Классификация сплавов
Классификация сплавов и принцип построения диаграмм состояния. Приведение кривых охлаждения, структуры и диаграммы состояния сплава свинца с сурьмой. Характеристика и применение пружинных сталей, подшипниковых материалов и газообразных диэлектриков.
Рубрика | Производство и технологии |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 18.11.2014 |
Размер файла | 229,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования Республики Башкортостан
ГБОУ СПО "Стерлитамакский технологический колледж"
Контрольная работа
По дисциплине: "Материаловедение"
2013
Содержание
1. Классификация сплавов и принцип построения диаграмм состояния
2. Кривая охлаждения сплава - сурьма
3. Пружинные стали. Подшипниковые материалы
4. Газообразные диэлектрики
Использованная литература
1. Классификация сплавов и принцип построения диаграмм состояния
Все сплавы можно разделить на две большие группы: сплавы неоднородные -- механические смеси, состоящие из двух и более фаз;
сплавы однородные, состоящие из одной фазы, которые, в свою очередь, можно подразделить на твердые растворы и химические соединения.
Если рассматривать процессы затвердевания сплавов в условиях медленного охлаждения, при котором все превращения успевают полностью закончиться, то строение сплавов можно представить на так называемой диаграмме состояний. Рассмотрим на примере системы Pb--Sb принципы построения диаграмм состояний сплавов.
На кривых охлаждения чистых металлов -- свинца и сурьмы -имеется по одной критической точке, соответствующей переходу металла из жидкого состояния в твердое (для свинца 327° С и сурьмы 631° С). Ниже этих температур свинец и сурьма находятся в твердом состоянии. На кривых же охлаждения сплавов свинец--сурьма имеются не одна, а две критические точки, соответствующие началу и концу их затвердевания. Затвердевание сплавов свинец--сурьма, содержащих менее 13% сурьмы, начинается при температурах, соответствующих верхним критическим точкам с выпадением i кристаллов свинца. При дальнейшем понижении температуры количество кристаллов свинца увеличивается и остающаяся жидкость обогащается сурьмой. При температуре 245° С, соответствующей нижним критическим точкам, концентрация сурьмы в жидкости достигает 13%, и в этих условиях при дальнейшем охлаждении начинается одновременная кристаллизация свинца и сурьмы с образованием сложной структурной составляющей сплавов --эвтектики, представляющей механическую смесь из мелких равномерно распределенных кристаллов сурьмы и свинца.
На кривой охлаждения сплава, содержащего 13% сурьмы, имеется только одна критическая точка, соответствующая 245° С. Такой сплав после затвердевания состоит только из эвтектики. Затвердевание сплавов, содержащих более 13% сурьмы, начинается с выпадения кристаллов сурьмы, и при достижении концентрации сурьмы в жидкости, равной 13%, жидкость затвердевает, образуя эвтектику.
Чтобы получить диаграмму состояний сплавов, верхние и нижние критические точки переносят на координатные оси температура -- состав сплава.
Линия АСВ, представляющая геометрическое место критических точек начала затвердевания, называется линией ликвидуса; выше этой линии сплавы находятся в жидком состоянии. Линия DCE, представляющая геометрическое место критических точек конца затвердевания, называется линией солидуса; ниже линии солидуса сплавы находятся в твердом состоянии.
Сплавы, содержащие менее 13% сурьмы, называются доэвтектическими. В интервале температур между линиями ликвидуса и солидуса они состоят из кристаллов свинца и жидкости, а ниже линии солидуса, т. е. в твердом состоянии, -- из кристаллов свинца и эвтектики. Сплавы, содержащие больше 13% сурьмы, называются заэвтектическими и состоят из кристаллов сурьмы и жидкости между линиями ликвидуса и солидуса и из кристаллов сурьмы и эвтектики ниже линии солидуса. Распределение структурных составляющих на диаграмме состояний сплавов РЬ--Sb показано на рис. 90. В твердом состоянии все сплавы РЬ--Sb состоят только из двух фаз -- кристаллов сурьмы и свинца, так как сложная структурная составляющая --- эвтектика -- состоит из тех же фаз.
2. Кривая охлаждения сплава-сурьма.
3.Пружинные стали. Подшипниковые материалы
Пружинная сталь -- сталь, предназначенная для изготовления упругих элементов (пружин, рессор и т.д.
Работа пружин, рессор и тому подобных деталей характеризуется тем, что в них используют только упругие свойства стали. Большая суммарная величина упругой деформации пружины (рессоры и т. д.) определяется ее конструкцией -- числом и диаметром витков, длиной пружины. Поскольку возникновение пластической деформации в пружинах не допускается, то от материала подобных изделий не требуется высокой ударной вязкости и высокой пластичности. Главное требование состоит в том, чтобы сталь имела высокий предел упругости (текучести). Это достигается закалкой с последующим отпуском при температуре в районе 300--400° С. При такой температуре отпуска предел упругости (текучести) получает наиболее высокое значение, а то, что эта температура лежит в интервале развития отпускной хрупкости I рода, в силу отмеченного выше обстоятельства не имеет большого значения.
Пружины, рессоры и подобные им детали изготавливают из конструкционных сталей с повышенным содержанием углерода (но, как правило, все же более низким, чем у инструментальных сталей) -- приблизительно в пределах 0,5--0,7% С, часто с добавками марганца и кремния. Для особо ответственных пружин применяют сталь 50ХФ, содержащую хром и ванадий и обладающую наиболее высокими упругими свойствами. Термическая обработка пружин и рессор из легированных сталей заключается в закалке от 800--850° С (в зависимости от марки стали) в масле или в воде с последующим отпуском в районе 400--500° С на твердость НRС 35--45. Это соответствует ств= 1304-1600 кгс/мм2
Иногда такой термической обработке подвергают детали конструкций большой длины и с тонкими стенками, которые должны обладать высокими пружинящими свойствами. В этом случае применяют сталь ЗОХГС; после закалки и отпуска при 250° С она будет иметь прочность (ав) 160 кгс/мм2, но вязкость (ад) всего лишь 5 кгс-м/см2, а пластичность (б) 7% и (ф.) 40%. Часто пружины изготавливают из шлифованной холоднотянутой проволоки (так называемой серебрянки). Наклеп (нагартовка) от холодной протяжки создает высокую твердость и упругость. После навивки (или другого способа изготовления) пружину следует отпустить при 250--350°С для снятия внутренних напряжений, что повысит предел упругости. Для изготовления серебрянки применяют обычные углеродистые инструментальные стали У7, У8, У9, У10.
На качество и работоспособность пружины большое влияние оказывает состояние поверхности. При наличии трещин, плен и других поверхностных дефектов пружины оказываются нестойкими в работе и разрушаются, вследствие развития усталостных явлений в местах концентрации напряжений вокруг этих дефектов. Кроме обычных пружинных материалов, имеются и специальные, работающие в специфических условиях (повышенные температуры, агрессивные среды, и т. д.).
Общая характеристика: сталь рессорно-пружинная, малочувствительна к флокенообразованию, склонна к отпускной хрупкости при содержании Mn?1%, не применяется для сварных конструкций. Плотность при 20°С - 7,81х10ікг/мі. Модуль нормальной упругости при 20°С - 215 Гпа. Удельная теплоёмкость при 20-100°С - 490 Дж/(кг·°С)
Они работают в области упругой деформации металла под воздействием циклических нагрузок. Поэтому они должны иметь высокое значение предела упругости, текучести, выносливости при необходимости пластичности и высоком сопротивлении хрупкому разрушению.
Пружинные стали содержат С = 0,5 - 0,75% , Si до 2,8%, Mn до 1,2%, Cr до 1,2%, V до 0,25%, Bе до 1,2%, Ni до 1,7%. При этом происходит измельчение зерна, способствующее возрастанию сопротивления стали малым пластическим деформациям, а следовательно, ее релаксационной стойкости. Широкое применение на транспорте нашли кремнистые стали 55С2, 60С2А, 70С3А. Однако они могут подвергаться обезуглероживанию, графитизации, резко снижающим характеристики упругости и выносливости материала. Устранение указанных дефектов, а также повышение прокаливаемости и торможение роста зерна при нагреве достигается дополнительным введением в кремнистые стали хрома, ванадия, вольфрама и никеля. Для изготовления пружин также используют холоднотянутую проволоку (или ленту) из высокоуглеродистых сталей 65, 65Г, 70, У8, У10 и др.. Применяются также пружины специального назначения из мартенситных сталей 30Х13А, мартенситно - стареющих 03Х12Н10Д2Т, аустенитно-мартенситных 09Х15Н8Ю и других сталей и сплавов. Стали закаливают с температур 830 - 880°С и отпускают на тростит (380 - 550°С).
Имеют высокий предел текучести. Отношение предела текучести к пределу прочности 0,8?0,9. Для листовых рессор и пружин подвесок применяют кремнистые и марганцовистые стали 50ХГ, 50Г2, 05Г, 55С2 и др. Для торсионных валов используются стали 45ХНМФА, G0C2A, 70СЗА. Для повышения усталостной прочности деталей, работающих при высоких колебательных нагрузках, необходимо обеспечить в поверхностном слое создание остаточных сжимающих напряжений. С этой целью применяют заневоливание пружин, заневоливание и чеканку торсионных валов, обкатку роликами, пластическую осадку и дробеструйную обработку листовых рессор. Легированная рессорно-пружинная сталь, термообработанная до твердости HRC 45--50, имеет предел усталости при кручении 190 МПа. После дробеструйной обработки предел усталости увеличивается до 350 МПа (3500 кгс/см2.
Подшипниковые материалы.
-- материалы, применяемые для изготовления подшипников скольжения и обладающие антифрикционными св-вами. Подшипниковые материалы подразделяются на металлич. и неметаллич. К металлическим подшипниковым материалам относятся баббиты, сплавы на основе меди (бронзы), цинка, алюминия, а также нек-рые чугуны; к неметаллич. подшипниковым материалам -- нек-рые виды пластмасс, материалы на основе древесины, углеграфитовые материалы, резина. Ряд подшипниковых материалов представляет собой сочетание материалов различной природы -- металлов и пластмасс, углеграфитовых материалов и металлов и т. п.
Баббиты на основе олова или свинца. Отличит, особенности всех баббитов: хорошая прирабатываемость, способность «поглощать» твердые частицы, отсутствие схватывания со сталью. К их недостаткам относятся низкие механич. св-ва при темп-рах 100° и выше, низкая теплопроводность, сравнительно малая усталостная прочность. Оловянистые баббиты более удобны в произ-ве, они легче заливаются по стали, меньше окисляются, не подвержены коррозии. При испытании на усталость переменным изгибом при равных напряжениях баббиты на основе олова и свинца (при одинаковой твердости) не отличаются по числу циклов до начала разрушения; при испытании же на усталость переменным изгибом при равных деформациях преимущество остается на стороне свинцовистых баббитов, вследствие значительно меньшей величины их модуля упругости. Баббиты применяются в подшипниках в виде слоя, залитого по корпусу вкладыша из бронзы, латуни, стали или чугуна. Наиболее прочное соединение заливаемого слоя баббита с корпусом вкладыша достигается спец. процессом заливки, включающим очистку поверхности корпуса и его облуживание. Тонкостенные вкладыши двигателя легкового автомобиля изготовляются штамповкой из биметаллич. ленты, получаемой непрерывной заливкой баббита по движущейся стальной калиброванной ленте. Усталостная прочность баббитового слоя повышается с уменьшением его толщины, у вкладышей нек-рых совр. автомобильных двигателей она составляет 0,1 мм и меньше.
При правильной подготовке поверхности вкладыша и его заливке прочное соединение баббита и металла корпуса (бронза, сталь, чугун) происходит по всей поверхности вкладыша, что позволяет значительно уменьшать толщину слоя баббита. Способ механич. крепления баббита к вкладышу (путем устройства во вкладыше пазов и отверстий, заполняемых баббитом при заливке) пригоден лишь для малонапряженных подшипников.
4. Газообразные диэлектрики
сплав подшипниковый диэлектрик пружинный
Газообразные диэлектрики делят на две группы: естественные и искусственные.
Естественные газообразные диэлектрики. Наибольшее применение из них в силу своей распространенности получил воздух, даже в тех случаях, когда его присутствие в изоляции нежелательно.
Воздух -- смесь газов с электрической прочностью ЈПР = 3,2 кВ/мм (при 0,1 МПа и 20°С), плотностью-- 1,293 кг/м3. Епр воздуха зависит в основном от расстояния между электродами, давления, температуры и влажности. Приведенная величина соответствует +20°С, давлению 0,1 МПа и расстоянию между электродами 10 мм. Ток утечки через воздух крайне мал, поэтому tgд его практически равен нулю
В воздушных линиях электропередачи, сухих трансформаторах, коммутационных аппаратах, распределительных устройствах и т.п. воздух является основной изоляцией. Во многих электрических объектах он играет роль дополнительной изоляции к твердым и жидким диэлектрикам.
Азот по электрическим характеристикам близок к воздуху, однако в отличие от него не содержит кислорода, который оказывает окисляющее воздействие на соприкасающиеся с ним материалы
Водород -- очень легкий газ с высокой теплопроводностью и удельной теплоемкостью, что делает его весьма полезным для использования в качестве охлаждающей среды вместо воздуха. Применение его в электрических машинах снижает потери электрической мощности на трение и вентиляцию, а отсутствие окисляющего фактора замедляет старение органической изоляции.
Гелий -- инертный газ, используется в качестве низкотемпературного хладагента, например, для получения сверхпроводимости.
Искусственные газообразные диэлектрики. К ним относятся элегаз, хладоген 12 и др. Из них в ремонтной практике определенный интерес представляет элегаз. Он нетоксичен, химически стоек, не разлагается при нагреве до 800°С, распространен в конденсаторах, кабелях и пр.
В электровакуумных лампах и приборах широко применяются инертные газы и пары ртути, в качестве охлаждающей среды -- водород, для получения сверхпроводимости -- жидкий гелий.
Использованная литература
1. ТКМ (материаловедение) - Гуляев 1986.
2. Арзамасов (ред.) Б.Н., Сидорин И.И., Косолопов Г.Ф. - Материаловедение (2-е изд, доп. и испр.) 1986г.
Размещено на Allbest.ru
...Подобные документы
Общие понятия анализа диаграммы состояния железоуглеродистых сплавов, исследование свойства фаз и структурных составляющих. Технология построения кривых охлаждения и нагрева сплавов, определение составов фаз и расчет их количественного соотношения.
лабораторная работа [242,2 K], добавлен 01.12.2011Правило фаз (закон Гиббса) в термодинамике, его применение для построения кривых охлаждения железоуглеродистых сплавов и анализа превращений. Определение структурных составляющих углеродистых сталей в равновесном состоянии (после полного отжига).
реферат [2,2 M], добавлен 28.06.2012Методика построения диаграмм состояния. Специфика их использования для сплавов, образующих механические смеси из чистых компонентов. Особенности определение температуры кристаллизации сплава. Кривые охлаждения сплава Pb-Sb, применение правила отрезков.
презентация [305,4 K], добавлен 14.10.2013Диаграммы состояния и кристаллизация металлических сплавов с неограниченной растворимостью в твердом состоянии. Методы построения диаграмм состояния. Правило фаз Гиббса. Кристаллизация сплавов и твердых растворов. Правило концентраций и отрезков.
контрольная работа [122,1 K], добавлен 12.08.2009Составление диаграммы состояния системы свинец - сурьма. Количественное соотношение фаз и их химический состав в середине температурного интервала в первичной кристаллизации сплава с 10% Sp. Марочный состав цветных сплавов, способ упрочнения АМг.
контрольная работа [1,6 M], добавлен 02.03.2016Построение кривых охлаждения для сплавов с заданным количеством углерода с использованием диаграммы железо-цементит. Состав, свойства и примеры применения легированных сталей, чугуна, высокопрочного сплава. Термическая обработка деталей. Газовая сварка.
контрольная работа [277,4 K], добавлен 01.03.2016Классификация, маркировка, состав, структура, свойства и применение алюминия, меди и их сплавов. Диаграммы состояния конструкционных материалов. Физико-механические свойства и применение пластических масс, сравнение металлических и полимерных материалов.
учебное пособие [4,8 M], добавлен 13.11.2013Понятие о металлических сплавах. Виды двойных сплавов. Продукты, образующиеся при взаимодействии компонентов сплава в условиях термодинамического равновесия. Диаграммы состояния двойных сплавов, характер изменения свойств в зависимости от их состава.
контрольная работа [378,1 K], добавлен 08.12.2013- Диаграмма состояния с полиморфными, эвтетктоидными, перитектоидными превращениями. Правило Курнакова
Зависимость между составом и структурой сплава, определяемой типом диаграммы состояния и свойствами сплава. Состояния сплавов, компоненты которых имеют полиморфные превращения. Состояние с полиморфным превращением двух компонентов. Микроструктура сплава.
контрольная работа [724,7 K], добавлен 12.08.2009 Диаграммы, изучение основных типов диаграмм состояния двойных систем, приобретение практических навыков изучения превращений, протекающих при кристаллизации сплавов. Анализ полученных данных и определение возможности их использования па практике.
методичка [349,8 K], добавлен 06.12.2008Изучение методики построения диаграмм состояния металлических сплавов. Исследование физических процессов и превращений, протекающих при кристаллизации сплавов. Виды термической обработки. Анализ влияния температуры на растворимость химических компонентов.
контрольная работа [4,4 M], добавлен 21.11.2013Диаграмма состояния сплава. Смолы, их группы и применение. Прямой и обратный пьезоэффект. Свойства, особенности, составы, применение пьзоэлектриков. Классификация и использование контактных материалов. Расшифровка марок сплавов МНМц 40-1,5 и МНМц 3-12.
контрольная работа [1,3 M], добавлен 21.11.2010Графическое изображение зависимости фазового состояния сплава от температуры и состава. Общий вид кривой охлаждения чистого металла. Равновесие в однокомпонентной системе. Главные экспериментальные и теоретические методы построения диаграмм состояния.
лекция [3,5 M], добавлен 29.09.2013Микроструктура и углеродистых сталей в отожженном состоянии, зависимость между их строением и механическими свойствами. Изучение диаграммы состояния железо - углерод. Кривая охлаждения сплавов. Структура белого, серого, высокопрочного и ковкого чугуна.
презентация [1,5 M], добавлен 21.12.2010Принцип построения диаграммы состояний сплавов, образующих ограниченные твердые растворы. Описание структурных и фазовых превращений при медленном охлаждении из жидкого состояния сплава с заданным содержанием углерода. Превращения в структуре стали.
контрольная работа [1,1 M], добавлен 17.10.2011Графическое изображение равновесного фазового состояния сплавов в зависимости от температур и состава. Характеристика нонвариантных трехфазных превращений. Разбор структурно-фазовых превращений сплавов при охлаждении. Применение правила отрезков.
курсовая работа [547,5 K], добавлен 19.01.2013Кристаллизация и твердофазные превращения в белых чугунах, их характеристика, структура и свойства, эвтектические превращения, содержание цементита. Виды диаграмм состояния железо-углеродистых сплавов. Понятия чистое техническое железо, сталь и чугун.
контрольная работа [1,2 M], добавлен 17.08.2009Понятие и особенности структуры тройных сплавов, элементы, физические и химические свойства. Методика составления тройной диаграммы состояния, механизм использования правила рычага и центра тяжести. Проекция диаграммы на концентрационный треугольник.
презентация [339,8 K], добавлен 29.09.2013Классификация методов борирования сталей и сплавов. Марки сплавов, их основные свойства и области применения. Технологический процесс прокатки. Схема прокатного стана. Диффузионная сварка в вакууме. Сущность сверления, части и элементы спирального сверла.
контрольная работа [745,5 K], добавлен 15.01.2012Свойства и атомно-кристаллическое строение металлов. Энергетические условия процесса кристаллизации. Строение металлического слитка. Изучение связи между свойствами сплавов и типом диаграммы состояния. Компоненты и фазы железоуглеродистых сплавов.
курсовая работа [871,7 K], добавлен 03.07.2015