Расчет картофелечистки периодического действия

Ознакомление с принципом действия конусной картофелеочистительной машины. Определение объёма камеры с помощью формулы производительности оборудования. Расчет частоты вращения валов привода. Характеристика процесса подборки требуемого электродвигателя.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 19.11.2014
Размер файла 327,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Спрос на механическое оборудование постоянно растёт за счёт открытия новых предприятий общественного питания. Устойчивым спросом пользуется очистительное оборудование, предназначенное для удаления с продуктов поверхностного слоя с пониженной пищевой ценностью слоя (кожицы с овощей и фруктов, чешуи с рыбы и др.). Широко используются машины для очистки корнеплодов. Поскольку из овощей, подвергающихся очистке, наибольший удельный вес приходится на картофель, машины для очистки картофеля носят название картофелеочистительных машин (картофелечисток), хотя на них могут очищаться и корнеплоды.

Как правило, степень механизации процессов первичной обработки овощей зависит от мощности предприятия. На предприятиях питания малой и средней мощности в овощных цехах устанавливаются картофелечистки периодического действия. Машин для очистки овощей выпускают много, ведь очистка картофеля может производиться термическим, химическим и механическим способами. Но сегодня разговор только о механическом способе и, соответственно, о механических овощечистках.

В данном проекте мною будет сделан расчет картофелечистки периодического действия, производительностью 240 кг/ч.

1. Характеристика технологического процесса

При переработке картофеля на поточно-механизированных линиях его сортируют и калибруют в овощехранилищах. В цех направляют только средний и крупный картофель, причем каждую партию раздельно с целью уменьшения отходов.

Перед обработкой на линии картофель рекомендуют замачивать на 2...3 ч для снижения расхода воды при последующем мытье. Целесообразно замачивать старый вялый картофель для восстановления тургора клубней и сокращения времени последующей очистки. Замачивать картофель следует в цементированных закромах-ваннах в количестве, не превышающем дневного объема переработки его на линии, или на гидротранспортерах.

Картофель подают в загрузочный бункер, откуда он поступает в вибромоечную машину.

Во избежание поломки очистительных машин картофель после моечной машины пропускают через камнеловушку. Последняя представляет собой ванну с концентрированным раствором поваренной соли (массовая доля 20 %). Проходя через камнеловушку, клубни всплывают на поверхность раствора, а камни и комья земли оседают на дно.

Из камнеловушки клубни направляют в картофелеочистительную машину периодического действия с дисковыми рабочими органами, а камни и землю периодически выгружают. Сущность механического способа очистки состоит в том, что наружный покров картофеля сдирается о шероховатую поверхность рабочего органа и стенки рабочей камеры машины. При этом между поверхностью клубня, шероховатой поверхностью рабочего инструмента и стенками рабочей камеры должно быть относительное движение. В дисковых картофелеочистительных машинах большая часть клубней располагается у стенок рабочей камеры.

Клубни, расположенные на диске, продвигаются к стенкам и как бы выталкивают находящиеся около них клубни вверх. Этому способствуют расположенные на диске волны. Они поднимают находящийся у стенки рабочей каморы клубень, а под него попадает клубень, перемещающийся от центра диска к стенке. Попавшие в верхнее положение клубни скатываются по нижележащим в центральную часть диска. При этом вся масса клубней вращается в направлении движения диска. Каждый клубень интенсивно поворачивается вокруг своей оси тяжести, что в значительной мере способствует перемещению и равномерной очистке всех клубней. Траекторию движения отдельного клубня с некоторыми упрощениями можно описать в следующей последовательности. Клубень, упавший на центральную часть диска, начинает вращаться вместе с ним. По достижении определенной угловой скорости вращения клубень за счет центробежной силы отбрасывается на край диска. Прижимаясь к стенке рабочей камеры, клубень затормаживается, и его скорость становится меньше. Волна диска, имеющая максимальную высоту у края диска, настигает клубень, ударяет его и проворачивает. В этот момент происходит интенсивное сдирание кожицы с поверхности клубня. При этом волна сообщает клубню движение в сторону вращения диска. Проходя под клубнем, волна поднимает его вверх. Этому способствуют также соседние клубни, находящиеся на диске. Они как бы вытесняют клубни, находящиеся у стенки. При этом они интенсивно поворачиваются, и вся масса клубней вращается. Вращаясь вдоль стенки рабочей камеры, клубень теряет свою скорость и его центробежной силы оказывается недостаточно для прижатия к стенке, в результате чего клубень скатывается в центр диска. Траектория его движения направлена вниз по спирали. Происходит как бы закручивание верхнего слоя клубней в центральную часть диска.

Описанные траектории движения клубней являются приближенными, так как, вращаясь в общей массе, клубни сталкиваются и изменяют характер своего движения. Выявленные траектории движения клубней в дисковых картофелеочистительных машинах позволяют дать некоторые рекомендации по выбору основных параметров при конструировании этих машин.

Шероховатая поверхность картофелечисток выполняется из абразивной массы, состоящей из мелкозернистого карбида кремния и связующих - смолы и алебастра. Равномерность очистки будет зависеть от равномерности соприкосновения всей поверхности клубня с шероховатыми рабочими поверхностями машины, а также от интенсивности прижатия клубня к этим поверхностям и скорости относительного движения между ними. В то же время слишком сильное воздействие клубней на поверхности рабочего органа и стенки рабочей камеры приводит к повреждению клубней. Из таких клубней вымываются крахмальные зёрна, они быстро темнеют после обработки и их консистенция становится более мягкой. Вот это как раз и является существенным недостатком механического способа очистки. Образовавшаяся при очистке мезга смывается с клубней и абразивных поверхностей машины непрерывно поступающей водой и выводится из рабочего пространства в мезгосборник, откуда перекачивается в крахмальный агрегат.

Из картофелеочистительной машины клубни подают на конвейер ручной дочистки; отходы направляются по транспортеру для переработки на крахмал.

Дочищенные клубни картофеля для предохранения от потемнения сульфитируют, для этого их пропускают сначала через ванну с проточной водой, а затем направляют в сульфитацион-ную машину.

В сульфитационной машине клубни обрабатывают 5 мин водным раствором натрия бисульфита (натрия пиросульфита или натрия пиросернистого кислого) массовой долей 0,5... 1,0 % в пересчете на S02.

По качеству полученный полуфабрикат должен отвечать следующим требованиям: клубни чистые, невялые, несморщенные, без остатков глазков и темных пятен различного происхождения, белого или кремового цвета. После варки они имеют консистенцию, запах и вкус, свойственные свежеочищенному картофелю в отварном виде.

Допустимый срок хранения и реализации картофеля сульфитированного: при 15... 18 °С -- 24 ч, при 2...6 °С -- 48 ч.

1.1 Анализ конструкции

В данной работе рассчитывается конусная картофелеочистительная машина. Рассмотрим принцип действия.

К этим машинам относятся выпускаемые отечественной промышленностью машины МОК-125, МОК-250 и МОК-400, имеющие принципиально одинаковое устройство и различающиеся габаритами, мощностью электродвигателей и некоторыми конструктивными особенностями. Для поточно-механизированных линий выпускается машина МОК-1200.

Машина МОК-250. В верхней части машины (рис.1), расположен цилиндрический корпус 15, внутреннее пространство которого образует рабочую камеру. Рабочим органом машины является вращающийся конус, выполненный в виде литого алюминиевого корпуса 18 с закрепленной на нем конической чашей из абразивного материала 16. Коническая чаша крепится к корпусу гайкой 19, а по окружности корпуса -- фасонным дышлом 17. На верхней поверхности' плоской части конической чаши для лучшего перемешивания обрабатываемого продукта имеются три волны. В средней части корпуса находится бобышка с коническим отверстием и шпоночными пазами. В отверстие вставляется хвостовик вала, а в шпоночные пазы штифт, с помощью которого движение от вала передается рабочему органу машины. С нижней стороны конус имеет кольцевой выступ для предотвращения попадания отходов к вращающемуся валу и две вертикальные лопасти (на чертеже не показаны) для отбрасывания отходов к сливному патрубку.

Боковая поверхность рабочей камеры, расположенная над рабочим органом, облицована абразивными сегментами

Нижняя часть корпуса (под конической частью рабочего органа) служит сборником отходов. Во время очистки продукта кожура смывается водой и проходит через зазор между стенками камеры и конусом в нижнюю часть цилиндра, откуда выбрасывается лопастями в сливной патрубок.

Сверху рабочая камера закрыта крыщкой_10, изготовленной из нержавеющей стали. Снизу к крышке прикреплена обечайка (отбойник) 13 которая направляет продукт при движении его в рабочей камере от стенок к центру. В крышке имеется окно для загрузки продукта в рабочую камеру. Для предотвращения разбрызгивания поды и выбрасывания корнеклубнеплодов во время их очистки загрузочное окно закрывается откидной крышкой 12. Плотное прилегание крышки к корпусу рабочей камеры обеспечивается прокладкой. Вода в рабочую камеру подается из штуцера 11.

Для разгрузки картофеля в рабочей камере имеется разгрузочный люк, закрываемый во время работы дверцей 7. Для предотвращения вытекания воды через разгрузочный люк дверца снабжена резиновой уплотняющей прокладкой 9. Открывается дверца с помощью ручки 6. Одновременно ручка служит запирающим устройством дверцы. С внутренней стороны дверца имеет прилив (выступ) 8, наталкиваясь на который корнеклубнеплоды изменяют направление своего движения.

Движение рабочему органу передается от электродвигателя 2, установленного вертикально в нижней части машины. Передаточным механизмом является клианоременнаяпередача 4 с помощью которой движение от электродвигателя передается рабочему валу 5. Для натяжении ремней предусмотрена возможность перемещения двигателя с целью увеличения межосевого расстояния между шкивами.

Вал, на который насаживается рабочий орган, вращается в двух шариковых подшипниках 21. Подшипники устанавливаются в стакане который гайками крепится к корпусу рабочей камеры. От вытекания смазки из подшипников р попадания на них воды из рабочей камеры в нижней и верхней крышках стакана предусмотрены уплотняющие манжеты 20.

Верхняя часть корпуса рабочей камеры имеет фланец, который устанавливается на четырех стойках 23. Стойки укреплены на опорной плите 24 с четырьмя ножками 26. На одной из ножек находится болт 25 для присоединения провода заземления. Пространство между стойками закрыто облицовкой 3. В последней сделаны жалюзи 1 для поступления и выброса охлаждающего двигатель воздуха.

Машина устанавливается на полу или фундаменте высотой 60--100 мм и крепится четырьмя анкерными болтами М-18. Подача воды и электропитания осуществляется через отверстие в опорной плите трубами диаметром 15 мм (1/2"). Рядом с машиной в полу предусматривается устройство трапа. Вода и образовавшиеся отходы из сливного патрубка машины с помощью резинового шланга направляются непосредственно в трап.

Для предотвращения растекания воды по полу цеха место установки одной или нескольких картофслеочпстительных машин иногда огораживается невысоким бортиком.

Электропусковое устройство устанавливается, как правило, на стене в непосредственной близости от машины в легко доступном месте.

При установке нескольких машин в ряд расстояние между ними должно быть не менее 0,7 м, а расстояние между картофелечистками и стенкой -- не менее 0,5 м.

Рисунок 1 .Каотофелеочистительная машина МОК 250

2. Технологическая часть

2.1 Расчет полезного объема камеры для обработки продукта

Для расчетов зададимся необходимыми данными: производительность машины Q = 240 кг/ч, средний диаметр клубня , продолжительность цикла обработки порции продукта 5 минут, обрабатываемый продукт - картофель.

Вычисляем объём камеры из следующей формулы (формула производительности машины), при насыпной массе картофеля и коэффициент заполнения рабочей камеры

, кг/с,

где - масса единовременно загружаемого в рабочею камеру продукта, кг; Тц- продолжительность обработки порции продукта, с;

V - геометрический объём рабочей камеры, м; - насыпная масса продукта; - коэффициент заполнения рабочей камеры, t3, td- соответственно, продолжительность загрузки и удаления порции продукта из рабочей камеры , не должно превышать 12с; t0=300 с - продолжительность обработки продукта.

2.2 Расчет массы единовременного загружаемого продукта для его очистки

Массу порции загружаемого продукта находим из формулы:

Где D=0.3 м - внутренний диаметр рабочей камеры;

Н=0,15 м - высота рабочей камеры.

2.3 Расчет частоты вращения рабочего диска

Минимальную частоту вращения рабочего диска определяем по формуле

Гдеg=9,8 м/с2 - ускорение силы тяжести;

f=0.8…1.3 - коэффициент трения картофеля об абразивную поверхность ротора и стенки камеры;

r=0.3…0.4 радиус положения силы трения;

Принимаем минимальное расстояние от центра вращения рабочего диска до центра тяжести клубня и коэффициент трения между продуктом и абразивной поверхностью f = 1,0.

Минимальное число оборотов рабочего диска, необходимое для попаданияклубня на стенку рабочей камерыопределяем:

Принимаем расстояние от оси вращения до центра тяжести клубня

r = rk = 0,12м и коэффициент проскальзывания Кск = 0,6.

Определяем действительную чистоту вращения рабочего диска:

n = 1,6nmin, n = 1,6 235,6 = 370 об\мин.

3. Конструктивный раздел

3.1 Расчет геометрических размеров рабочей камеры

Определяем диаметр рабочей камеры

Проверяем условие обеспечения циркуляции клубней на рабочем диске и возможности перемещения их: . Поскольку D>Dmin, то условие обеспечения циркуляции клубней на рабочем органе выполняется.

Вычисляем диаметр рабочего диска при принятом радиальном зазоре между ним и стенкой рабочей камеры по формуле:

Общую высоту рабочей камеры принимаем равной диаметру камеры, т.е.Hоб=0,3 м. Высота чаши составляетhч=0,1 м, высота обечайки h0=0.05м Тогда высота цилиндрической части рабочей камеры составляет

H = =0,18м.

По полученным размерам рабочей камеры уточняем объём камеры для обработки продукта

Где D=0,36 м - диаметр рабочей камеры;

d=0,22 м - диаметр дна абразивной чаши;

hч=0,1 м - высота чаши;

h0=0.05м - высота обечайки.

Соответственно:

Принимаем V=30 л.

4. Кинематический расчет

Определим передаточное число привода

uобщ= n1/ n2,

где n1 = 1000мин-1- номинальная частота вращения вала двигателя;

n2 = 28мин-1- частота вращения рабочего органа машины

uобщ = 1000 / 28 = 36

Определим крутящие моменты на валах привода:

а) на валу двигателя (моторредуктора)

Тдв= 9550 Рдв/ nдв

Тдв = 9550•4 / 150 =255 Н м

б) на приводном валу машины

Т2-3 = Тдвu1-2 u2-3 з з3пп / 2 = 255•2•0,96 0,993 / 2 =489,6 Н м

Определим частоты вращения валов привода:

Вал моторредуктора

Nвх =nдв = 1000 об/ мин

Вал приводной, машины

Nпр = n / uо = 1000 / 2 = 500 об/ мин

5. Энергетический расчет

Мощность, необходимую для преодоления сил трения между рабочим органом и клубнями, клубней друг от друга и стенку камеры рассчитываем по формуле картофелеочистительный оборудование привод

где Мтр - момент трения между рабочим органом и продуктом, Н*м, Ттр - суммарная сила трения, Н, rтр - радиус приложения суммарной силы трения, м, ( для дисковых картофелеочистительных машин = 0,33 D), - коэффициент учитывающий, что не все подброшенные клубни создают силы трения = 0,8 - 0,9, n - частота вращения очистительного диска, об/мин:

Мощность затраченную на подбрасывание клубней, вычисляем по формуле

где Нпд - высота подброса клубней, м, принимается равной полезной высоте рабочей камеры, z - число волн на очистительном диске, шт,

Кск - коэффициент проскальзывания клубня относительно диска = 0,5

Вт

Принимаем механический КПД=0,7, определяем мощность электродвигателя

кВт.

Заключение

В данном проекте была разработана картофелеочистительная машина производительностью 240 кг/ч.

Были произведены все необходимые расчеты, а также определена мощность привода. После чего был подобран требуемый электродвигатель.

В заключение можно сделать вывод, что разработанная нами картофелеочистительная машина является удобной в эксплуатации благодаря своим размерам, небольшой потребляемой мощности и несложному принципу действия, поэтому разработанная машина наиболее применима на небольших предприятиях общественного питания.

Литература

1. Технология продукции общественного питания: в 2 т./ под ред. А.С. Ратушного. - М.: Колос С, 2004. - 760 с.

2. Механическое оборудование предприятий общественного питания: учебное пособие для начального проф. Образования: справочник / В. Д. Елхина. - М. : Издательский центр «Академия», 2006. - 336с.

3. Радченко Л.А., Организация производства на предприятиях общественного питания/ Л.А. Радченко. - Р-н/Д: Феникс, 2005. - 325.

4. Каталог оборудования фирмы «Русский проект» - 2003.

5. Профессиональная кухня: сто готовых проектов: технический каталог/ А.Д. Ефимов, Т.Т. Никуленкова, Н.В. Вуколова, М.И. Ботов. - М.: Издательский дом «Ресторанные ведомости», 2004. - 257 с.

Размещено на Allbest.ru

...

Подобные документы

  • Исследование видов картофелеочистительных машин. Анализ основных параметров, влияющих на качество очистки, производительность и мощность машины. Технологический расчет конусной картофелеочистительной машины периодического действия и дискового механизма.

    контрольная работа [133,8 K], добавлен 11.02.2014

  • Инспекционные машины и устройства, их краткая классификация. Технические характеристики световых экранов. Машина для инспекции пищевых жидкостей в бутылках. Расчет мощности и производительности. Определение скорости вращения валов и электродвигателя.

    курсовая работа [4,1 M], добавлен 03.10.2014

  • Энерго-кинематический расчет привода, выбор схемы привода, редуктора и электродвигателя. Расчет значения номинальной частоты вращения вала двигателя. Выбор параметров передач и элементов привода. Определение тихоходной цилиндрической зубчатой передачи.

    курсовая работа [4,3 M], добавлен 28.09.2012

  • Расчет режимов работы и описание схемы проектируемого механического привода. Кинематический расчет и выбор электродвигателя привода. Определение частоты и угловых скоростей вращения валов редуктора. Материалы зубчатых колес и система смазки редуктора.

    курсовая работа [2,8 M], добавлен 21.04.2015

  • Анализ организации аэродинамического расчета камеры в электронных таблицах табличного процессора Excel. Определение потребного напора вентилятора, мощности электродвигателя. Оптимизация процесса сушки пиломатериалов в камере периодического действия.

    курсовая работа [3,1 M], добавлен 07.06.2012

  • Выбор электродвигателя, расчет частоты вращения валов. Расчеты цилиндрической прямозубой передачи. Проверка прочности на выносливость по контактным напряжениям. Проектный расчет и конструирование быстроходного вала. Расчеты подшипников качения.

    курсовая работа [185,3 K], добавлен 12.03.2010

  • Энерго-кинематический расчет привода, выбор схемы привода, редуктора и электродвигателя. Расчет значения номинальной частоты вращения вала двигателя. Выбор параметров передач и элементов привода. Определение тихоходной цилиндрической зубчатой передачи.

    методичка [3,4 M], добавлен 07.02.2012

  • Определение мощности и частоты вращения двигателя, передаточного числа привода. Силовые и кинематические параметры привода, расчет клиноременной и закрытой косозубой цилиндрической передач. Расчет валов и подшипников, конструирование корпуса редуктора.

    курсовая работа [209,0 K], добавлен 17.12.2013

  • Рассмотрение принципа действия вентилятора. Определение частоты вращения рабочего колеса и его диаметра, мощности электродвигателя. Характеристика сети трубопроводов; вычисление частоты вращения рабочих колес насосов, отклонения фактического напора.

    курсовая работа [451,7 K], добавлен 09.10.2014

  • Кинематический расчет привода главного движения со ступенчатым и бесступенчатым регулированием. Определение скорости резания, частоты вращения шпинделя, крутящего момента и мощности электродвигателя. Проверка на прочность валов и зубчатых колес.

    курсовая работа [242,2 K], добавлен 27.01.2011

  • Процесс перемешивания сыпучих строительных материалов и его применение. Схема бетоносмесителя СБ-103. Определение коэффициента выхода бетонной смеси. Расчет частоты вращения смесительного барабана. Эскизная компоновка редуктора и подбор электродвигателя.

    курсовая работа [2,5 M], добавлен 02.01.2014

  • Подбор электродвигателя по мощности, частоте вращения. Определение крутящих моментов и частот вращения отдельных валов. Расчет червячной и зубчатой передачи. Предварительный расчет валов и подбор подшипников. Муфта на входной и выходной вал редуктора.

    курсовая работа [388,5 K], добавлен 13.09.2013

  • Классификация тестомесильных машин. Описание конструкции и принципа действия тестомесильной машины Т1-ХТ2А. Расчет производительности, мощности, необходимой для вращения месильного органа при замесе теста, мощности, необходимой для вращения дежи.

    курсовая работа [949,6 K], добавлен 20.04.2016

  • Кинематический расчет привода. Определение фактических передаточных чисел, частоты вращения валов привода, вращающего момента на валах привода. Выбор твердости, термической обработки и материала колес. Расчет цилиндрической зубчатой и червячной передачи.

    курсовая работа [369,7 K], добавлен 17.10.2013

  • Выбор электродвигателя, кинематический расчет и схема привода. Частоты вращения и угловые скорости валов редуктора и приводного барабана. Расчет зубчатых колес редуктора. Выносливость зубьев по напряжениям изгиба. Расчёт вращающих моментов вала.

    контрольная работа [693,6 K], добавлен 01.12.2010

  • Кинематический расчет привода электродвигателя, определение требуемой мощности. Расчет быстроходного и тихоходного валов, подшипников. Проверочный расчет валов на прочность. Выбор смазки редуктора, подбор муфты. Проверка прочности шпоночного соединения.

    курсовая работа [277,2 K], добавлен 12.06.2010

  • Описание работы и устройства привода мешалки. Выбор электродвигателя. Определение общего передаточного числа, мощности, крутящего момента и частоты вращения для валов привода. Выбор материалов. Проектный и проверочный расчет цилиндрической передачи.

    курсовая работа [340,9 K], добавлен 20.01.2016

  • Кинематический расчет привода. Определение частот вращения и вращающих моментов на валах. Выбор типа установки подшипников и смазочных материалов электродвигателя. Расчет валов на статическую прочность и сопротивление усталости. Расчет цепной передачи.

    курсовая работа [95,3 K], добавлен 20.04.2011

  • Общий коэффициент полезного действия привода. Частота вращения приводного (выходного) вала, подбор электродвигателя. Расчет тихоходной ступени – прямозубой передачи. Эскизная компоновка редуктора. Проверочный расчет подшипников качения на долговечность.

    курсовая работа [1,4 M], добавлен 17.02.2015

  • Расчет средней производительности фильтра периодического действия, средней производительности фильтрующей центрифуги периодического действия. Подбор стандартизированной колонны. Гидравлический расчет колонны с решетчатыми (провальными) тарелками.

    контрольная работа [1005,1 K], добавлен 29.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.