Автоматизация холодильного оборудования

Использование микроконтроллеров в изделиях производственного и культурно-бытового назначения. Повышение технико-экономических показателей изделий (стоимости, надёжности, потребляемой мощности, габаритных размеров). Описание работы прикладной программы.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 27.11.2014
Размер файла 172,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

Национальный исследовательский ядерный университет "МИФИ"

Обнинский Институт Атомной Энергетики

Кафедра "АКиД"

Курсовая работа

"Автоматизация холодильного оборудования"

Выполнил студент: Раджабли А.М.

Проверил: д.т.н. Трофимов М.А.

Обнинск 2014

Содержание

Введение

1. Разработка схемы устройства

2. Описание работы прикладной программы

3. Программа устройства на Ассемблере

Список используемых источников

Приложения

Введение

Развитие микроэлектроники и широкое применение ее изделий в промышленном производстве, в устройствах и системах управления самыми разнообразными объектами и процессами является в настоящее время одним из основных направлений научно-технического прогресса.

Использование микроконтроллеров в изделиях производственного и культурно-бытового назначения не только приводит к повышению технико-экономических показателей изделий (стоимости, надёжности, потребляемой мощности, габаритных размеров) и позволяет многократно сократить сроки разработки и отодвинуть сроки морального старения изделий, но и придаёт им принципиально новые потребительские качества такие как расширенные функциональные возможности, модифицируемость, адаптивность и т.д.

За последние годы в микроэлектронике бурное развитие получило направление, связанное с выпуском однокристальных микроконтроллеров, которые предназначены для "интеллектуализации" оборудования различного назначения.

К настоящему времени более двух третей мирового рынка микропроцессорных средств составляют именно однокристальные микроконтроллеры.

В данной курсовой работе мы рассмотрим один из однокристальных микропроцессоров серии - КВ 1816ВЕ 51.

1. Разработка схемы устройства

Для решения поставленной задачи необходимо наличие специальных датчиков и исполнительного механизма. Требуются следующие датчики: четыре датчика температуры (по два датчика на камеру), два датчика двери (по одному датчику на камеру), один переключатель (вкл./выкл. на разморозку). В качестве исполнительного механизма используется компрессор, также предусмотрено звуковое сообщение при открытой двери.

Схема контроллера представлена в приложении 3, RC_цепь требуется для формирования сигнала сброса при включении питания и кварцевый резонатор 12 МГц. Так как для хранения прикладной программы используется РПП, то на вход отключения РПП (ЕА) подается уровень логической "1".

Связь МК 51 с датчиками и исполнительными механизмами обеспечивается через имеющиеся порты, а незадействованные порты могут быть впоследствии использованы для расширения функциональных возможностей контроллера. Пример подключения датчика представлен на рис. 1.

Рис. 1. Подключение двоичного датчика

Из-за низкой нагрузочной способности выходов МК для всех исполнительных механизмов потребуются усилители мощности.

2. Описание работы прикладной программы

При включении холодильника на микроконтроллер подается питание, которое устанавливает его в исходное состояние. Затем микроконтроллер начинает поочередный опрос датчиков.

Первым опрашивается датчик двери (камера 1), в случае, когда дверь открыта дольше 30 секунд на устройство оповещения подается уровень логической "1" и устройство оповещения выдает звуковой сигнал с интервалом в одну секунду, который продолжает поступать пока не будет закрыта дверь. Затем опрашивается датчик двери (камера 2), в случае если дверь открыта на аналогичный промежуток времени, то выдается звуковой сигнал. микроконтроллер программа мощность

Опросив датчики дверей холодильника начинается опрос температурных датчиков. Сначала опрашиваются температурные датчики камеры 1, которые настроены на температурный интервал от +10С до +80С. В случаи несовпадения температуры с интервальной, подается уровень логической "1" на исполнительное устройство (компрессор) который доводит температуру до требуемых значений. При доведении температуры до требуемого значения происходит отключение компрессора. Далее опрашиваются температурные датчики камеры 2, эти датчики настроены на температурный интервал от -80С до -180С. В случае несовпадения температуры с интервальной, аналогично подается уровень логической "1" на исполнительное устройство (компрессор), который доводит температуру до требуемого значения и отключается.

Затем микроконтроллер проверяет состояние переключателя (вкл/выкл). Если переключатель находится в положении "вкл", включается режим "разморозки", т.е. происходит блокирование внешних устройств. В случае когда переключатель находится в положении "выкл", микроконтроллер заново начинает поочередный опрос датчиков.

3. Программа устройства на Ассемблере

; Определение символических имён

; Определение символических имён бит порта 1

C BIT P1.0; датчик температуры +1 (камера 1)

D BIT P1.1; датчик температуры +8 (камера 1)

E BIT P1.2; датчик двери (камера 1)

F BIT P1.3; компрессор

G BIT P1.4; сигнал

H BIT P1.5; датчик температуры -18 (камера 2)

I BIT P1.6; датчик температуры -8 (камера 2)

J BIT P1.7; датчик двери (камера 2)

; Определение символических имён бит порта 2

K BIT P2.0; вкл/выкл (разморозка)

; Программа

START: JB E, L1; перейти на метку L1 если бит равен 1
CALL PAUSE; вызов подпрограммы PAUSE
L0: JB E, L1; перейти на метку L1 если бит равен 1
CALL ALARM; вызов подпрограммы ALARM
CALL ONESEC; вызов подпрограммы ONESEC
JMP L0; перейти на метку L0
L1: JB J, L3; перейти на метку L3 если бит равен 1
CALL PAUSE; вызов подпрограммы PAUSE
L2: JB J, L3; перейти на метку L3 если бит равен 1
CALL ALARM; вызов подпрограммы ALARM
CALL ONESEC; вызов подпрограммы ONESEC
JMP L2; перейти на метку L2
L3: JNB D, L4; прейти на метку L4 если бит равен 0
SETB F; установка бита
L4: JNB C, L4; прейти на метку L4 если бит равен 0
CLR F; сброс бита
JB I, L5; прейти на метку L5 если бит равен 0
SETB F; установка бита
L5: JNB H, L5; прейти на метку L5 если бит равен 0
CLR F; сброс бита
L6: JNB K, START; прейти на метку START если бит равен 0
JMP L6; перейти на метку L6
; Подпрограммы
ALARM: SETB G; установка бита
CALL ONESEC; вызов подпрограммы ONESEC
CPL G; инвертировать бит G
RET; возврат
Подпрограмма задержки на 30 секунд
PAUSE: MOV R6,#30; загрузить в регистр R6 константу
CALL ONESEC; вызов подпрограммы ONESEC
DJNZ R6, PAUSE; декремент регистра R6 и переход если не 0
RET; возврат
; Подпрограмма задержки на 1 секунду
ONESEC: MOV R7,#20; загрузить в регистр R7 константу
SEC: CALL DELAY; вызов подпрограммы DELAY

DJNZ R7, SEC; декремент регистра R7 и переход если не 0

RET; возврат

; Подпрограмма задержки на 50 мс

DELAY: MOV TMOD,#0001B; установка таймера /счетчика в режим 1

MOV TH0,#65536; загрузить в регистр TH0 константу

MOV TL0,#15536; загрузить в регистр TL0 константу

SETB TCON.4; пуск таймера / счетчика

DEL: JNB TCON.5, DEL; ожидание переполнения таймера / счетчика

CPL TCON.4; остановка таймера / счетчика

CPL TCON.5; сброс флага RET; возврат

Список используемых источников

1. Сташин В.В., Урсулов А.В., Мологонцева О.Ф. Проектирование цифровых устройств на одно-кристальных микроконтроллерах. М.: Энерго-атомиздат, 1990. 224 с.

2. Методические указания к лабораторной работе №2 по курсу "Цифровые устройства и микропроцессоры" В.А. Добряк, В.К. Рагозин. Екатеринбург: Изд-во УГТУ, 1999. 32 с

Приложение 1

Блок-схема основной программы

Приложение 2

Блок-схема подпрограмы

Приложение 3

Функциональная схема устройства

Приложение 4

Схема электрическая принципиальная

Приложение 5

Описание микроконтроллера

Микроконтроллер выполнен на основе высокоуровневой n-МОП технологии и выпускается в корпусе БИС, имеющем 40 внешних выводов. Цоколевка корпуса МК 51 и наименования выводов показаны на рис. 3.1. Для работы MK51 требуется один источник электропитания +5 В. Через четыре программируемых порта ввода/вывода MK51 взаимодействует со средой в стандарте ТТЛ-схем с тремя состояниями выхода. Корпус МК 51 имеет два вывода для подключения кварцевого резонатора, четыре вывода для сигналов, управляющих режимом работы МК, и восемь линий порта 3, которые могут быть запрограммированы пользователем на выполнение специализированных (альтернативных) функций обмена информацией со средой.

Структурная схема МК 51

Основу структурной схемы МК 51 (рис. 3.2) образует внутренняя двунаправленная 8-битная шина, которая связывает между собой все основные узлы и устройства: резидентную память, АЛУ, блок регистров специальных функций, устройство управления и порты ввода/вывода. Рассмотрим основные элементы структуры и особенности организации вычислительного процесса в МК 51.

Арифметическо-логическое устройство

8-битное АЛУ может выполнять арифметические операции сложения, вычитания, умножения и деления; логические операции И, ИЛИ, исключающее ИЛИ, а также операции циклического сдвига, сброса, инвертирования и т.п. В АЛУ имеются программно недоступные регистры T1 и T2, предназначенные для временного хранения операндов, схема десятичной коррекции и схема формирования признаков.

Простейшая операция сложения используется в АЛУ для инкрементирования содержимого регистров, продвижения регистра-указателя данных и автоматического вычисления следующего адреса РПП. Простейшая операция вычитания используется в АЛУ для декрементирования регистров и сравнения переменных.

Важной особенностью АЛУ является его способность оперировать не только байтами, но и битами. Отдельные программно-доступные биты могут быть установлены, сброшены, инвертированы, переданы, проверены и использованы в логических операциях. Эта способность АЛУ, оперировать битами, столь важна, что во многих описаниях МК 51 говорится о наличии в нем "булевского процессора". Для управления объектами часто применяются алгоритмы, содержащие операции над входными и выходными булевскими переменными (истина/ложь), реализация которых средствами обычных микропроцессоров сопряжена с определенными трудностями.

Таким образом, АЛУ может оперировать четырьмя типами информационных объектов: булевскими (1 бит), цифровыми (4 бита), байтными (8 бит) и адресными (16 бит). В АЛУ выполняется 51 различная операция пересылки или преобразования этих данных. Так как используется 11 режимов адресации (7 для данных и 4 для адресов), то путем комбинирования "операция/ режим адресации" базовое число команд 111 расширяется до 255 из 256 возможных при однобайтном коде операции.

Резидентная память

Память программ и память данных, размещенные на кристалле МК 5 физически и логически разделены, имеют различные механизмы адресации, работают под управлением различных сигналов и выполняют разные функции.

Память программ (ПЗУ или СППЗУ) имеет емкость 4 Кбайта и предназначена для хранения команд, констант, управляющих слов инициализации, таблиц перекодировки входных и выходных сменных и т.п. РПП имеет 16-битную шину адреса, через которую обеспечивается доступ из счетчика команд или из регистра-указателя данных. Последний выполняет функции базового регистра при косвенных переходах по программе или используется в командах, оперирующих с таблицами.

Память данных (ОЗУ) предназначена для хранения переменных в процессе выполнения прикладной программы, адресуется одним байтом и имеет емкость 128 байт. Кроме того, к адресному пространству РПД примыкают адреса регистров специальных функций (РСФ).

Память программ, так же как и память данных, может быть расширена до 64 Кбайт путем подключения внешних БИС.

Аккумулятор и ССП. Аккумулятор является источником операнда и местом фиксации результата при выполнении арифметических, логических операций и ряда операций передачи данных. Кроме того, только с использованием аккумулятора могут быть выполнены операции сдвигов, проверка на нуль, формирование флага паритета и т.п.

Устройство управления и синхронизации

Кварцевый резонатор, подключаемый к внешним выводам X1 и X2 корпуса МК 51, управляет работой внутреннего генератора, который в свою очередь формирует сигналы синхронизации.

а - команда 1 байт/1 цикл, например INC A; б - команда - 2 байта/1 цикл, например ADD A, #d; в - команда 1 байт/2 цикла, например INC DPTR; г - команда 1 байт/2 цикла, например MOVX.

Общие сведения о системе команд

Система команд МК 51 содержит 111 базовых команд, которые удобно разделить по функциональному признаку на пять групп: команды передачи данных, арифметических операций, логических операций, передачи управления и операций с битами.

Система команд МК 51 много мощнее и шире системы команд МК 48, так как кроме всех команд МК 48 в ее состав входят команды умножения, деления, вычитания, операций над битами, операций со стеком и расширенный набор команд передачи управления. Большинство команд (94) имеют формат один или два байта и выполняются за один или два машинных цикла. При тактовой частоте 2 МГц длительность машинного цикла составляет 1 мкс. На рис. 3.19 показаны 13 типов команд МК 51. Первый байт команды любых типа и формата всегда содержит код операции (КОП). Второй и третий байты содержат либо адреса операндов, либо непосредственные операнды.

Типы операндов. Состав операндов МК 51 шире, чем МК 48, и включает в себя операнды четырех типов: биты, 4-битные цифры, байты и 16-битные слова.

В отличие от МК 48, который имеет только три битовых флага, МК 51 имеет 128 программно-управляемых флагов пользователя. Имеется также возможность адресации отдельных бит блока регистров специальных функций и портов. Для адресации бит используется прямой 8-битный адрес (bit). Косвенная адресация бит невозможна. Карты адресов отдельных бит представлены на рис.3.20 и рис.3.21. Четырехбитные операнды используются только при операциях обмена (команды SWAP и XCHD). Восьмибитным операндом может быть ячейка памяти программ или данных (резидентной или внешней), константа (непосредственный операнд), регистры специальных функций (РСФ), а также порты ввода/вывода. Порты и РСФ адресуются только прямым способом. Байты памяти могут адресоваться также и косвенным образом через адресные регистры (R0, R1, DPTR и PC). Двухбайтные операнды - это константы и прямые адреса, для представления которых используются второй и третий байты команды.

Способы адресации данных. В МК 51 используются такие же способы адресации данных, как и в МК 48: прямая, непосредственная, косвенная и неявная. Следует отметить, что при косвенном способе адресации РПД в отличие от МК 48 используются все восемь бит адресных регистров R0 и R1.

Система команд МК 51 по сравнению с МК 48 допускает больше комбинаций способов адресации операндов в командах, что делает ее более гибкой и универсальной.

Флаги результата. Слово состояния программы (PSW) включает в себя четыре флага: C - перенос, AC - вспомогательный перенос, O - переполнение и P - паритет.

Флаг паритета (отсутствует в МК 48) напрямую зависит от текущего значения аккумулятора. Если число единичных бит аккумулятора нечетное, то флаг P устанавливается, а если четное - сбрасывается попытки изменить флаг Р, присваивая ему новое значение, будут безуспешными, если содержимое аккумулятора при этом останется неизменным.

Флаг АС устанавливается в случае, если при выполнении операции сложения/вычитания между тетрадами байта возник перенос/заем.

Флаг C устанавливается, если в старшем бите результата возникает перенос или заем. При выполнении операций умножения и деления флаг C сбрасывается. Флаг OV (отсутствует в МК 48) устанавливается, если результат операции сложения/вычитания не укладывается в семи битах и старший (восьмой) бит результата не может интерпретироваться как знаковый. При выполнении операции деления флаг OV сбрасывается, а в случае деления на нуль устанавливается. При умножении флаг OV устанавливается, если результат больше 255.

В табл. 3.1 перечисляются команды, при выполнении которых модифицируются флаги результата. В таблице отсутствует флаг паритета, так как его значение изменяется всеми командами, которые изменяют содержимое аккумулятора. Кроме команд, приведенных в таблице, флаги модифицируются командами, в которых местом назначения результата определены PSW или его отдельные биты, а также командами операций над битами.

Таблица 3.1. Команды, модифицирующие флаги результата.

Команды

Флаги

Команды

Флаги

ADD

C, OV, AC

CLR C

C = 0

ADDC

C, OV, AC

CPL C

C = мC

SUBB

C, OV, AC

ANL C, b

C

MUL

C = 0, OV

ANL C, /b

C

DIV

C = 0, OV

ORL C, b

C

DA

C

ORL C, /b

C

RRC

C

MOV C, b

C

RLC

C

CJNE

C

SETB C

C = 1

Символическая адресация. При использовании ассемблера МК 51 (ASM51) для получения объектных кодов программ допускается применение в программах символических имен регистров специальных функций (РСФ), портов и их отдельных бит (рис. 3.21).

Для адресации отдельных бит РСФ и портов (такая возможность имеется не у всех РСФ) можно использовать символическое имя бита следующей структуры: < имя РСФ или порта > . < номер бита >

Например, символическое имя пятого бита аккумулятора будет следующим: АСС.5. Символические имена РСФ, портов и их бит являются зарезервированными словами для ASM51, и их не надо определять с помощью директив ассемблера.

Размещено на Allbest.ru

...

Подобные документы

  • Анализ современного оборудования хлебопекарных печей. Описание конструкции тупиковой конвейерной люлечно-подиковой печи средней мощности с электрообогревом. Принцип действия и режим работы. Определение габаритных размеров и установленной мощности.

    курсовая работа [4,1 M], добавлен 16.02.2011

  • Задачи и пути совершенствования холодильных установок на современном этапе. Разработка функциональной схемы автоматизации холодильного модуля. Экономическое обоснование данного проекта. Устройство и принцип работы пульта автоматизации компрессора ПАК 11.

    курсовая работа [87,1 K], добавлен 19.09.2010

  • Выполнение расчетов косвенных затрат на амортизацию производственного здания и оборудования, на ремонт инвентаря. Калькуляция себестоимости детали. Составление сводной ведомости основных технико-экономических показателей сварки двутавровой балки.

    курсовая работа [154,6 K], добавлен 31.05.2013

  • Сырье, используемое в процессе хлебопекарного производства. Выбор и характеристика оборудования. Основные технологические стадии производства хлеба и булочных изделий. Расчет технико-экономических показателей. Калькуляция себестоимости и цены продукции.

    курсовая работа [2,5 M], добавлен 28.05.2012

  • Характеристика, требования к качеству и рецептура хлебобулочных изделий. Расчет мощности предприятия, производственной программы, выхода изделий, тестоприготовительного оборудования, запасов сырья. Описание технологической линии приготовления изделий.

    отчет по практике [173,9 K], добавлен 23.04.2016

  • Разработка (модернизация) конструкции ротационной печи. Описание принципа действия и режима работы оборудования. Определение габаритных размеров. Тепловой баланс и расход топлива. Диапазон установки температуры в пекарной камере, площадь выпечки.

    курсовая работа [1,7 M], добавлен 25.11.2014

  • Конструкция холодильной установки НСТ 400-К: неисправности и методы их устранения. Разработка мероприятий по сервису холодильного оборудования и системы отопления. Технико-экономические показатели по установке и сервису холодильной установки НСТ 400-К.

    курсовая работа [513,4 K], добавлен 05.03.2014

  • Автоматизация различных стадий производственного процесса, как необходимое условие для комплексной автоматизации производственного процесса. Автоматическая линия. Создание роботизированных технологических комплексов. Виды вспомогательного оборудования.

    презентация [83,8 K], добавлен 12.03.2015

  • Назначение и условие работы узла и конструкции абсорбера, технические условия на материалы. Обоснование технологического процесса сборки и сварки. Расчет трудоемкости годовой программы, стоимости материалов и основных технико-экономических показателей.

    дипломная работа [1,0 M], добавлен 08.01.2012

  • Описание конструкции, назначения и принципа действия пеноснимателя. Кинематическая схема привода. Ориентировочный расчет и конструирование приводного вала. Подбор шпонок и проверка прочности шпоночных соединений. Выбор габаритных размеров резца.

    дипломная работа [3,2 M], добавлен 20.03.2017

  • Определение годовой программы запуска деталей и фонда времени работы поточной линии. Расчет параметров однопредметной поточной линии. Организация технического обслуживания и обоснование экономических показателей проектируемого поточного производства.

    дипломная работа [223,4 K], добавлен 27.05.2012

  • Расчет производственной программы и обоснование типа производства. Расчет капитальных вложений и эксплуатационных затрат. Себестоимость продукции объекта. Расходы по содержанию и эксплуатации оборудования. Технико-экономические показатели цеха.

    курсовая работа [149,8 K], добавлен 13.06.2009

  • Принципы работы холодильных машин и их виды. Определение эффективности цикла охлаждения. Типовые неисправности и методы их устранения, техническое обслуживание компрессорного холодильника. Расчет себестоимости и цены ремонта бытового кондиционера.

    дипломная работа [2,1 M], добавлен 14.03.2021

  • Разработка производственной программы и концепции кафе. Расчет стоимости сырья на одно блюдо, инвентаря, кухонной и столовой посуды. Оформление зала и выбор карты блюд. Расчет валового дохода, охрана труда сотрудников, экономическая эффективность проекта.

    курсовая работа [42,6 K], добавлен 16.02.2011

  • Производственная и хозяйственная деятельность предприятия по производству хлебобулочных изделий. Производственная программа и технико-экономические показатели при производстве булочки молочной. Планирование объема производства в стоимостном выражении.

    курсовая работа [42,4 K], добавлен 18.08.2010

  • Использование в промышленности гальваники как одной из наиболее распространенных методов защиты металлических изделий от коррозии. Калькуляция себестоимости продукции. Расчет сметы цеховых расходов, капитальных затрат и технико-экономических показателей.

    курсовая работа [100,8 K], добавлен 08.12.2014

  • Описание станка, его узлов, привода, устройства ЧПУ. Расчёт мощности двигателей приводов подач и субблока (модуля). Создание алгоритма поиска неисправности в системе ЧПУ. Разработка функциональной электрической схемы субблока и определение его надёжности.

    дипломная работа [301,5 K], добавлен 08.01.2013

  • Производство стекла и изделий из него. Дефекты стекломассы, возникновение и снятие напряжений в изделиях из стекла. Тарелочки, их виды и назначение во внутренней арматуре ламп общего назначения. Принцип действия механизма загрузки стеклоизделий.

    курсовая работа [1017,4 K], добавлен 20.11.2013

  • Принципиальная схема организации производства по ремонту и постройке судов. Расчет размеров слипа, потребной площади и глубины акватории завода. Расчет потребности в основных материалах по ведущему цеху. Структура себестоимости товарной продукции.

    дипломная работа [341,5 K], добавлен 01.11.2014

  • Технологическая схема производства гипса. Расчет габаритных размеров барабанной мельницы, требуемой частоты вращения и мощности. Поверочный расчет зубчатой передачи. Проверка условия прочности зубьев колеса. Коэффициент неравномерности нагрузки.

    курсовая работа [1,1 M], добавлен 18.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.