Механические, технологические и эксплуатационные свойства твердости, вязкости и усталостной прочности

Особенности механических свойств и способов определения их количественных характеристик. Анализ оценки вязкости по виду излома. Образование трещины в наиболее нагруженной части сечения. Основные критерии годности материала дефектов после испытания.

Рубрика Производство и технологии
Вид лекция
Язык русский
Дата добавления 05.12.2014
Размер файла 497,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Лекция

Механические, технологические и эксплуатационные свойства

1. Механические свойства и способы определения характеристик: твердость, вязкость, усталостная прочность

2. Твердость по Бринеллю ( ГОСТ 9012)

3. Метод Роквелла ГОСТ 9013

4. Метод Виккерса

5. Метод царапания.

6. Динамический метод (по Шору)

7. Влияние температуры.

8. Способы оценки вязкости.

9. Оценка вязкости по виду излома.

10. Основные характеристики: 11. Технологические свойства

12. Эксплуатационные свойства их количественных

Механические свойства и способы определения их количественных характеристик: твердость, вязкость, усталостная прочность

Твердость - это сопротивление материала проникновению в его поверхность стандартного тела (индентора), не деформирующегося при испытании.

Широкое распространение объясняется тем, что не требуются специальные образцы.

Это неразрушающий метод контроля. Основной метод оценки качества термической обработке изделия. О твердости судят либо по глубине проникновения индентора (метод Роквелла), либо по величине отпечатка от вдавливания (методы Бринелля, Виккерса, микротвердости).

Во всех случаях происходит пластическая деформация материала. Чем больше сопротивление материала пластической деформации, тем выше твердость.

Испытание проводят на твердомере Бринелля (рис.7.1 а)

В качестве индентора используется стальной закаленный шарик диаметром D 2,5;

5; 10 мм, в зависимости от толщины изделия.

Нагрузка Р, в зависимости от диаметра шарика и измеряемой твердости: для термически обработанной стали и чугуна - , литой бронзы и латуни - алюминия и других очень мягких металлов.

Продолжительность выдержки : для стали и чугуна - 10 с, для латуни и бронзы - 30 с.

Полученный отпечаток измеряется в двух направлениях при помощи лупы Бринелля.

Твердость определяется как отношение приложенной нагрузки Р к сферической поверхности отпечатка F:

Стандартными условиями являются D = 10 мм; Р = 3000 кгс; = 10 с. В этом случае твердость по Бринеллю обозначается НВ 250, в других случаях указываются условия: НВ D / P / , НВ 5/ 250 /30 - 80.

Метод Роквелла ГОСТ 9013

Основан на вдавливании в поверхность наконечника под определенной нагрузкой Индентор для мягких материалов (до НВ 230) - стальной шарик диаметром 1/16" ( 1,6 мм), для более твердых материалов - конус алмазный.

Нагружение осуществляется в два этапа. Сначала прикладывается предварительная нагрузка (10 ктс) для плотного соприкосновения наконечника с образцом. Затем прикладывается основная нагрузка Р1, втечение некоторого времени действует общая рабочая нагрузка Р. После снятия основной нагрузки определяют значение твердости по глубине остаточного вдавливания наконечника h под нагрузкой.

В зависимости от природы материала используют три шкалы твердости

Метод Виккерса

В качестве индентора используется алмазная четырехгранная пирамида.с углом при вершине 136o.

Твердость рассчитывается как отношение приложенной нагрузки P к площади поверхности отпечатка F:

Нагрузка Р составляет 5100 кгс. Диагональ отпечатка d измеряется при помощи микроскопа, установленного на приборе.

Преимущество данного способа в том, что можно измерять твердость любых

Способ микротвердости - для определения твердости отдельных структурных составляющих и фаз сплава, очень тонких поверхностных слоев (сотые доли миллиметра).

Аналогичен способу Виккерса. Индентор - пирамида меньших размеров, нагрузки при вдавливании Р составляют 5500 гс

Метод царапания

Алмазным конусом, пирамидой или шариком наносится царапина, которая является мерой. При нанесении царапин на другие материалы и сравнении их с мерой судят о твердости материала.

Можно нанести царапину шириной 10 мм под действием определенной нагрузки. Наблюдают за величиной нагрузки, которая дает эту ширину.

Динамический метод (по Шору)

Шарик бросают на поверхность с заданной высоты, он отскакивает на определенную величину. Чем больше величина отскока, тем тверже материал.

В результате проведения динамических испытаний на ударный изгиб специальных образцов с надрезом (ГОСТ 9454) оценивается вязкость материалов и устанавливается их склонность к переходу из вязкого состояния в хрупкое.

Вязкость - способность материала поглощать механическую энергию внешних сил за счет пластической деформации.

Является энергетической характеристикой материала, выражается в единицах работы Вязкость металлов и сплавов определяется их химическим составом, термической обработкой и другими внутренними факторами.

Также вязкость зависит от условий, в которых работает металл (температуры, скорости нагружения, наличия концентраторов напряжения).

Влияние температуры

С повышением температуры вязкость увеличивается.

Предел текучести Sт существенно изменяется с изменением температуры, а сопротивление отрыву Sот не зависит от температуры. При температуре выше Тв предел текучести меньще сопротивления отрыву. При нагружении сначала имеет место пластическое деформирование, а потом - разрушение. Металл находится в вязком состоянии.

Прт температуре ниже Тн сопротивление отрыву меньше предела текучести. В этом случае металл разрушается без предварительной деформации, то есть находится в хрупком состоянии. Переход из вязкого состояния в хрупкое осуществляется в интервале температур.

Хладоломкостью называется склонность металла к переходу в хрупкое состояние с понижением температуры.

Хладоломкими являются железо, вольфрам, цинк и другие металлы, имеющие объемноцентрированную кубическую и гексагональную плотноупакованную кристаллическую решетку.

Способы оценки вязкости

Ударная вязкость характеризует надежность материала, его способность сопротивляться хрупкому разрушению

Испытание проводят на образцах с надрезами определенной формы и размеров. механический вязкость трещина дефект

Образец устанавливают на опорах копра надрезом в сторону, противоположную удару ножа маятника,который поднимают на определенную высоту.

На разрушение образца затрачивается работа:

где: Р - вес маятника, Н - высота подъема маятника до удара, h - высота подъема маятника после удара.

Рис. 1 Влияние температуры на пластичное и хрупкое состояние

Характеристикой вязкости является ударная вязкость (ан), - удельная работа разрушения.

ГОСТ 9454 - 78 ударную вязкость обозначает KCV. KCU. KCT. KC - символ ударной вязкости, третий символ показывает вид надреза: острый (V), с радиусом закругления (U), трещина (Т)

Серийные испытания для оценки склонности металла к хладоломкости и определения критических порогов хладоломкости.

Испытывают серию образцов при различных температурах и строят кривые ударная вязкость - температура ( ан - Т) определяя пороги хладоломкости.

Порог хладоломкости - температурный интервал изменения характера разрушения, является важным параметром конструкционной прочности. Чем ниже порог хладоломкости, тем менее чувствителен металл к концентраторам напряжений (резкие переходы, отверстия, риски), к скорости деформации.

Оценка вязкости по виду излома

При вязком состоянии металла в изломе более 90 % волокон, за верхний порог хладоломкости Тв принимается температура, обеспечивающая такое состояние. При хрупком состоянии металла в изломе 10 % волокон, за нижний порог хладоломкости Тн принимается температура, обеспечивающая такое состояние. В технике за порог хладоломкости принимают температуру, при которой в изломе 50 % вязкой составляющей. Причем эта температура должна быть ниже температуры эксплуатации изделий не менее чем на 40oС.

Испытания на выностивость (ГОСТ 2860) дают характеристики усталостной прочности.

Усталость - разрушение материала при повторных знакопеременных напряжениях, величина которых не превышает предела текучести.

Усталостная прочность - способность материала сопротивляться усталости.

1 - образование трещины в наиболее нагруженной части сечения, которая подвергалась микродеформациям и получила максимальное упрочнение

2 - постепенное распространение трещины, гладкая притертая поверхность

3 - окончательное разрушение, зона "долома", живое сечение уменьшается,а истинное напряжение увеличивается, пока не происходит разрушение хрупкое или вязкое круглого образца.

Характеристики усталостной прочности определяются при циклических испытаниях "изгиб при вращении". Схема представлена на рис. 2

Основные характеристики

Предел выносливпсти (- при симметричном изменении нагрузки, - при

несимметричном изменении нагрузки) - максимальное напряжение, выдерживаемое материалом за произвольно большое число циклов нагружения N.

Ограниченный предел выносливости - максимальное напряжение, выдерживаемое материалом за определенное число циклов нагружения или время.

Рис 2 Схема зарождения и развития трещины при переменном изгибе

Живучесть - разность между числом циклов до полного разрушения и числом циклов до появления усталостной трещины.

Технологические свойства

Технологические свойства характеризуют способность материала подвергаться различным способам холодной и горячей обработки.

1. Литейные свойства.

Характеризуют способность материала к получению из него качественных отливок.

Жидкотекучесть - характеризует способность расплавленного металла заполнять литейную форму.

Усадка (линейная и объемная) - характеризует способность материала изменять свои линейные размеры и объем в процессе затвердевания и охлаждения. Для предупреждения линейной усадки при создании моделей используют нестандартные метры.

Ликвация - неоднородность химического состава по объему. 2. Способность материала к обработке давлением.

Это способность материала изменять размеры и форму под влиянием внешних нагрузок не разрушаясь.

Она контролируется в результате технологических испытаний, проводимых в условиях, максимально приближенных к производственным.

Листовой материал испытывают на перегиб и вытяжку сферической лунки. Проволоку испытывают на перегиб, скручивание, на навивание. Трубы испытывают на раздачу, сплющивание до определенной высоты и изгиб.

Критерием годности материала является отсутствие дефектов после испытания. 3. Свариваемость.

Это способность материала образовывать неразъемные соединения требуемого качества. Оценивается по качеству сварного шва.

4. Способность к обработке резанием.

Характеризует способность материала поддаваться обработке различным режущим инструментом. Оценивается по стойкости инструмента и по качеству поверхностного слоя.

Эксплуатационные свойства

Эксплуатационные свойства характеризуют способность материала работать в конкретных условиях.

1. Износостойкость - способность материала сопротивляться поверхностному разрушению под действием внешнего трения.

2. Коррозионная стойкость - способность материала сопротивляться действию агрессивных кислотных, щелочных сред.

3. Жаростойкость - это способность материала сопротивляться окислению в газовой среде при высокой температуре.

4. Жаропрочность - это способность материала сохранять свои свойства при высоких температурах.

5. Хладостойкость - способность материала сохранять пластические свойства при отрицательных температурах.

6. Антифрикционность - способность материала прирабатываться к другому материалу.

Эти свойства определяются специальными испытаниями в зависимости от условий работы изделий.

При выборе материала для создания конструкции необходимо полностью учитывать механические, технологические и эксплуатационные свойства.

Размещено на Allbest.ru

...

Подобные документы

  • Характеристика основных механических свойств металлов. Испытания на растяжение, характеристики пластичности (относительное удлинение и сужение). Методы определения твердости по Бринеллю, Роквеллу, Виккерсу; ударной вязкости металлических материалов.

    реферат [665,7 K], добавлен 09.06.2012

  • Методика приготовления механического копра и шаблонов для установки образца. Определение ударной вязкости с использованием таблиц. Искривление образцов в зависимости от вязкости стали при испытании на удар. Проведение испытания на ударную вязкость.

    лабораторная работа [2,1 M], добавлен 12.01.2010

  • Понятие твердости. Метод вдавливания твердого наконечника. Измерение твердости по методу Бринелля, Виккерса и Роквелла. Измерение микротвердости. Порядок выбора оборудования. Проведение механических испытаний на твердость для определения трубных свойств.

    курсовая работа [532,5 K], добавлен 15.06.2013

  • Методика определения твердости и измерения отпечатка, схемы испытания различными способами. Сопротивление материала проникновению в него более твердого тела. Расчеты определения твердости; перевод твердость по Бринелю в твердость по Раквеллу, Виккерсу.

    лабораторная работа [567,3 K], добавлен 12.01.2010

  • Физико-химические, эксплуатационные свойства нефти. Абсолютная плотность газов при нормальных условиях. Методы определения плотности и молекулярной массы. Важный показатель вязкости. Предельная температура фильтруемости, застывания и плавления нефти.

    презентация [1,1 M], добавлен 21.01.2015

  • Понятие и виды ликвации, причины их возникновения и способы устранения. Сущность и методику измерения ударной вязкости механических свойств металла. Цементация стали: сущность процесса, структура, свойства и области применения. Титан и его сплавы.

    контрольная работа [1,1 M], добавлен 26.06.2013

  • Механические характеристики заданного материала, циклограмма напряжений, определение коэффициента снижения предела выносливости детали. Определение запаса прочности детали по циклической (усталостной) и статической прочности графическим методом.

    курсовая работа [674,9 K], добавлен 15.05.2019

  • График изменения ударной вязкости от температуры испытаний. Сравнение характеристик стали 40ХН при простых и сложных условиях. Сохранение доли волокнистой составляющей, снижение температуры хрупкости и увеличение надежности эксплуатации стали 40ХН.

    статья [449,1 K], добавлен 30.04.2016

  • Определение товара, его физические свойства. Физико-химические и эксплуатационные свойства судовых топлив. Ассортимент гидравлических масел, система их обозначения, классы вязкости. Классификация присадок к маслам, особенности модификаторов трения.

    контрольная работа [59,1 K], добавлен 26.10.2010

  • Анализ поведения материала при проведении испытания на растяжение материала и до разрушения. Основные механические характеристики пропорциональности, текучести, удлинения, прочности, упругости и пластичности материалов металлургической промышленности.

    лабораторная работа [17,4 K], добавлен 12.01.2010

  • Назначение и область применения метода капиллярной вискозиметрии. Характеристики погрешностей измерений. Средства измерения, вспомогательные устройства и материалы. Определение кинематической вязкости прозрачных жидкостей, обработка результатов измерений.

    курсовая работа [1,8 M], добавлен 21.03.2015

  • Определение механических свойств конструкционных материалов путем испытания их на растяжение. Методы исследования качества, структуры и свойств металлов и сплавов, определение их твердости. Термическая обработка деформируемых алюминиевых сплавов.

    учебное пособие [7,6 M], добавлен 29.01.2011

  • Свойства материалов при расчетах на прочность, жесткость и устойчивость определяются механическими характеристиками. Испытания над материалами проводят на деформацию растяжения, сжатия, кручения, изгиба при действии статической или переменной нагрузок.

    реферат [2,4 M], добавлен 13.01.2009

  • Основные варианты построения красочных аппаратов флексографских печатных машин. Требования, предъявляемые к флексографским краскам, системам циркуляции и контроля вязкости краски. Электрическая функциональная схема работы ротационного вискозиметра.

    дипломная работа [2,1 M], добавлен 22.06.2013

  • Классификация и маркировка углеродистой стали. Основные представления о структуре металлов и сплавов. Изготовление металлографических шлифов. Термическая обработка стали: отжиг, закалка и отпуск. Макроскопический анализ ее излома, механические свойства.

    контрольная работа [2,5 M], добавлен 18.10.2013

  • Виды ликвации, причины возникновения и способы устранения. Определение ударной вязкости. Характеристики механических свойств металла. Первичная кристаллизация сплавов системы железо-углерод. Диаграмма изотермического превращения аустенита для стали У8.

    контрольная работа [1,2 M], добавлен 22.09.2013

  • Механические свойства строительных материалов: твердость материалов, методы ее определения, суть шкалы Мооса. Деформативные свойства материалов. Характеристика чугуна как конструкционного материала. Анализ способов химико-термической обработки стали.

    контрольная работа [972,6 K], добавлен 29.03.2012

  • Процесс легирования стали и сплавов - повышение предела текучести, ударной вязкости, прокаливаемости, снижение скорости закалки и отпуска. Влияние присадок легирующих элементов на механические, физические и химические свойства инструментальной стали.

    курсовая работа [375,9 K], добавлен 08.08.2013

  • Обзор связи условий нагружения детали с пределом длительной прочности ее материала. Расчет эквивалентного времени наработки для лопатки рабочего колеса турбины. Анализ методики определения уравнения кривой длительной прочности при иной температуре детали.

    контрольная работа [66,5 K], добавлен 27.02.2012

  • Критерии выбора материала исследования. Выбор моделей из предложенного материала. Основные характеристики свойств исследуемой ткани. Конструкторско-технологические, гигиенические и эстетические требования. Чистка и хранение швейных изделий и материалов.

    курсовая работа [1,9 M], добавлен 22.06.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.