется 0,025% С, а при комнатной-- всего 0,006%). Пластическая деформация делает пересыщенный раствор еще менее стабильным. В результате его распада образуются весьма мелкодисперсные карбиды и нитриды железа. Нагрев при 250--300° С ускоряет процесс старения, так .как диффузионная подвижность при этом повышается. При более высоких температурах одновременно с выпадением частиц происходит их укрупнение. Крупных частиц получается меньше, так как объем каждой из них существенно больше. Они относительно слабо влияют на свойства стали, и старение не наблюдается.

Наиболее склонны к старению малоуглеродистые стали, особенно кипящие (раскисленные только марганцем). Полуспокойная и спокойная стали менее чувствительны к старению. Особенно эффективно действует раскисление алюминием. Аналогично влияют молибден и ванадий. С повышением содержания углерода склонность стали к старению снижается.

Нормализацией называют термическую обработку, заключающуюся в нагреве стали на 30--50° выше темпера - тур Ас3, или Асm с последующим охлаждением на спокойном воздухе.

В низкоуглеродистых сталях после нормализации получается такая же структура, как и после отжига. В связи с этим для низкоуглеродистых сталей операция отжига заменяется нормализацией, что экономически более выгодно (большая экономия времени).

В среднеуглеродистых сталях (0,3--0,6% С) после нормализации структура состоит из сорбита или сорбитообразного перлита со структурно свободным ферритом, количество которого зависит от содержания углерода.

4.Оборудование для термообработки

Камерные печи

Электрические и газовые камерные печи периодического действия используются в опытном, единичном и мелкосерийном производствах для термической обработки мелких и средних. Электрические и газовые камерные печи предназначаются для отжига, закалки, нагрева перед ковкой, нормализации металлических деталей, отпуска, а также для обжига керамических изделий и термообработки изделий из стекла.

Камерные сушилки

Электрические и газовые камерные сушилки периодического действия используются в единичном и мелкосерийном производствах для термической обработки различного рода материалов. Камерные сушилки используются при термических процессах низкой температуры, таких как удаление влаги, подогрев перед другими термопроцессами, тесты на термическую прочность, а также для вулканизации резины, порошковой покраски, низкотемпературного отпуска и т.д.

Печи с выдвижным полом

Электрические и газовые печи с выдвижным полом периодического действия используются для термообработки в единичном или серийном производствах деталей среднего и большого размера. В сравнении с печами других типов, электрические и газовые печи более удобны при операциях загрузки и выгрузки, которые можно механизировать. Электрические и газовые печи с выдвижным полом используются для нагрева перед ковкой, закалки, отжига, отпуска, искусственного старения, нормализации металлических деталей, а также для обжига керамических изделий и термообработки изделий из стекла.

Сушилки с выдвижным полом

Электрические и газовые сушилки с выдвижным полом периодического действия предназначены для термической обработки различных материалов и деталей в серийном производстве. По сравнению с другими сушилками более удобна загрузка-выгрузка, которую можно механизировать.

Сушилки такого типа используются для низкотемпературных термических процессов, таких как удаление влаги, тесты на термическую прочность, подогрев перед другими термопроцессами, а также для порошковой покраски, вулканизации резины, низкотемпературного отпуска и т.д.

Тунельные печи

Электрические и газовые туннельные печи постоянного действия используются в серийном производстве для термообработки различных материалов.

Электрические и газовые туннельные печи легко интегрируется в непрерывные технологические производственные линии. В отличие от обычных печей и сушилок электрические и газовые туннельные печи, в зависимости от автоматизации и механизации, более производительны.

Тунельные сушилки

Электрические и газовые туннельные сушилки постоянного действия предназначены для термической обработки различных материалов и деталей в серийном производстве. Оборудование такого типа легко интегрируется в непрерывные технологические производственные линии, оно является более производительным, чем обычные печи и сушилки в зависимости от степени механизации и автоматизации.

Колпаковые печи

Электрические и газовые колпаковые печи используются в серийном производстве для процессов термообработки. Колпаковые печи используются для отжига проволоки, ленты и других изделий из металла. Колпаковые печи состоят из футерованного колпака с нагревателями и одной или несколько неподвижных платформ. Колпаковые печи используются при термообработке изделий большого веса и размеров. Колпаковые печи, за счет своей конструкции, позволяют экономить производственные площади, а при наличии нескольких платформ может быть достигнута более высокая производительность. Колпаковые печи удобны при использовании защитных газов.

Шахтные печи

Шахтные электрические печи применяются для термической обработки длинных деталей в вертикальном положении, а также для тяжелых деталей, для загрузки которых в рабочую камеру нужен кран. Шахтные печи имеют рабочую камеру может в форме цилиндра или прямоугольника, и в зависимости от процесса, либо комплектуются мешалкой воздуха, либо - нет.

Шахтные печи могут быть укомплектованы ретортами, которые используются в термохимических процессах, например при газовой цементизации, нитроцементизации и азотировании.

Индукционный нагрев и плавка

Оборудование для индукционного нагрева, основывается на принципе электромагнитной индукции. Оборудования для индукционного нагрева осуществляет нагрев или плавку тел за счет теплового действия вихревых электрических токов, которые протекают в нагреваемом теле. Оборудование для индукционного нагрева применяется для локальной закалки внутренних или наружных поверхностей деталей.

Печи для термохимических процессов

Печи для термохимических процессов, обеспечивают необходимую твердость поверхности при помощи насыщения поверхностных слоев металла азотом или углеродом. Печи для термохимических процессом можно использовать практически для любых марок сталей. Печи для термохимических процессов используются для следующих операций: цементизация, нитроцементизация и азотирование.

Вакуумные печи

Вакуумные печи - это герметизированные аппараты, в которых проходят электротеримческие процессы, к которым предъявляются особые требования. Вакуумные печи применяются для безокисилительного нагрева металлов и плавки металлов с высокой степенью очистки. Вакуумные печи используют при плавке, рафинировании, разливки в формы сталей, жаропрочных сплавов, высоколегированных сталей, а также цветных и редких металлов.

Практическое задание

Вопросы

Имеются четыре марки стали: 13Х,9ХС, 40Х,Х12М

Расшифруйте состав этих сталей. Выберите наиболее рациональную из них для изготовления сверла, используемых для обработки твердых материалов. Назначьте и обоснуйте режим термической обработки, обеспечивающей высокие режущие свойства инструмента.

Охарактеризуйте и схематически зарисуйте микроструктуру, приведите характеристики механических свойств после термической обработки.

Укажите максимально допустимые температуры разогрева режущей кромки инструмента, изготовленного из выбранных вами сталей.

Ответы

13Х - сталь инструментальная легированная: 0,13% C; 1% Cr;

9ХС - сталь инструментальная легированная: 0,9% C; 1% Cr; 1% Si;

40Х - сталь конструкционная легированная: 0,40% C; 1% Cr;

Х12М - сталь инструментальная штамповая; 1% C; 12% Cr; 1% Mo;

Для изготовления сверла выбираем марку стали типа: 9ХС.

При изготовлении сверла наиболее целесообразным режимом термической обработки является нормализация т.к. твердость и прочность стали возрастают по сравнению с отожженным состоянием.

Рисунок 2

Данная сталь состоит из большого числа кристаллов неправильной формы (зёрен). Зёрна имеют округлую и вытянутую, крупную и мелкую форму, и располагаются друг относительно друга как в определённом так и случайном порядке. Форма, размеры и взаимное расположение, а также ориентировка зёрен зависят от условий их образования. Количественное соотношение структурных составляющих сплава определяется его химическим составом и условиями нагрева и охлаждения. Микроструктура характеризуется также расположением и количеством некоторых дефектов кристаллической решётки. От микроструктуры зависят многие механические и физические свойства материала.

Механические свойства стали 9ХС

Таблица 2. Механические свойства

Таблица 3 Механические свойства при повышенных температурах

Максимально допустимые температуры разогрева режущей кромки:

Таблица 3

Критическая точка

°С

Ac1

770

Ac3

870

Ar1

730

Mn

160

Размещено на Allbest.ru

...

Подобные документы

  • Пластические массы (пластмассы) как основной тип неметаллических материалов. Основные технологические и эксплуатационные свойства пластмасс. Термопластичные и термореактивные материалы. Классификация пластмасс в зависимости от их основного назначения.

    реферат [16,6 K], добавлен 10.01.2010

  • Типы кристаллических решёток металлов и дефекты их строения. Свойства и области применения карбида кремния. Электропроводность жидких диэлектриков и влиянии на неё различных факторов. Виды, свойства и применение неметаллических проводниковых материалов.

    контрольная работа [1,5 M], добавлен 09.10.2010

  • Предварительная и окончательная термическая обработка стали. Виды отжига: полный и неполный, изотермический, диффузионный и гомогенизационный. Оборудование для термообработки. Электродуговая и ручная сварка. Электрошлаковая сварка. Газовая резка металлов.

    лабораторная работа [43,4 K], добавлен 06.04.2011

  • Пластмассы, их классификация и физические свойства. Технология изготовления пластмасс. Тенденции на рынке полимеров. Широкое распространение полимерных изделий. Процессы утилизации пластмассы. Развитие рынка пластмасс.

    реферат [126,3 K], добавлен 12.02.2007

  • Теоретические основы термической обработки стали. Диффузионный и рекристаллизационный отжиг. Закалка как термообработка, при которой сталь приобретает неравновесную структуру и повышенаяеться твердость стали. Применение термической обработки на практике.

    лабораторная работа [55,6 K], добавлен 05.03.2010

  • Автоматизация технологического процесса литья под давлением термопластов. Характеристика продукции, исходного сырья и вспомогательных материалов. Описание технологического процесса. Технологическая характеристика основного технологического оборудования.

    курсовая работа [45,2 K], добавлен 26.07.2009

  • Получение, переработка и применение термоэластопластов. Виды и особенности свойств термопластичных полимеров. Основы создания фрикционных изделий. Определение показателя текучести расплава. Разработка твердофазного метода получения ТЭП при экструзии.

    дипломная работа [763,1 K], добавлен 03.07.2015

  • Обрабатываемость материалов как способность материалов подвергаться резанию по ряду технологических показателей. Знакомство с особенностями влияния смазочно-охлаждающих средств на обрабатываемость резанием. Общая характеристика метода А. Кондратова.

    презентация [298,8 K], добавлен 29.09.2013

  • Разработка состава фрикционного термоустойчивого материала для изготовления тормозных накладок, выбор матрицы и характеристика амидных связывающих. Проектирование технологии получения термоустойчивого фрикционного ПМ, прессования фрикционных накладок.

    дипломная работа [223,3 K], добавлен 27.11.2009

  • Анализ прибора, определяющего фракционный состав топлива. Особенности загустителей пластичных смазок, рассмотрение видов. Характеристика свойств сжиженных газообразных топлив. Пластические массы как полимерные высокомолекулярные синтетические материалы.

    контрольная работа [884,5 K], добавлен 13.01.2013

  • Характеристика, цели и особенности производства, классификация материалов: чугуна, стали и пластмассы. Сравнительный анализ их физико-химических, механических и специфических свойств; маркировка по российским и международным стандартам; применение в н/х.

    курсовая работа [3,3 M], добавлен 04.01.2012

  • Исследование процесса изготовления пигментированных лакокрасочных материалов. Основные характеристики, конструкция и принцип работы используемого оборудования. Краткая характеристика основных видов материалов, используемых в лакокрасочной промышленности.

    реферат [426,6 K], добавлен 25.01.2010

  • Характеристика модели изделия и материалов, спецификация деталей кроя. Выбор методов обработки, оборудование и средств малой механизации. Разработка технологической последовательности обработки изделия, построение графа процесса его изготовления.

    курсовая работа [31,0 K], добавлен 25.12.2015

  • Характеристика модели и материалов для изготовления женского платья. Определение площади комплекта лекал и экономичности их раскладки. Выбор методов обработки, оборудования и средств малой механизации. Построение графа технологического процесса выпуска.

    курсовая работа [143,3 K], добавлен 09.11.2010

  • Применение металлов и сплавов в городском хозяйстве. Понятие о металлических и неметаллических материалах, способы их изготовления, области применения, технологии производства, способы обработки и использования. Стандартизация конструкционных материалов.

    методичка [831,2 K], добавлен 01.12.2009

  • Производство деталей из жидких полимеров (композиционных пластиков). Приготовление смеси и формообразование заготовок. Общие сведения о порошковой металлургии. Способы формирования резиновых деталей. Переработка пластмасс в высокоэластичном состоянии.

    реферат [397,5 K], добавлен 03.07.2015

  • Материалы с малой плотностью (легкие материалы), получение и способы их обработки. Химический состав стекла, его свойства и типы. Основы современной технологии получения стекла. Применение стекломатериалов в авиастроении, автомобилестроении, судостроении.

    курсовая работа [1,7 M], добавлен 27.05.2013

  • Знакомство с особенностями расчета технико-экономических показателей экономической эффективности проектируемого производства. Рассмотрение процесса изготовления песчано-глинистых литейных форм. Общая характеристика этапов производства детали "Корпус".

    курсовая работа [828,8 K], добавлен 08.06.2015

  • Требования к швейному изделию. Выбор номенклатуры показателей качества материалов. Требования к материалам для изготовления швейных изделий. Анализ ассортимента материалов для изготовления швейного изделия. Выбор материалов.

    курсовая работа [34,1 K], добавлен 22.01.2007

  • Технологическая последовательность изготовления женского жакета. Требования, предъявляемые к изделию. Обоснование выбранной модели, описание ее внешнего вида. Выбор и обоснование материалов, фурнитуры. Методы обработки изделий, средства малой механизации.

    курсовая работа [80,9 K], добавлен 19.08.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.