Особенности и характеристика насосов для добычи нефти и газа

Конструкция центробежного насоса: осевые опоры, радиальный подшипник. Типы и конструкция погружных электродвигателей. Основные положения методики подбора насоса к нефтяной скважине. Принцип работы погружных винтовых, диафрагменных, гидропоршневых насосов.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 12.11.2014
Размер файла 1,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ОГЛАВЛЕНИЕ

1. Установки УЭЦН

1.1 Общие сведения. Схема установки

1.2 Область применения

1.3 Обозначения

1.4 Конструкция центробежного насоса

1.4.1 Конструкция ступени

1.4.2 Осевые опоры и радиальные подшипники вала насоса

1.5 Типы и конструкция погружных электродвигателей

1.6 Конструкция кабельного ввода

1.7 Газосепараторы

1.8 Гидрозащита

1.9 Кабель

1.10 Поверхностное оборудование

1.10.1 Станции управления

1.10.2 Трансформаторы

1.11 Устьевая арматура УЭЦН

1.11.1 Конструкция вывода кабеля

1.11.2 Устьевая арматура

1.12 Оборудование для монтажа и заправки маслом узлов УЭЦН на устье скважины

1.13 Основные положения методики подбора УЭЦН к нефтяной скважине

2. Погружные винтовые насосы

2.1 Общие сведения. Принцип действия

2.2 Схема и комплектация

2.3 Обозначение

2.4 Конструкция

2.4.1 Эксцентриковые муфты

2.4.2 Предохранительный и перепускной клапаны

2.5 Характеристика насоса

3. УДЭН (Установка диафрагемнного электронасоса)

3.1 Состав оборудования. Принцип действия. Схема установки

3.2 Характеристика

4. Гидропоршневые насос

4.1 Принцип действия гидропоршневого насоса

4.2 Наземное оборудование

5. Струйные насосы

5.1 Принцип действия

Список литературы

1. УСТАНОВКИ УЭЦН

1.1 Общие сведения. Схема установки

Рис. 1. Схема установки скважинного центробежного насоса с электроприводом 1--компенсатор; 2 -- погружной электродвигатель; 3 -- гидрозащита; 4 -- приемная сетка насоса; 5 -- насос; 6 -- плоский кабель; 7 -- обратный клапан; 8 -- хомут, крепящий кабель к трубам; 9 -- спускной клапан; 10 -- круглый кабель; 11-- колонна НКТ; 12 -- оборудование устья; 13 -- опоры кабеля; 14 -- трансформатор; 15 -- станция управления

Скважинный насос многоступенчатый и имеет до 80-400 ступеней. Жидкость поступает в насос через сетку, расположенную в его нижней части. Насос подает жидкость из скважины в НКТ. Погружной электродвигатель-маслозаполненный, герметизированный. Для предотвращения попадания в него пластовой воды имеется узел гидрозащиты. Вал двигателя соединен с валом гидрозащиты и через него с валом насоса.

Электроэнергия с поверхности к двигателю подается по кабелю. Рядом с НКТ идет круглый, а около насосного агрегата - плоский кабель. Использование плоского кабеля позволяет несколько увеличить диаметр насоса и двигателя. Автотрансформатор или трансформатор применяют для повышения напряжения тока, получаемого от промысловой сети (обычно 380 В). У двигателя напряжение обычно больше (400-2000 В). Кроме того необходимо скомпенсировать снижение напряжения в длинном кабеле. Станция управления позволяет включать и отключать установку и имеет приборы, показывающие силу тока и напряжение.

Колонна НКТ оборудуется обратным 7 и спускным 9 клапанами. Обратный клапан размещается в специальной муфте, конические резьбы по концам которой позволяют встроить ее в НКТ. Обратный клапан позволяет при остановках насоса сохранить в колонне НКТ жидкость. Запуск происходит при заполненной жидкостью колонне подъемных труб, т. е. при большом напоре. При больших напорах центробежный насос требует меньшей приводной мощности. Спускной клапан позволяет освободить колонну труб от жидкости перед подъемом агрегата из скважины, если в колонне установлен обратный клапан. Установки ЭЦН разработаны для скважин с обсадными колоннами 146 и 168 мм. Для обсадных колонн каждого размера имеются погружные агрегаты двух габаритов.

центробежный насос нефтяной гидропоршневой

1.2 Область применения

УЭЦН предназначен для добычи нефти из скважин со средним и высоким дебитом.

Для УЭЦН характерно:

1. Широкий диапазон подач: Q = 10 - 1000 .

2. Напор: до 3500 (м).

3. Самый высокий КПД в области больших подач среди всех механизированных способов добычи: при Q = 50 - 300 , но в области малых подач КПД резко падает.

4. В отличие от ШСНУ, УЭЦН менее подвержены влиянию кривизны ствола скважины в процессе эксплуатации.

5. Добыча высокообводнённого пластового флюида (до 99% воды).

6. УЭЦН плохо работают в условиях:

- коррозионно - агрессивной среды

- при выносе песка

- при повышенных температурах

- при высоком содержании газа

Показатели назначения по перекачиваемым средам следующие:

· среда -- пластовая жидкость (смесь нефти, попутной воды и нефтяного газа);

· максимальная кинематическая вязкость однофазной жидкости, при которой обеспечивается работа насоса без изменения напора и кпд -- 1 мм/с;

· водородный показатель попутной воды рН 6,0--8,5;

· максимальное массовое содержание твердых частиц -- 0,01 % (0,1 г/л);

· микротвердость частиц -- не более 5 баллов по Моосу;

· максимальное содержание попутной воды -- 99%;

· максимальное содержание свободного газа у основания двигателя--25%, для установок с насосными модулями - газосепараторами (по вариантам комплектации) -- 55 %, при этом соотношение в откачиваемой жидкости нефти и воды регламентируется универсальной методикой подбора УЭЦН к нефтяным скважинам (УМП ЭЦН-79);

· максимальная концентрация сероводорода: для установок обычного исполнения--0,001% (0,01 г/л); для установок коррозионностойкого исполнения--0,125% (1,25 г/л);

· температура перекачиваемой жидкости в зоне работы погружного агрегата -- не более 90 °С.

1.3 Обозначения

Все насосы делятся на две основные группы: обычного и износостойкого исполнения. Подавляющая часть действующего фонда насосов (около 95 %) - обычного исполнения.

Насосы износостойкого исполнения предназначены для работы в скважинах, в продукции которых имеется небольшое количество песка и других механических примесей (до 1 % по массе).

По поперечным размерам все насосы делятся на 3 условные группы: 5, 5А и 6, что означает номинальный диаметр обсадной колонны, (в дюймах), в которую может быть спущен данный насос.

Группа 5 имеет наружный диаметр корпуса 92 мм, группа 5А - 103 мм и группа 6 - 114 мм. Частота вращения вала насосов соответствует частоте переменного тока в электросети. В России это частота - 50 Гц, что дает синхронную скорость (для двухполюсной машины) 3000 мин-1. В шифре ПЦЭН заложены их основные номинальные параметры, такие как подача и напор при работе на оптимальном режиме. Например, ЭЦН5-40-950 означает центробежный электронасос группы 5 с подачей 40 м3/сут (по воде) и напором 950 м. ЭЦН5А-360-600 означает насос группы 5А с подачей 360 м3/сут и напором 600 м. В шифре насосов износостойкого исполнения имеется буква И, означающая износостойкость. В них рабочие колеса изготовляются не из металла, а из полиамидной смолы (П-68). В корпусе насоса примерно через каждые 20 ступеней устанавливаются промежуточные резино-металлические центрирующие вал подшипники, в результате чего насос износостойкого исполнения имеет меньше ступеней и соответственно напор.

1.4 Конструкция центробежного насоса

1.4.1 Конструкция ступени

Рабочим органом скважинного центробежного насоса служит ступень насосная (СН) с цилиндрическими (ЦЛ) или наклонно- цилиндрическими лопатками (НЦЛ), состоящая из рабочего колеса и направляющего аппарата (рис. 2).

Рис. 2. Ступень ЭЦН

Ступени с ЦЛ применяются на номинальные подачи до 125 м3/сут (включительно) в насосах с наружным диаметром 86 и 92 мм, до 160 м3/сут в насосах с диаметром 103 мм и до 250 м3/сут в насосах с диаметром 114 мм.

Ступени с НЦЛ применяются в насосах с большей подачей. В области своего применения ступени с НЦЛ имеют более высокий КПД и более, чем в 1,5 раза увеличенную подачу, чем ступени с ЦЛ в тех же диаметральных габаритах. Наружный диаметр ступеней 70, 80, 90 и 100 мм.

Ступени размещаются в расточке цилиндрического корпуса каждой секции. В одной секции насоса может размещаться от 39 до 200 ступеней в зависимости от их монтажной высоты. Максимальное количество ступеней в насосах достигает 550 штук.

Для возможности сборки ЭЦН с таким количеством ступеней и разгрузки вала от осевой силы применяется плавающее рабочее колесо. Рабочее колесо в насосе не фиксируется на валу в осевом направлении и удерживается от проворота призматической шпонкой. Колесо может свободно перемещаться в осевом направлении в промежутке, ограниченном опорными поверхностями направляющих аппаратов.

Колесо опирается на индивидуальную для каждой СН осевую опору, состоящую из опорного бурта направляющего аппарата предыдущей ступени и антифрикционной износостойкой шайбы, запрессованной в расточку рабочего колеса; при этом утечка через переднее уплотнение колеса практически равна нулю. Но механический КПД ступени с плавающим рабочим колесом снижается из-за потерь трения в нижней опоре колеса. Величина этих потерь в первом приближении пропорциональна осевой силе, действующей на рабочее колесо ступени. Относительная характеристика ступени насоса представлена на рис. 3. Под относительной величиной понимается отношение фактической величины к соответствующей величине на оптимальном режиме, при котором КПД достигает максимального значения.

Рис. 3. Относительная характеристика ступени:

1-- относительный КПД (Л);

2-- относительный напор (Н);

3-- относительная осевая сила (Р);

4--относительная мощность (N);

q -- относительная подача; Q -- фактическая подача;

Qo -- оптимальная подача, соответствующая максимальному КПД

На режимах, примерно на 10% превышающих подачу нулевой осевой силы, рабочее колесо СН может «всплыть», т.е. переместиться вверх вплоть до упора, выполненного в виде верхней осевой опоры, состоящей из опорного бурта на направляющем аппарате и шайбы, запрессованной в расточку рабочего колеса. Всплытие рабочего колеса сопровождается скачкообразным снижением напора, КПД и резким повышение потребляемой мощности при увеличении подачи. При уменьшении подачи от режима открытой задвижки рабочее колесо может опускаться в нижнее положение при значениях относительной подачи q= 0,9-1,0.

Наиболее распространенный в настоящее время способ разгрузки колеса от осевой силы в ступенях с НЦЛ -- создание при помощи выполненного у колеса второго верхнего уплотнения камеры за ведущим диском колеса, в котором давление с помощью отверстий в ведущем диске уравнивается с давлением у входа в колесо (рис. 4, а). Разгрузка рабочего колеса позволяет существенно снизить осевую силу. Такие ступени по сравнению с аналогичными ступенями с неразгруженными рабочими колесами имеют ряд преимуществ: повышенный ресурс работы индивидуальной нижней опоры рабочего колеса, увеличенный КПД ступени.

Рис. 4. Конструкции ступеней:

а -- с разгруженным рабочим колесом, б -- двухопорная.

1 -- корпус; 2 -- направляющий аппарат; 3 -- рабочее колесо

Недостатками ступеней с разгруженными рабочими колесами является усложнение технологии и повышение трудоемкости изготовления, функциональный отказ способа разгрузки при засорении разгрузочных отверстий и при износе верхнего уплотнения рабочего колеса.

Усиление пары индивидуальной осевой опоры и межступенного уплотнения СН может быть достигнуто применением двухопорной конструкции ступени (рис. 1.3, б). Двухопорная конструкция СН имеет по сравнению с одноопорной ступенью, повышенный ресурс индивидуальной нижней пяты ступени, более надежную изоляцию вала от абразивной и коррозионно-агрессивной протекающей жидкости, увеличенный ресурс работы и большую жесткость вала насоса из-за увеличенных осевых длин межступенных уплотнений, служащих в ЭЦН помимо уплотнения дополнительными радиальными подшипниками.

Двухопорная конструкция ступени по сравнению с одноопорной более трудоемка в изготовлении.

В погружном центробежном насосе для добычи нефти в зависимости от перекачиваемой продукции, в первую очередь, изнашиваются поверхности трения осевых и радиальных опор, в том числе осевых опор рабочих колес и радиальных межступен- ных уплотнений, а также поверхности каналов, контактирующие с потоком перекачиваемой жидкости. Повышение надежности и долговечности ступеней достигается путем уменьшения осевой силы, действующей на рабочие колеса, усиления пары трения осевой и радиальной опор, использования соответствующих износостойких и коррозионностойких материалов, уменьшением действия радиальных сил на ротор путем повышения точности изготовления, балансировки рабочих колес.

Ответственной с точки зрения повышения надежности СН является верхняя пята рабочего колеса. Рабочее колесо работает на верхней пяте кратковременно на пусковых режимах и на режимах, лежащих правее рекомендованного диапазона подач, т.е. в режимах возможного всплытия рабочего колеса. При нарушении правил эксплуатации -- установлении рабочего режима регулированием подачи от открытой задвижки -- всплывшее рабочее колесо может не опускаться в свое нижнее положение и продолжительное время будет работать на своей верхней пяте.

Условия трения в верхней пяте рабочего колеса менее благоприятные, чем условия трения нижней пяты из-за меньшего перепада давления в пяте, и, следовательно, худшей смазки поверхности трения.

Износ поверхности каналов СН, контактирующих с потоком жидкости, возникает в случае применения СН для перекачивания жидкостей, содержащих механические примеси, твердость которых превышает твердость материалов СН.

В насосах типа ЭЦН, ЭЦНИ и ЭЦНК используются ступени с одними и теми же проточными частями. Ступени в насосах разных исполнений отличаются друг от друга материалами рабочих органов, пар трения и некоторыми конструктивными элементами.

1.4.2 Осевые опоры и радиальные подшипники вала насоса

При работе насоса осевые усилия от рабочих колес передаются на направляющие аппараты и на корпус насоса.

При этом на вал насоса действует осевая сила от перепада давления на торец вала и осевая сила, действующая на рабочие колеса, прихваченные к валу из-за наличия в пластовой жидкости коррозионно-активных элементов и механических примесей. Для восприятия осевых сил, действующих на вал, в конструкции насоса предусмотрены осевые опоры.

Осевые усилия в таком насосе воспринимаются осевой опорой вала самого насоса (в отечественных конструкциях ЭЦН) или осевой опорой гидрозащиты (большая часть насосов импортного производства).

На рис. 5 показан скважинный центробежный насос в сборе. Осевое усилие, действующее на вал, воспринимается гидродинамической пятой 1. Вал 3 расположен в радиальных подшипниках скольжения 2 и 8. Радиальными подшипниками вала являются и опоры скольжения у втулок вала и внутреннего диаметра направляющих аппаратов 5 у каждой ступени. Крутящий момент передается от вала к рабочим колесам 7 через шпонку 6. Вся сборка ротора насоса размещена в корпусе 4 и сжата сверху корпусом подшипника 2, а внизу -- основанием 10, на котором размещена приемная сетка 9. В верхней части насоса на корпус подшипника 2 навернута ловильная головка насоса, в которой имеется резьба для соединения с НКТ. Вал насоса соединяется с валом гидрозащиты шлицевой муфтой 11.

В секции или модуль-секции насоса (рис. 5) обычного исполнения применяется упорный подшипник или гидродинамическая пята (рис. 6), состоящий из кольца 1 с сегментами на обеих плоскостях, устанавливаемого между двумя гладкими шайбами 2, 3.

Рис. 5. Модуль-секция насоса

1 -- головка; 2 -- вал; 3 -- опора; 4 -- верхний подшипник; 5 -- кольцо; 6 -- направляющий аппарат; 7 -- рабочее колесо; 8 -- корпус; 9 -- нижний подшипник; 10 -- ребро; 11 -- основание

Сегменты на шайбе пяты 1 выполнены с наклонной поверхностью с углом а = 5--7° и плоской площадкой длиной (0,5--0,7)L (где L -- полная длина сегмента). Ширина сегмента В равна (1...1,4)Х. Для компенсации неточностей изготовления и восприятия ударных нагрузок под гладкие кольца помещены эластичные резиновые шайбы-амортизаторы 4, 5, запрессованные в верхнюю 6 и нижнюю 7 опоры. Осевая сила от вала передается через пружинное кольцо 8 опоры вала и дистанционную втулку 9 упорному подшипнику.

Рис 6. Упорный подшипник

Гидродинамическая пята выполнена с радиальными канавками, скосом и плоской частью на поверхности трения о подпятник. Она обычно изготавливается из бельтинга (технической ткани с крупными ячейками), пропитанного графитом с резиной и завулканизированного («запеченного») в пресс-форме. При вращении пяты жидкость идет от центра к периферии по канавкам, попадает под скос и нагнетается в зазор между плоскими частями подпятника и пяты. Таким образом, подпятник скользит по слою жидкости. Такое жидкостное трение (не в пусковом, а в рабочем режиме пяты) обеспечивает низкий коэффициент трения, незначительные потери энергии на трение в пяте, малый износ деталей пяты при достаточном осевом усилии, которое она воспринимает.

Радиальный подшипник ЭЦН воспринимает радиальные нагрузки, возникающие при работе насоса. Радиальный подшипник (рис. 7) состоит из опорной втулки с вкладышем 1, которые является неподвижными деталями и втулки 2, вращающейся вместе с валом. В каждой модуль-секции насоса обычного исполнения вал имеет два радиальных подшипника -- верхний и нижний, а в модуль-секциях насосов износостойкого исполнения, кроме перечисленных радиальных подшипников, используются промежуточные радиальные опоры.

Рис. 7. Радиальный подшипник

1.5 Типы и конструкция погружных электродвигателей

Погружные электродвигатели, служащие для привода центробежных насосов, -- асинхронные, с короткозамкнутыми роторами, маслоза- полненные. При частоте тока 50 Гц синхронная частота вращения их вала равна 3000 мин-1.

Двигатели, как и насосы, имеют малые диаметры, различные для скважин с обсадными колоннами 168 и 146 мм. Их мощность достигает 125 кВт. Напряжение тока у двигателей (400--2000 В) зависит от типоразмера двигателя. Рабочая сила тока 20--85 А, скольжение 6 %.

Малые диаметры и большие мощности вызывают необходимость увеличивать длину двигателей, которая иногда превышает 8 м.

Погружной электродвигатель (рис. 8), как и всякий электродвигатель, имеет статор и ротор. Статор и ротор погружного электродвигателя секционные. Каждая секция длиной около 300 мм. Секция статора имеет набор магнитных жестей 9, по обе стороны которого имеется пакет немагнитных жестей 8, в последних расположены корпуса радиальных опор скольжения 7 вала 11. Секция ротора имеет набор жестей ротора 10 и втулки опор 7 вала. Жести статорных секций имеют отверстия для катушек обмотки статора. В жестях роторных секций расположена «беличья клетка». Статор запрессован в корпус 12. Ротор собран на валу 11. Число секций ротора и статора доходит до 12--15. В верхней части двигателя имеется головка 2, в которой размещена осевая опора вала (детали 3 и 4) и подсоединение кабеля (кабельный ввод) 5. Вал двигателя в верхней части заканчивается шлицевой муфтой 1, соединяющей валы двигателя и гидрозащиты. В нижней части двигателя, в его основании 14, расположен фильтр 13 и клапаны, соединяющие полость двигателя с компенсатором, расположенным ниже двигателя.

Двигатель заполнен изоляционным сухим трансформаторным маслом. При большой длине статора двигателя масло в зазоре между статором и ротором перегревается. Для того чтобы избежать местного перегрева масла, в двигателе осуществляется его циркуляция. Вал двигателя имеет отверстие, по которому масло поступает от фильтра 13 к турбинке 6. Турбинка, вращаясь с валом, нагнетает масло из внутренней полости вала в верхнюю часть двигателя. Создается перепад давления масла, находящегося в верхней части двигателя и у фильтра. Масло движется сверху к фильтру по зазору между статором и двигателем.

Рис. 8. Схема погружного электродвигателя

Таким образом уравнивается температура всего масла, заполняющего двигатель, и в то же время масло способствует отбору теплоты от перегретых частей двигателя. На своем пути масло подается и к радиальным опорам вала для их смазки.

Теплостойкость обмоточных проводов электродвигателя ограничивается 130 °С. С учетом перегрева двигателя за счет потерь энергии в нем температура окружающей среды ограничена у большинства двигателей 60--70 °С. Имеются отдельные двигатели, предназначенные для работы при температуре окружающей среды до 90 °С. Эта группа двигателей в последние годы расширяется.

Если невозможно выполнить двигатель необходимой мощности в одном корпусе, двигатель может быть составлен из двух секций, подобно тому как составляются секционные насосы.

Погружные электродвигатели изготавливают двух типов: со стержневой и протяжной обмотками. Стержневая обмотка представляет собой стержни из медного провода, изолированные стекломиколентой, пропитанной грифтальмасляным лаком или фторпластовой лентой. Протяжную обмотку выполняют из медного обмоточного провода, изолированного лавсановой пленкой с подклейкой полиамидным лаком, или из медного провода с фторопластовой изоляцией. За счет более полного заполнения паза статора протяжной обмоткой повышается мощность двигателя и уменьшается его длина. В шифре электродвигателей, например, ПЭДС-90-117В5 приняты следующие обозначения: ПЭД -- погружной электродвигатель, С -- секционный, 90 -- номинальная мощность (в кВт), 117--внешний диаметр двигателя (в мм), В5--исполнение двигателя, соответствующее климатическим условиям применения.

1.6 Конструкция кабельного ввода

Узел токоввода служит для питания обмотки статора и содержит кабельную муфту и электроизоляционную колодку (рис. 9). В колодке размещены составные электрические контакты, связанные с выводами обмотки статора. Соединение кабельной муфты с головкой ПЭД герметично, при этом электрические контакты узла токоввода находятся в полости двигателя, заполненного диэлектрическим маслом.

Колодка имеет три отверстия для установки контактных гильз и центральное отверстие для прохода диэлектрического масла. Она выполнена из электроизоляционных пластмасс.

Рис. 9. Токоввод

Выводной провод обмотки статора с впаянным наконечником имеет резьбовое окончание для соединения с контактной гильзой. Материал выводного провода типа ПФС или ПФТ, наконечник выполнен из меди.

Контактная гильза выполнена из латуни, имеет в осевом направлении разрезы, а в верхней части кольцевую пружину, которая предназначена для сжатия лепестков гильзы. В нижней части контактной гильзы имеется резьбовое отверстие, которое предназначено для соединения составных контактов (наконечника и гильзы). В отверстиях колодки токоввода имеются буртики, удерживающие гильзу с наконечником от перемещения в осевом направлении.

Установленные в колодке контакты (гильзы) имеют незначительную свободу перемещения, что обеспечивает их самоустановку при соединении с контактами кабельной муфты.

1.7 Газосепараторы

Позволяют отделить часть газа до его входа в насос. Имеет центробежный принцип действия (но не колесо, а шнек).

Вал вращается. Т.к. среда не однородная, то к стенке отделяется более тяжелая среда (жидкость), а в центре около вала остается газ. Есть специальное устройство, которое переводит газ в затрубье и газ из затрубья отделяется.

Рис. 10. Газосепаратор типа МН(К)-ГСЛ

1- корпус; 2 - головка; 3 - основание; 4 - вал; 5 - канал для газа, б - канал для жидкости;

7 - радиальный подшипник; 8 - приемные каналы; 9 - подпятник; 10 - радиальный подшипник; 11 - пята, 12 - шнек; 13 - осевое колесо; 14 - сепараторы;

15 - втулки подшипников; 16 - направляющий аппарат

1.8 Гидрозащита

Для увеличения работоспособности погружного электродвигателя большое значение имеет надежная работа его гидрозащиты, предохраняющей электродвигатель от попадания в его внутреннюю полость пластовой жидкости и компенсирующей изменение объема жидкости в двигателе при его нагреве и охлаждении, а также при утечке масла через негерметичные элементы конструкции. Пластовая жидкость, попадая в электродвигатель, снижает изоляционные свойства масла, проникает через изоляцию обмоточных проводов и приводит к короткому замыканию обмотки. Кроме того, ухудшается смазка подшипников вала двигателя.

В настоящее время на промыслах Российской Федерации широко распространена гидрозащита типа Г.

Гидрозащита типа Г состоит из двух основных сборочных единиц: протектора, который устанавливается между насосом и двигателем, и компенсатора, расположенного в нижней части двигателя.

Протектор гидрозащиты типа Г (рис. 11) состоит из головки, верхнего, среднего и нижнего ниппелей, нижнего корпуса и основания, последовательно соединенных между собой резьбой.

Рис .11. Протектор гидрозащиты типа Г

На валу протектора установлены три радиальных подшипника скольжения. Осевые нагрузки через пяту воспринимаются верхним и нижним подпятниками. На обоих концах вала -- шлицы для соединения с двигателем и насосом. На валу последовательно установлены три торцовых уплотнения, зафиксированные пружинными кольцами. Внутри корпусов размещены две короткие диафрагмы -- верхняя и нижняя, концы которых посредством хомутов герметично закреплены на опорах. Внутренняя полость нижней диафрагмы сообщается при соединении протектора с двигателем с его внутренней полостью. Задиафрагменная полость нижней диафрагмы продольными каналами в нижнем ниппеле сообщена с внутренней полостью верхней диафрагмы, а полость верхней диафрагмы продольными каналами в среднем ниппеле сообщается с полостью между верхним и средним торцовыми уплотнениями. Протектор заполняют маслом через отверстия под пробки с обратными клапанами, выпуская при этом воздух через соответствующие пробки. Защита от проникновения пластовой жидкости обеспечивается торцовыми уплотнениями и резиновой диафрагмой.

При работе электродвигателя в процессе его включений и выключений масло, его заполняющее, периодически нагревается и охлаждается, изменяясь соответственно в объеме. Изменение объема масла компенсируется за счет деформации эластичной диафрагмы компенсатора.

В процессе работы происходит утечка масла через торцовые уплотнения. По мере расхода масла диафрагма компенсатора складывается, а диафрагмы протектора расширяются. После полного расхода масла из компенсатора наступает второй период работы гидрозащиты, когда используются компенсационные возможности диафрагмы протектора. При падении давления во внешней полости диафрагмы протектора, при остановке электродвигателя и охлаждении масла обратный клапан открывается и впускает во внешнюю полость пластовую жидкость, тем самым выравнивая давления. Последовательное дублирование эластичных диафрагм и торцовых уплотнений в протекторе повышает надежность защиты электродвигателя от попадания в него пластовой жидкости.

Компенсатор (рис. 12) расположен в нижней части двигателя и предназначен для выравнивания давления в двигателе и пополнения его маслом.

Рис. 12. Конструкция компенсатора гидрозащиты типа Г:

1 -- поршень автоматического клапана; 2 -- диафрагма

Компенсатор состоит из корпуса и каркаса, к которому крепится диафрагма. Полость за диафрагмой сообщена с затруб- ным пространством отверстиями в корпусе компенсатора. Пробка, расположенная на наружной поверхности компенсатора, предназначена для закачки масла в компенсатор, а внутренне отверстие под заглушку -- для выхода воздуха при заполнении его маслом, а также для сообщения полости двигателя и компенсатора. После заполнения маслом компенсатора заглушка должна быть закрыта, а после монтажа установки и спуска ее в скважину заглушка автоматически открывается, при погружении компенсатора под уровень пластовой жидкости на 15--30 м.

В шифре гидрозащиты, например, 1Г51 приняты следующие обозначения: 1 -- модификация, Г -- тип защиты, 5 -- условный размер обсадной колонны, 1 -- номер разработки.

Кроме гидрозащиты типа Г, на нефтяных промыслах России нашла широкое применение гидрозащита типа П.

Рис. 13. Протектора типа П 1 -- головка верхняя; 2 -- трубка; 3 -- пробка; 4 -- пробка; 5 -- корпус; 6 -- диафрагма; 7 -- пробка; 8 -- пробка; 9 -- диафрагма; 10 -- подпятник; 11 -- пята; 12-- торцевое уплотнение; 13 -- вал; 14-- подшипник; 15 -- трубка; 16 -- трубка; 17 -- корпус; 18 -- нижняя головка

Основные составные части протектора типа П (рис. 13): вал, торцовые уплотнения, корпуса, камеры, связанные гидравлически между собой последовательно с помощью отверстий, выполненных во фланцах в месте установки торцевых уплотнений. Внутренние полости диафрагм заполнены маслом. Торцовые уплотнения с двумя диафрагмами, закрепленными на цилиндрах, образуют верхнюю камеру над торцовым уплотнением, в районе верхней диафрагмы -- среднюю камеру, в районе нижней диафрагмы -- нижнюю камеру. Трубки между полостями камер расположены таким образом, что при движении сверху жидкость должна проходить по лабиринту и в двух местах этот путь механически разделяется двумя диафрагмами.

Полости, образованные диафрагмами, снабжены клапанами, через которые сбрасывается масло при избыточном давлении. Заполнение полости протектора производится снизу. Диэлектрическое масло проходит по валу к трубке, через отверстия в трубе заполняет нижнюю полость, воздух и избыток масла через отверстия в трубе поступает в зону нижнего торцового уплотнения, заполняет его полость и под избыточным давлением через клапан выходит в следующую полость. Воздух выходит в отверстие ниппеля под пробку между нижней и средней камерами, а масло стекает на дно полости, заполняет ее до появления в отверстие под пробку и после ее закрытия пробкой продолжает поступать в полость верхней диафрагмы. Далее заполняют полости в средней и верхней камеры, при этом для удаления воздуха используются пробки в верхней головке.

Полости внутри диафрагмы защищены от проникновения пластовой жидкости по валу торцевым уплотнением. Нижний конец диафрагмы протектора закреплен герметично, верхний имеет упругое крепление при помощи браслетных пружин, что позволяет осуществлять регулирование давления при температурных расширениях масла [3].

Для устранения перепада давления в верхней камере имеется трубка, через которую поступает пластовая жидкость в наружную полость, расположенную над диафрагмой средней камеры. При работе двигателя масло расширяется, при этом растягивает резиновую диафрагму и прижимает ее к внутренней поверхности корпуса протектора. Лишний объем масла будет выдавлен через верхний конец диафрагмы, который имеет упругое крепление.

При остановке и охлаждении двигателя объем масла будет уменьшаться и резиновая диафрагма, воспринимая давление окружающей среды, будет втягиваться внутрь и пополнять маслом полость двигателя.

При последующем включении двигателя процесс изменения объема масла повторится, то есть при любых изменениях объема и давления масла диафрагмы будут «дышать» и отслеживать объем находящегося масла в двигателе и уравновешивать давление в его полости с давлением окружающей среды.

Основным узлом протекторов являются торцевые уплотнения, предназначенные для герметизации вращающихся валов диаметром 25 мм и 35 мм. Торцовые уплотнения производятся по техническим условиям:

ТУ 3639-003-00217573-93. Торцовые уплотнения;

ТУ 3632-14-00217573-97. Уплотнения УТ1Р.025;

ТУ УЗ. 10-00216852-013-97. Уплотнения торцовые релито- вые серии 2Р;

ТУ 3639-006-46874052-01. Уплотнения торцовые для гидрозащит погружных электродвигателей.

Уплотнения (рис. 1.104 и 1.105) состоят из двух колец (вращающегося и невращающегося), поджатых друг к другу пружиной. На вращающемся кольце установлен сильфон, обжимаемый каркасом, другой конец сильфона через обойму с корпусом поджимается к валу. На невращающемся кольце установлена манжета или резиновое уплотнительное кольцо.

Рис. 14. Гидрозащита типа ГД.

Гидрозащита типа ГД (рис. 14.) состоит из двух узлов: протектора, защищающего полость двигателя от попадания пластовой жидкости, и компенсатора, компенсирующего утечки через торцовое уплотнение жидкого масла и температурные изменения объема масла в системе «двигатель -- гидрозащита».

Гидрозащита ГД применяется в установках с насосами, имеющими в основании радиально-упорный подшипник и набивное уплотнение.

Протектор гидрозащиты ГД устанавливается между насосом и двигателем. Компенсатор подсоединяется к нижней части двигателя при помощи переводника.

Протектор (рис. а) состоит из двух камер А и Б. Камеры А и В разделяются между собой эластичным элементом (резиновой диафрагмой 7) и торцовым уплотнением 2. Камера А защищена от проникновения пластовой жидкости по валу набивным уплотнением, расположенным в насосе, и заполняется густым маслом. Избыточное давление в протекторе создается лопастным колесом 10. Вал протектора размещен в трех подшипниках скольжения 1, 5 и 11 и зафиксирован в осевом направлении при помощи пят 4 и 6. Компенсатор (рис. б) состоит из камеры, образованной эластичным элементом (резиновой диафрагмой 15) и заполненной жидким маслом. Диафрагма помещена в стальном кожухе 14, защищающем ее от повреждений. Масло заправляют через отверстие В. Полость за резиновой диафрагмой сообщена со скважиной отверстиями Г и Д.

1.9 Кабель

ПЭД питается электроэнергией по трехжильному кабелю, спускаемому в скважину параллельно с НКТ. Кабель крепится к внешней поверхности НКТ металлическими поясками по два на каждую трубу. Кабель работает в тяжелых условиях. Верхняя его часть находится в газовой среде, иногда под значительным давлением, нижняя - в нефти и подвергается еще большему давлению. При спуске и подъеме насоса, особенно в искривленных скважинах, кабель подвергается сильным механическим воздействиям (прижимы, трение, заклинивание между колонной и НКТ и т. д.). По кабелю передается электроэнергия при высоких напряжениях. Использование высоковольтных двигателей позволяет уменьшить ток и, следовательно, диаметр кабеля. Однако кабель для питания высоковольтного ПЭДа должен обладать и более надежной, а иногда и более толстой изоляцией. Все кабели, применяемые для УПЦЭН, сверху покрыты эластичной стальной оцинкованной лентой для защиты от механических повреждений. Необходимость размещения кабеля по наружной поверхности ПЦЭН уменьшает габариты последнего. Поэтому вдоль насоса укладывается плоский кабель, имеющий толщину примерно в 2 раза меньше, чем диаметр круглого, при одинаковых сечениях токопроводящих жил.

Все кабели, применяемые для УПЦЭН, делятся на круглые и плоские. Круглые кабели имеют резиновую (нефтестойкая резина) или полиэтиленовую изоляцию, что отображено в шифре: КРБК означает кабель резиновый бронированный круглый или КРБП - кабель резиновый бронированный плоский. При использовании полиэтиленовой изоляции в шифре вместо буквы Р пишется П: КПБК - для круглого кабеля и КПБП - для плоского.

Круглый кабель крепится к НКТ, а плоский - только к нижним трубам колонны НКТ и к насосу. Переход от круглого кабеля к плоскому сращивается методом горячей вулканизации в специальных прессформах и при недоброкачественном выполнении такой сростки может служить источником нарушения изоляции и отказов. В последнее время переходят только к плоским кабелям, идущим от ПЭДа вдоль колонны НКТ до станции управления. Однако изготовление таких кабелей сложнее, чем круглых (табл. 1).

Имеются еще некоторые разновидности кабелей с полиэтиленовой изоляцией, не упомянутые в таблице. Кабели с полиэтиленовой изоляцией на 26 - 35 % легче кабелей с резиновой изоляцией. Кабели с резиновой изоляцией предназначены для использования при номинальном напряжении электрического тока не более 1100 В, при температурах окружающей среды до 90 °С и давлении до 1 МПа. Кабели с полиэтиленовой изоляцией могут работать при напряжении до 2300 В, температуре до 120 °С и давлении до 2 МПа. Эти кабели обладают большей устойчивостью против воздействия газа и высокого давления.

Все кабели имеют броню из волнистой оцинкованной стальной ленты, что придает им нужную прочность.

Рис. 15. Схема кабеля. 1-- жила кабеля; 2 -- электроизоляция и слой, защищающий от внешней среды; 3 -- подложка под броню; 4 -- металлическая броня

1.10 Поверхностное оборудование

1.10.1 Станции управления

Станции управления выпускают различных модификаций. Станции управления типа ПГХ5071 применяются только для установок погружных электронасосов, двигатели которых питаются электроэнергией через автотрансформатор; станции управления типа ПГХ5072 -- только для установок погружных электронасосов, двигатели которых питаются электроэнергией через трансформатор.

Станции управления обеспечивают:

1) ручное и автоматическое управление установкой;

2) управление установкой с диспетчерского пункта (в станциях предусмотрены контакты для присоединения к системам телеуправления);

3) работу установки по заданной программе подключением к станциям управления программного реле КЭП-12У;

4) самозапуск в режиме автоматического управления, т. е. автоматическое включение установки с регулируемой выдержкой времени от 0 до 15 с;

5) мгновенное отключение установки при токах межфазного короткого замыкания и при значительных перегрузках двигателя по току;

6) отключение установки с выдержкой времени около 20 с при перегрузке двигателя по току;

7) отключение установки при срыве подачи жидкости насосом (минимальная токовая защита) - установка должна автоматически отключаться при снижении тока, потребляемого двигателем;

8) подключение при помощи штепсельного разъема двигателя привода кабельного барабана автонаматывателя и других нагрузок с потребляемым током не выше 26 А;

9) контроль за работой установки амперметром, измеряющим ток, который потребляется двигателем, и вольметром, измеряющего напряжение сети;

10) автоматическое отключение установки при обрыве любой из фаз питающей сети;

11) автоматическое включение и выключение установки в зависимости от давления в нагнетательном трубопроводе;

12) мгновенное отключение установки при замыкании токоведущих частей на землю (только станции управления ПГХ5071);

13) непрерывный контроль состояния изоляции установки и мгновенное отключение установки при снижении сопротивления изоляции ниже 30 кОм (только станции управления ПГХ5072).

Станции управления работают при температурах окружающего воздуха от минус 35 до плюс 40° С. Их нельзя применять для работы: в среде, насыщенной токопроводящей пылью; в местах, не защищенных от попадания влаги; в среде, содержащей едкие газы и пары в концентрациях, разрушающих металл и изоляцию; во взрывоопасной среде; при наличии ударов и сотрясений; при наклонах, превышающих угол на 5° и более от вертикали.

1.10.2 Трансформаторы

Комплектные трансформаторные подстанции КТППН обеспечивают индикацию текущих параметров работы насосной установки, а именно:

- напряжения питающей сети;

- тока нагрузки погружного электродвигателя;

- сопротивления изоляции системы «токоподвод -- погружной электродвигатель». Конструкция КТППН предусматривает возможность подключения прибора учета электроэнергии и регистрирующего амперметра.

Комплектные трансформаторные подстанции для кустов скважин серии КТППНКС предназначены для энергоснабжения, управления и защиты четырех центробежных электронасосов (ЭЦН) с погружными электродвигателями мощностью от 16 до 125 кВт для добычи нефти из кустов скважин и четырех электродвигателей станков-качалок и передвижных токоприемников при выполнении ремонтных работ .

Первичные обмотки трехфазных трансформаторов и автотрансформаторов всегда рассчитаны на напряжение промысловой электросети, т. е. на 380 В, к которой они и подсоединяются через станции управления. Вторичные обмотки рассчитаны на рабочее напряжение соответствующего двигателя, с которым они связаны кабелем. Эти рабочие напряжения в различных ПЭДах изменяются от 350В (ПЭД10-103) до 2000 В (ПЭД65-117; ПЭД125-138). Для компенсации падения напряжения в кабеле от вторичной обмотки делается 6 отводов (в одном типе трансформатора 8 отводов), позволяющих регулировать напряжение на концах вторичной обмотки с помощью перестановки перемычек. Перестановка перемычки на одну ступень повышает напряжение на 30 - 60 В в зависимости от типа трансформатора.

Все трансформаторы и автотрансформаторы немаслозаполненные с воздушным охлаждением закрыты металлическим кожухом и предназначены для установки в укрытом месте. Они комплектуются с подземной установкой, поэтому их параметры соответствуют данному ПЭДу.

В последнее время трансформаторы находят более широкое распространение, так как это позволяет непрерывно контролировать сопротивление вторичной обмотки трансформатора, кабеля и статорной обмотки ПЭДа. При уменьшении сопротивления изоляции до установленной величины (30 кОм) установка автоматически отключается.

При автотрансформаторах, имеющих прямую электрическую связь между первичной и вторичной обмотками, такого контроля изоляции осуществлять нельзя.

Трансформаторы и автотрансформаторы имеют КПД около 98 - 98,5 %. Масса их в зависимости от мощности колеблется от 280 до 1240 кг, габариты от 1060 х 420 х 800 до 1550 х 690 х 1200 мм.

1.11 Устьевая арматура УЭЦН

1.11.1 Конструкция вывода кабеля

Наиболее распространенным способом уплотнения кабелей в устьевой арматуре скважин является их заделка с помощью резиновых сальниковых уплотнителей (шайб). Данные «катушки» предназначены для эксплуатации в интервале температур от -60 до +100 °С.

Уплотнение российских кабелей производится по изоляции токопроводящих жил, уплотнение кабелей иностранных фирм -- по оболочкам жил или по общим шланговым оболочкам (в зависимости от конструкций кабелей). Данный способ трудоемок и не исключает деформацию изоляции и оболочек жил кабелей

Рядом ведущих фирм мира разработаны и успешно эксплуатируются узлы вывода кабеля через устьевую арматуру скважин, представляющие собой разъемные герметические соединения концов основного кабеля кабельной линии и питающего наземного кабеля.

Рис. 14. Катушки с кабельным вводом

1.11.2 Устьевая арматура

Оборудование устья скважины, эксплуатируемой глубинным центробежным насосом, предназначено для отвода в манифольд продукции скважины, герметизации пространства между обсадной колонной и насосно-компрессорными трубами с учетом ввода в это пространство кабеля и перепуска газа из этого пространства при чрезмерном увеличении его давления. Кроме того, оборудование должно давать возможность использовать приборы при исследовании скважины (замере давления на выкиде у насосно-компрессорных труб и в затрубном пространстве, замере уровня жидкости в ней и т. д.).

Рис.17. Схема оборудования устья скважины при эксплуатации ее ЭЦН.

Крестовик 1 (Рис. 17.), соединенный с обсадной колонной, имеет разъемный конус 2, на котором подвешиваются НКТ. Над конусом расположено резиновое уплотнение 3, герметизирующее место вывода труб и кабеля 4. Уплотнение поджимается разъемным фланцем 5. Затрубное пространство скважины соединяется с выкидом из НКТ через колено 6 и обратный клапан 7. Крестовик 1 имеет специальное отверстие для применения эхолота или других приборов. Все основные узлы оборудования устья унифицированы с узлами фонтайной арматуры и устья штанговых скважинных насосных установок, что существенно упрощает комплектацию оборудования устья и его эксплуатацию. Рабочее давление, на которое рассчитано оборудование устья, составляет 14 и 21 МПа, давление, на которое рассчитан устьевой сальник, -- 4 МПа, диаметр условного прохода запорных органов -- 65 мм.

1.12 Оборудование для монтажа и заправки маслом узлов УЭЦН на устье скважины

Установка ЭЦН чаще всего имеет довольно большую длину (до 25 м и более), в связи с чем монтаж отдельных узлов и заправка маслом погружного электродвигателя и гидрозащиты проводится непосредственно на устье скважины. Для проведения этих работ применяются специальные виды инструментов и приспособлений.

Монтажный хомут-элеватор ХМ-3 предназначен для подъема, спуска, удержания на весу или на фланце колонной головки гидрозащиты, секций насоса и всего насосного агрегата.

Монтажный хомут-элеватор (рис. 18) состоит из корпуса 1, затвора 2, двух откидных болтов 3 и двух гаек 4. Откидные болты вращаются вокруг осей 5. Корпус представляет собой скобу с приваренными к ней проушинами, в которых имеются окна и отверстия для стропов и штырей 6. На внутренних поверхностях корпуса и затвора имеется кольцевой выступ, который при закрытии элеватора входит в кольцевую проточку на головке секции насоса или гидрозащиты. Грузоподъемность монтажного хомута-элеватора 3 т, масса 12,5 кг.

Грузоподъемность монтажного хомута-элеватора 3 т, масса 12,5 кг.

Рис. 18. Монтажный хомут-элеватор ХМ-3

Хомут-элеватор ХМД-2 предназначен для подъема, спуска, удержания на весу или на фланце колонной головки секций электродвигателя.

Хомут-элеватор (рис. 19) состоит из корпуса 1, затвора 2, откидного болта 3 и гайки 4. Затвор вращается вокруг оси 5, а откидной болт -- вокруг оси 6. Корпус представляет собой скобу с проушинами, в которых имеются окна и отверстия для стропов и штырей 7. На внутренних поверхностях корпуса и затвора имеются выступы. Грузоподъемность хомута-элеватора 2 т, масса 11 кг.

Рис. 19. Хомут-элеватор ХМД-2

Заправочный насос МЦ2 предназначен для заправки электродвигателя и гидрозащиты диэлектрическим маслом.

Заправочный насос (рис. 20) состоит из емкости 1, в которую вмонтирован ручной поршневой насос 2. Масло ручным насосом нагнетается по шлангу 3 через присоединительный штуцер 4 в заправляемый двигатель. Масло в емкость заливается через горловину 5. Объем емкости 20 литров.

Рис. 20. Заправочный насос МЦ2

Для контроля давления масла в электродвигателе и протекторе при проверке герметичности соединения секций электродвигателя, соединения кабеля и протектора с электродвигателем в процессе монтажа на скважине предназначен опрессовочный штуцер с манометром.

Для контроля затяжки крепежных деталей при монтаже погружной установки служит динамометрический ключ. Ключ состоит из профилированного трубчатого корпуса, внутри которого концентрично размещены рычаг и подпружиненный ролик. Регулировка ключа производится сжатием пружины при навинчивании рукоятки на корпус и фиксируется контргайкой. На наружном конце рычага устанавливается необходимого размера гаечный ключ. При превышении допустимой величины момента затяжки в процессе монтажа рычаг ключа, проворачиваясь вокруг пальца и сжимая пружину, ударяет по корпусу. Толчок и звук удара являются предупредительным сигналом о необходимости окончания завинчивания крепежной детали.

Вилка для кабельной муфты используется для отделения корпуса муфты от головки электродвигателя при демонтаже установки.

1.13 Основные положения методики подбора УЭЦН к нефтяной скважине

Как уже указывалось ранее, методика подбора УЭЦН к скважинам основывается на знаниях законов фильтрации пластового флюида в пласте и призабойной зоне пласта, на законах движения водо-газо-нефтяной смеси по обсадной колонне скважины и по колонне НКТ, на зависимостях гидродинамики центробежного погружного насоса. Кроме того, часто необходимо знать точные значения температуры как перекачиваемой жидкости, так и элементов насосной установки, поэтому в методике подбора важное место занимают термодинамические процессы взаимодействия насоса, погружного электродвигателя и токонесущего кабеля с откачиваемым многокомпонентным пластовым флюидом, термодинамические характеристики которого меняются в зависимости от окружающих условий .

Необходимо отметить, что при любом способе подбора УЭЦН есть необходимость в некоторых допущениях и упрощениях, позволяющих создавать более или менее адекватные модели работы системы «пласт -- скважина -- насосная установка».

В общем случае к таким вынужденным допущениям, не ведущим к значительным отклонениям расчетных результатов от реальных промысловых данных, относятся следующие положения:

§ Процесс фильтрации пластовой жидкости в призабой- ной зоне пласта во время процесса подбора оборудования является стационарным, с постоянными значениями давления, обводненности, газового фактора, коэффициента продуктивности и т.д.

§ Инклинограмма скважины является неизменным во времени параметром.

Общая методика подбора УЭЦН при выбранных допущениях выглядит следующим образом:

1. По геофизическим, гидродинамическим и термодинамическим данным пласта и призабойной зоны, а также по планируемому (оптимальному или предельному в зависимости от задачи подбора) дебиту скважины определяются забойные величины -- давление, температура, обводненность и газосодержание пластового флюида.

2. По законам разгазирования (изменения текущего давления и давления насыщения, температуры, коэффициентов сжимаемости газа, нефти и воды) потока пластовой жидкости, а также по законам относительного движения отдельных составляющих этого потока по колонне обсадных труб на участке «забой скважины -- прием насоса» определяется необходимая глубина спуска насоса, или, что практически то же самое -- давление на приеме насоса, обеспечивающие нормальную работу насосного агрегата. В качестве одного из критериев определения глубины подвески насоса может быть выбрано давление, при котором свободное газосодержание на приеме насоса не превышает определенную величину. Другим критерием может являться максимально допустимая температура откачиваемой жидкости на приеме насоса. В случае реального и удовлетворяющего потребителя результата расчета необходимой глубины спуска насоса осуществляется переход к п. 3 настоящей методики. Если же результат расчета оказывается нереальным (например -- глубина спуска насоса оказывается больше глубины самой скважины), расчет повторяется с п. 1 при измененных исходных данных -- например -- при уменьшении планируемого дебита, при увеличенном коэффициенте продуктивности скважины (после планируемой обработки призабойной зоны пласта), при использовании специальных предвключенных устройств (газосепараторов, диспергаторов) и т.д. Расчетная глубина подвески насоса проверяется на возможный изгиб насосной установки, на угол отклонения оси скважины от вертикали, на темп набора кривизны, после чего выбирается уточненная глубина подвески.

3. По выбранной глубине подвески, типоразмеру обсадных и насосно-компрессорных труб, а также по планируемому дебиту, обводненности, газовому фактору, вязкости и плотности пластовой жидкости и устьевым условиям определяется потребный напор насоса.

...

Подобные документы

  • Производство и использование для добычи нефти установок электроцентробежных погружных насосов. Состояние нефтяной промышленности РФ. Разработки по повышению показателей работы насоса и увеличение наработки на отказ. Межремонтный период работы скважин.

    реферат [262,7 K], добавлен 11.12.2012

  • Использование штанговых скважинных насосов для подъема нефти на поверхность. Техническая схема станка-качалки. Установки погружных электроцентробежных, винтовых, диафрагменных электронасосов. Система периодической и непрерывной газолифтной добычи.

    курсовая работа [2,9 M], добавлен 11.05.2011

  • Насосы-гидравлические машины, предназначенные для перемещения жидкостей. Технология монтажа центробежного насоса. Монтаж центробежного насоса. Принцип действия насоса. Монтаж горизонтальных насосов. Монтаж вертикальных насосов. Испытание насосов.

    реферат [250,5 K], добавлен 18.09.2008

  • Характеристика погружного насоса, погружаемого ниже уровня перекачиваемой жидкости. Анализ штанговых погружных и бесштанговых погружных насосов. Коэффициент совершенства декомпозиции системы. Знакомство с основными видами насосов погружного типа.

    курсовая работа [1,0 M], добавлен 18.12.2011

  • Принцип работы поршневого насоса, его устройство и назначение. Технические характеристики насосов типа Д, 1Д, 2Д. Недостатки ротационных насосов. Конструкция химических однопоточных центробежных насосов со спиральным корпусом. Особенности осевых насосов.

    контрольная работа [4,1 M], добавлен 20.10.2011

  • Техническая характеристика роторных насосов. Назначение и принцип работы консольных насосов, их конструктивные особенности. Определение оптимальной зоны работы центробежного насоса, изменения производительности насосной станции, подачи по трубопроводу.

    курсовая работа [584,4 K], добавлен 23.11.2011

  • Центробежные насосы и принцип их работы. Расчёт основных параметров и рабочего колеса центробежного насоса. Выбор прототипа проектируемого центробежного насоса. Принципы подбора типа электродвигателя. Особенности эксплуатации центробежного насоса.

    курсовая работа [859,3 K], добавлен 27.05.2013

  • Общая характеристика поршневых насосов, подробное описание конструкции, устройство основных узлов и агрегатов на примере одного насоса. Изучение принципа действия поршневых насосов на примере УНБ-600, проведение инженерного расчета, уход и эксплуатация.

    дипломная работа [7,6 M], добавлен 28.07.2010

  • Принцип работы бытовых и хозяйственных тепловых насосов. Конструкция и принципы работы парокомпрессионных насосов. Методика расчета теплообменных аппаратов абсорбционных холодильных машин. Расчет тепловых насосов в схеме сушильно-холодильной установки.

    диссертация [3,0 M], добавлен 28.07.2015

  • Преимущества насосов с однозаходным ротором круглого сечения. Назначение, техническая характеристика, конструкция и принцип действия винтового насоса. Монтаж, эксплуатация и ремонт. Влияние зазора и натяга в рабочих органах на характеристики насоса.

    курсовая работа [1,3 M], добавлен 14.01.2011

  • Классификация насосов по энергетическим и конструктивным признакам. Схема центробежного насоса. Методика конструктивного расчета основных параметров насоса. Конструктивные типы рабочих колес. Алгоритм расчета профилирования цилиндрической лопасти.

    контрольная работа [1,1 M], добавлен 11.03.2013

  • Назначение погружных центробежных электронасосов, анализ конструкции и установки. Сущность отечественных и зарубежных погружных центробежных насосов. Анализ насосов фирм ODI и Centrilift. Электроцентробежные насосы ЭЦНА 5 - 45 "Анаконда", расчет мощности.

    курсовая работа [513,1 K], добавлен 30.04.2012

  • Центробежные насосы и их применение. Основные элементы центробежного насоса. Назначение, устройство и техническая характеристика насосов. Капитальный ремонт центробежных насосов типа "НМ". Указания по дефектации деталей. Обточка рабочего колеса.

    курсовая работа [51,3 K], добавлен 26.06.2011

  • Конструкция и принцип работы насоса, описание его технических характеристик. Гидравлический расчет проточной части, деталей центробежного насоса на прочность. Эксплуатация и обслуживание оборудования. Назначение и принцип действия балластной системы.

    курсовая работа [172,0 K], добавлен 04.06.2009

  • Устройство, преимущества и особенности применения поршневых насосов в промышленности. Теоретическая секундная подача объемного насоса. Определение высоты всасывания поршневого насоса. Мероприятия по технике безопасности при использовании насоса.

    курсовая работа [374,6 K], добавлен 09.03.2018

  • Конструкция разрабатываемого центробежного насоса ВШН-150 и его техническая характеристика. Конструкционные, прокладочные и набавочные материалы, защита насоса от коррозии. Техническая эксплуатация, обслуживание, ремонт узлов и деталей, монтаж насоса.

    курсовая работа [3,0 M], добавлен 26.04.2014

  • Определение величины потребного напора для заданной подачи. Паспортная характеристика центробежного насоса. Построение совмещенной характеристики насосов и трубопровода. Определение рабочей точки. Регулирование режима работы для увеличения подачи.

    курсовая работа [352,3 K], добавлен 14.11.2013

  • Анализ существующих конструкций центробежных насосов для перекачки воды отечественного и зарубежного производства. Расчет проточного канала рабочего колеса, вала центробежного насоса, на прочность винтовых пружин. Силовой расчет торцового уплотнения.

    курсовая работа [1,1 M], добавлен 07.11.2014

  • Назначение, технические данные, конструкция и принцип работы насоса НЦВ 40/40. Гидравлический расчет проточной части. Профилирование меридионального сечения рабочего колеса. Расчет спиральной камеры круглого сечения. Расчет на прочность вала насоса.

    курсовая работа [917,5 K], добавлен 14.04.2015

  • Фонтанный способ добычи нефти. Оборудование при фонтанном способе добычи нефти. Эксплуатация скважин газлифтным методом, применяемое оборудование. Установки погружных насосов с электроприводом. Вспомогательное скважинное оборудование, классификация ВШНУ.

    курсовая работа [4,0 M], добавлен 29.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.