Технологическая схема получения очищенной воды

Особенности технологической схемы получения воды очищенной. Характеристика основных этапов получения чистой очищенной воды, соответствующей нормативным требованиям: фильтрация, ионный обмен, электродеионизация, обратный осмос и дистилляция воды.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 29.11.2014
Размер файла 392,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

С.Ж.АСФЕНДИЯРОВ АТЫНДА?Ы

?АЗА? ?ЛТТЫ? МЕДИЦИНА УНИВЕРСИТЕТІ КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ ИМЕНИ С.Д.АСФЕНДИЯРОВА

Реферат

Дисциплина: Проектирование химико-фармацевтических производств

Содержание

Введение

1. Предварительная подготовка и получение

2. Фильтрация

3. Ионный обмен

4. Электродеионизация

5. Обратный осмос

6. Дистилляци

Заключение

Литература

Введение

Качество воды очищенной регламентируется нормативным документом - Фармакопейной статьей, ФС 42- 2619-97 «Вода очищенная», включенной в государственную Фармакопею.

Согласно ФС 42-2619-97, воду очищенную можно получить дистилляцией, ионным обменом, обратным осмосом, комбинацией этих методов, или другим способом.

ВО должна отвечать требованиям по ионной и органической химической, а также микробиологической чистоте.

Поскольку воду очищенную получают из воды питьевой, источником которой является природная вода, важным моментом следует считать освобождение ее от присутствующих примесей: механических частиц, органических веществ, микроорганизмов, коллоидов, растворенных химических соединений, растворенных химически активных и неактивных газов, бактериальных эндотоксинов, остаточных дезинфицирующих веществ и пр. вода фильтрация осмос дистилляция

В зависимости от качества исходной воды в технологической схеме получения воды очищенной большое значение имеет предварительная подготовка воды, которая может включать несколько стадий.

Выбор технологической схемы получения воды очищенной обусловлен:

- качеством исходной воды;

- требованиями производителя лекарственных средств;

- выбором конечной стадии получения воды;

- требованиями, предъявляемыми к воде фармакопейной статьей;

- требованиями, предъявляемыми определенными стадиями (например, дистилляцией, обратным осмосом) к качеству подаваемой (исходной) воды;

- стадиями предварительной очистки, направленными на удаление примесей, содержание которых нормируется нормативной документацией или производителем фармацевтической продукции.

1. Предварительная подготовка и получение

Предварительная подготовка - это совокупность операций, направленных на получение воды такого качества, которое требуется для конечной стадии получения воды очищенной.

Получение - финишная стадия, обеспечивающая получение воды, соответствующей нормативным требованиям.

2. Фильтрация

Современные фильтрующие системы представляют собой установки с 3-х или 5-ти цикловым режимом работы с возможностью как автоматического (с помощью программируемого контроллера), так и ручного управления (рис. 1.1.-1.2.):

При З-х цикловом режиме работы фильтрационной установки предусмотрены получение очищенной воды, обратная промывка и прямая промывка фильтрующей среды. Данный режим используется в установках с засыпкой, не требующей регенерации (многослойные фильтры, фильтры обезжелезивания на основе Birm, фильтры с активированным углем).

5-ти цикловый режим работы подразумевает получение очищенной воды, обратную промывку, регенерацию/медленную промывку, быструю промывку и наполнение солевого бака. Данный режим используется для фильтрационных установок, в которых необходимо проведение регенерации фильтрующей среды (фильтры обезжелезивания на основе марганцевого цеолита, фильтры умягчения).

Использование многослойных фильтров является одной из первоначальных стадий предварительной подготовки воды. Их применение целесообразно при высокой мутности воды и высоком содержании механических, коллоидных частиц. Комбинации фильтрующих сред варьируют в зависимости от качества исходной воды, но чаще всего представлены гидроантрацитом, гранатом, кварцем и поддерживающей засыпкой в виде протравленного гравия.

При использовании многослойных фильтров необходимо обеспечить минимальную скорость фильтрации воды - 5-10 м/час и высокую скорость обратной промывки - 35-40 м/час. Исходя из этого, важным критерием является правильный выбор насоса для обеспечения надлежащих скоростей фильтрации и обратной промывки.

Рис. 1.1. Внутреннее устройство автоматического фильтра с 5-ти цикловым режимом работы и дополнительным оборудованием: 1. Управляющий клапан; 2. Контроллер; 3. Корпус фильтра; 4. Дренажный шланг; 5. Распределительная труба; 6. Щелевая корзина; 7. Фильтрующая среда; 8. Манометры; 9. Обводная вентильная система; 10. Счетчик расхода воды; 11. Бак для приготовления и хранения регенерирующего раствора (NaCl); 12. Солевая сетка с «Air check» (регулируемый поплавковый механизм - дополнительная функция); 13. Решетка для соли (NaCl); 14. Крышка бака; 15. Труба-колодец; 16. Перелив; 17. Трубка для подачи раствора в фильтр и воды в бак; 18. Блок питания контроллера (сетевой адаптер); 19. Входной вентиль; 20. Выходной вентиль; 21. Пробоотборник

Рис. 1.2. Внутреннее устройство автоматического фильтра с 3-х цикловым режимом работы и дополнительным оборудованием: 1 управляющий клапан, 2 контроллер, 3 корпус, 4 дренажный шланг, 5 распределительная труба, 6 щелевая корзина 7 фильтрующая среда, 8 манометр, 9 обводная вентильная система (байпас), 10 счетчик расхода воды, 11 поддерживающая засыпка.

Фильтры обезжелезивания на основе фильтрующих сред Birm и марганцевого цеолита применяются для удаления присутствующих в воде примесей железа и марганца. Кроме того, с помощью марганцевого цеолита удаляется растворенный в воде сероводород. В результате процессов химического каталитического окисления на поверхности фильтрующей среды, растворенное железо и марганец переходят в нерастворимую форму (гидроксид) и в виде хлопьевидного осадка путем обратной промывки выводится из фильтра.

При использовании фильтрующей среды Birm важным условием является наличие в воде растворенного кислорода в концентрации, большей на 15% концентрации растворенного железа. Марганцевый цеолит по мере использования теряет свои каталитические свойства, поэтому необходимым является его периодическая (или постоянная) регенерация раствором калия перманганата. При высоких концентрациях железа и марганца в воде, необходимо предварительно использовать системы аэрации воды.

Одними из широко используемых в фармацевтической практике являются фильтры с активированным углем, адсорбирующим органические вещества с низким молекулярным весом, хлор и удаляют их из воды. Они используются для получения определенных качественных признаков (обесцвечивания воды и улучшения ее вкуса и др.), для защиты от реакции следующими за ними поверхностями из нержавеющей стали, резиновых изделий, мембран.

Следует отметить, что с момента удаления активного хлора вода лишается какого-либо бактерицидного агента и, как правило, происходит стремительный рост микроорганизмов. В угольных фильтрах имеются особенно благоприятные условия для развития микробиологической флоры из-за очень большой и развернутой поверхности. В последнее время в качестве фильтрующей среды применяется активированный уголь, импрегнированный серебром, применяемый для снижения микробиологического роста.

Умягчение является частным случаем ионного обмена. Умягчители воды удаляют такие катионы, как магний и кальций, т.е. позволяют понизить жесткость воды.

В большинстве случаев используются автоматические колонки - умягчители, заполненные катионитом, в которых происходит обмен катионов солей жесткости на катионы натрия. На фармацевтических предприятиях при необходимости постоянного (круглосуточного) получения умягченной воды применяются дуплексные установки, регенерация ионообменных смол в которых проводится попеременно.

При снижении обменной емкости смолы проводится периодическая ручная или автоматическая регенерация раствором натрия хлорида.

Умягчение используется в системе водоподготовки чаще всего в 3-х случаях:

- перед обратным осмосом и дистилляцией;

- для получения воды, используемой для регенерации установки ионного обмена;

- в случае, когда достаточно получение умягченной воды (применение воды в автоклавах, моечных и т.п.).

Умягчители, удаляя поливалентные ионы из исходной воды, снижают тем самым потенциальную возможность образования нерастворимого осадка на мембранах обратного осмоса и внутренних поверхностях дистиллятора. К тому же, помимо удаления солей жесткости, путем умягчения можно удалить следовые концентрации очень нежелательных ионов, таких как барий, алюминий, стронций.

3. Ионный обмен

Является одним из эффективных методов удаления из воды анионов и катионов. Это одна из важнейших стадий очистки, используемая как этап предварительной очистки, так и для получения воды очищенной.

Ионный обмен основан на использовании ионитов - сетчатых полимеров разной степени сшивки, гелевой микро- или макропористой структуры, ковалентно связанных с ионогенными группами.

Диссоциация этих групп в воде или в растворах дает ионную пару - фиксированный на полимере ион и подвижный противоион, который обменивается на ионы одноименного заряда (катионы или анионы) из раствора. При химическом обессоливании обмен ионов является обратимым процессом между твердой и жидкой фазами. Включение в состав смол различных функциональных групп приводит к образованию смол избирательного действия.

Ионообменные смолы делятся на анионообменные и катионообменные. Катионообменные смолы содержат функциональные группы, способные к обмену положительных ионов, анионообменные - к обмену отрицательных.

Смолы могут быть дополнительно разделены на 4 основные группы: сильнокислотные, слабокислотные катионообменные смолы и сильноосновные и слабоосновные анионообменные смолы.

Существует два типа ионообменных аппаратов, наиболее часто используемых в фармацевтической практике, как правило, колоночных:

- С раздельным слоем катионита и анионита;

- Со смешанным слоем.

Аппараты первого типа состоят из двух последовательно расположенных колонн, первая из которых по ходу обрабатываемой воды заполнена катионитом, а вторая - анионитом. Аппараты второго типа состоят из одной колонны, заполненной смесью этих ионообменных смол.

Преимуществами ионного обмена являются малые капитальные затраты, простота, отсутствие принципиальных ограничений для достижения большей производительности.

Использование метода ионного обмена целесообразно при слабой минерализации воды: 100ё200 мг/л солей, т.к. уже при умеренной (около 1 г/л содержании солей) для очистки 1 м3 воды будет необходимо затратить 5 л 30% раствора соляной кислоты и 4 л 50% раствора щелочи.

Смолы обладают рядом существенных недостатков, затрудняющих их использование:

- Наличие химически агрессивного реагентного хозяйства и, соответственно, высокие эксплуатационные затраты на его приобретение и хранение;

- Ионообменные смолы требуют частой регенерации для восстановления обменной способности и повышенного внимания со стороны обслуживающего персонала;

- Большое количество химически агрессивных сточных вод после проведения регенерации фильтров и др.

Регенерация ионообменных смол производится как правило растворами кислоты хлористоводородной (для Н+-формы) и натрия гидроксида (для ОН--формы). На качество регенерации влияет выбор регенерирующего раствора, тип ионообменной смолы, скорость, температура, чистота, тип и концентрация регенерирующего раствора, время его контакта с ионитами. Для приготовления растворов кислоты хлористоводородной и натрия гидроксида, их хранения и защиты персонала от возможных утечек, необходимы специальные емкости.

Системы ионного обмена требуют предварительной очистки от нерастворимых твердых частиц, химически активных реагентов во избежание загрязнения («отравления») смолы и ухудшения ее качества.

Ионообменная технология обеспечивает классическое обессоливание воды и является экономичной системой при получении воды очищенной. Данная технология позволяет получать воду с очень низким показателем удельной электропроводности. Поскольку данный метод не обеспечивает микробиологической чистоты из-за использования ионообменных смол, его использование для получения воды очищенной целесообразно в сочетании со стерилизующей (0,22 мкм) микрофильтрацией.

4. Электродеионизация

Является разновидностью ионного обмена. Системы электродеионизации используют комбинацию смол, выборочно проницаемых мембран и электрического заряда для обеспечения непрерывного потока (продукта и концентрированных отходов) и непрерывной регенерации.

Подаваемая вода распределяется на три потока. Одна часть потока проходит через каналы электродов, а две другие части попадают в каналы очистки и концентрирования, которые представляют собой слои смолы, помещенные между анионной и катионной мембранами. Смешанные слои ионообменных смол задерживают растворенные ионы. Электрический ток направляет захваченные катионы через катион-проницаемую мембрану к катоду, а анионы через анион-проницаемую мембрану к аноду. Ионообменная смола с обеих сторон мембраны усиливает перенос катионов и анионов через мембраны. Катион-проницаемая мембрана предотвращает поступление анионов к аноду, а анион-проницаемая мембрана предотвращает поступление катионов к катоду. В результате ионы концентрируются в этом отсеке, из которого они смываются в сток. В результате получается очищенная вода высокого качества. Разделение воды в канале очистки (секция смолы) электрическим потенциалом на ионы водорода и гидроксила позволяет осуществлять непрерывную регенерацию смолы.

С помощью процесса электродеионизации возможно удаление минеральных веществ. Эффективность метода зависит от исходного содержания примесей, скорости подаваемого потока воды в систему и предшествующих стадий водоподготовки. Метод электродеионизации целесообразно использовать в сочетании с обратным осмосом. Процентное содержание общих растворенных в воде веществ снижается более чем на 99%, удельная электропроводность снижается более чем в 15 раз по сравнению с подаваемой. Содержание общего органического углерода может уменьшиться на 50-90% в зависимости от состава органических веществ в воде и стадий предварительной очистки. Растворенный диоксид углерода переводится в бикарбонат ион и выводится в виде растворимого вещества. Удаление растворенного диоксида кремния составляет 80-95% в зависимости от условий и режима работы.

Технология электродеионизации имеет ряд преимуществ:

- Является неэнергоемким процессом;

- Осуществляется непрерывная регенерация;

- Не нужна замена смолы, поскольку смола не истощается;

- Не останавливается производство воды из-за истощения смолы;

- Достаточно низкие затраты на обслуживание;

- Не требуется химических реагентов для регенерации.

Необходимым условием использования установки электродеионизации является температура воды, которая должна быть в пределах 10-35оС и уровень свободного хлора, не превышающий 0,1мг/л, вода должна быть достаточно деминерализована (электропроводность не более 60 мкСм/см (не более 5 мкСм/см в зависимости от применяемого оборудования) и декорбонизирована (содержание СО2 не более 5 мг/л (не более 1 мг/л в зависимости от типа применяемого оборудования)).

5. Обратный осмос

Обратный осмос обеспечивает самый тонкий уровень фильтрации. Обратноосмотическая мембрана действует, как барьер для растворимых солей, неорганических и органических молекул, а также для микроорганизмов и пирогенных веществ. В среднем содержание растворенных веществ после стадии обратного осмоса снижается до 1-9%, органических веществ - до 5%, коллоидные частицы, микроорганизмы, пирогены отсутствуют. Вода, получаемая обратным осмосом, содержит минимальное количество общего органического углерода.

Среди преимуществ обратного осмоса следует отметить простоту и независимость от солесодержания исходной воды, низкие энергетические затраты и значительно невысокие затраты на сервис и технический уход. Система достаточно легко подвергается мойке, дезинфекции и очистке, не требует использования сильных химических реагентов и необходимости их нейтрализации.

При осуществлении осмотического процесса определенную проблему представляет выбор мембран. Он должен быть основан на требованиях, предъявляемых к водоподготовке, рабочим условиям и характеристикам, условиям санации, безопасности, источнику подаваемой в систему воды.

Обратный осмос обычно используется в системах получения воды для фармацевтических целей в следующих случаях:

- для получения воды очищенной, и как подготовительный шаг перед дистилляцией для получения воды для инъекций;

- перед установками ионного обмена для снижения расхода кислоты и щелочи, необходимой для регенерации;

- как конечный этап для получения воды для инъекций (двухступенчатый осмос).

Для получения воды очищенной в последнее время применяют двухступенчатую систему обратного осмоса. Предварительно вода поступает на первую ступень обратного осмоса. Образующийся при этом концентрат сбрасывается. Пермеат подается на вторую ступень обратного осмоса и еще раз подвергается очистке. Так как концентрат от второй ступени обратного осмоса содержит меньше соли, чем питающая обратноосмотическую установку вода, его можно смешать с подаваемой водой и тем самым вернуть в систему.

При использовании обратного осмоса, как предварительной ступени очистки воды, возможно использование одноступенчатой установки. При большой солевой нагрузке и высоком содержании хлоридов в воде данная установка в большинстве случаев не сможет обеспечить качество получаемой воды, регламентированное Фармакопеей.

У этого метода есть свои недостатки. Обратный осмос не способен полностью удалять все примеси из воды и обладает низкой способностью к удалению растворенных органических веществ с очень малым молекулярным весом.

Получаемая этим методом вода холодная (большинство систем используют воду с температурой от 5 до 28оС), что увеличивает возможность микробной контаминации.

По сравнению с системами ионного обмена обратный осмос не позволяет значительно снизить удельную электропроводность, в частности из-за высокого содержания углекислого газа в воде. Диоксид углерода обычно свободно минует обратноосмотические мембраны и попадает в пермеат в тех же количествах, что и в исходной воде. Во избежание этого, рекомендуется использовать анионообменные смолы перед обратноосмотическим модулем, либо декарбонизатор после модуля обратного осмоса.

Материал мембран является достаточно хрупким, возможно нарушение его целостности за счет превышения допустимого давления, либо за счет образования противодавления в линии фильтрата.

При использовании мембран, не выдерживающих воздействие свободного хлора, обязательным является предварительная установка угольного фильтра или дозирование соединений, содержащих натрия сульфит.

Обратноосмотические мембраны неустойчивы к воздействию высоких температур. Поэтому необходимо обеспечить охлаждение воды, если она поступает на установку нагретой.

Мембраны могут накапливать грязь. Поэтому их следует эксплуатировать в перекрестном потоке, т.е. вдоль поверхности мембраны всегда должен идти поток, который уносит отделенный материал, в связи с чем, наряду с фильтратом (пермеатом), образуется концентрат.

Некоторые вещества, такие как сульфаты бария, стронция, кальция карбонат, диоксид кремния, механические и коллоидные частицы могут приводить к забиванию пор мембранных элементов, «оштукатуриванию», «остеклению» их поверхности. Это можно предотвратить использованием стадий предварительной очистки.

Из выше сказанного следует, что для эффективной работы обратноосмотических установок необходимо учитывать качество исходной воды и осуществлять грамотный выбор методов ее предварительной обработки и конфигурацию системы в целом.

6. Дистилляция

Является традиционным, эффективным и надежным методом, обеспечивающим высокую степень очистки, возможность получения горячей воды и обработки паром, что важно при производстве лекарственных средств в соответствии с правилами GMP.

Следует отметить, что дистилляция редко используется для получения воды очищенной, т.к. существуют более экономичные методы, описанные выше.

Для получения воды очищенной используют дистилляторы, которые отличаются друг от друга по способу нагрева, производительности и конструктивным особенностям.

Метод однократной дистилляции неэкономичен, так как при его использовании велики энергозатраты на нагрев и испарение воды (около 3000 кДж на кг пара), а также затраты воды на конденсацию пара (около 8 л воды 1 кг пара). Использование однократной дистилляции целесообразно для малых потреблений воды - 10-20 л/ч.

Более эффективным и экономичным, по сравнению с обычной дистилляцией, являются высокоэффективные многоколоночные дистилляторы.

Основной принцип многоколоночного дистилляционного аппарата состоит в том, что требующаяся для переноса тепла разница температур (что соответствует разнице давлений) получается при нагреве первой колонны паром с высокой температурой. Пар, полученный в первой колонне, охлаждается в дистиллят, давая ему немного подогреть работающую при более низкой температуре и давлении вторую колонну. Пар второй колонны, в свою очередь, подогревает третью колонну, которая функционирует при атмосферном давлении. Таких колонн может быть несколько. Только в последней колонне полученный пар требует для охлаждения в дистиллят типичного охладителя с холодной водой. Таким образом, энергию используют на подогрев только первой колонны дистиллятора, а охлаждающую воду - только в последней колонне для охлаждения пара. Увеличивая число колонн, можно уменьшить расход как пара, так и воды, так как в каждой колонне уменьшается количество испаряемой воды и пара в охладителе.

Другим экономичным методом дистилляции является метод термического сжатия. Компрессорный дистилляционный аппарат действует по принципу природных законов для газов: при повышении давления газа, т.е. при сокращении его объема, его температура поднимается. Когда вода в баке кипячения и сам аппарат сначала нагреваются до 100оС подводимой извне энергией, вода начинает при атмосферном давлении кипеть. В этот момент включается насос, в баке снижается давление и одновременно снижается температура газа, т.е. точка кипения воды на стороне всасывания снижается, но с другого конца пар уплотняется и температура и давление со стороны сжатия поднимаются. Полученный таким образом пар под давлением с более высокой температурой используется для подогрева бака кипячения с помощью спирали. Пар остывает и образовавшаяся из пара дистиллированная вода вытекает из аппарата. В аппарате нет обычного конденсатора и не требуется охлаждающей воды. Если дистиллированную воду используют холодной, оставшееся в дистилляторе тепло почти полностью переносится в питательную среду в теплообменник. При включенном термокомпрессоре и стабилизации работы дистилляционного аппарата дополнительной энергии не требуется. Недостатками этого метода являются высокий уровень шума, необходимость в постоянном техническом обслуживании и возможность попадания в чистую воду посторонних частиц. Поэтому данный метод практически не используется при получении воды для фармацевтических целей.

Заключение

Подводя итог, необходимо отметить, что для получения воды очищенной и выбора соответствующей технологии необходим индивидуальный и профессиональный подход в каждом конкретном случае, начиная с разработки, утверждения проекта и заканчивая его реализацией и техническим и технологическим сопровождением.

В настоящий момент в нашей стране существует только несколько отечественных и зарубежных компаний (в том числе и ЗАО «НПК Медиана-Фильтр»), которые комплексно подходят к решению задач, связанных с получением воды очищенной в медицинских учреждениях и на фармацевтических предприятиях.

Литература

1. Валевко С.М. Вода для фармацевтических целей. Журнал "Фармацевтический вестник" №8 от 16.04.98г. - 15-17с.

2. Закотей М.В. Качество воды - один из важных факторов успешной работы фармацевтического предприятия. Журнал "Провизор" №5 от 28.05.04г. - 13-14с.

3. Мовсесов С.Р. Вопросы обеспечения водой фармацевтических предприятий. Журнал "Чистые помещения и технологические среды"8.2004г. - 3-7с.

4. Приходько А.Е., Пантелеев А.А. Предварительная подготовка и получение воды очищенной // Медиана-фильтр. 2006. - 8с.

5. Приходько А.Е. Современные требования к качеству воды для фармацевтических целей // Медиана-фильтр. - 2005. - 11с.

6. Схемы очистки воды. № МУ-78-114 от 22.05.98.

7. http://prom-water.ru Осмос, обратный осмос, нанофильтрация, ультрафильтрация.2с.

Размещено на Allbest.ru

...

Подобные документы

  • Нормативные документы, регламентирующие производство и контроль качества воды. Типы воды, ее загрязнение и схемы очистки. Системы распределения воды очищенной и воды для инъекций. Контроль систем получения, хранения и распределения, валидация системы.

    курсовая работа [2,1 M], добавлен 12.03.2010

  • Требования к воде, используемой в фармацевтическом производстве. Концепция фармацевтической системы качества. Международный стандарт GMP и его показатели. Качество воды для инъекций. Обратный осмос, санация системы распространения воды для инъекций.

    курсовая работа [2,1 M], добавлен 13.06.2012

  • Производство высокоочищенной питьевой воды, системы ее очищения и техническое обслуживание. Применение метода двухступенчатого обратного осмоса для современного способа получения воды для инъекций. Основные положения метода, его достоинства и недостатки.

    контрольная работа [260,5 K], добавлен 07.11.2014

  • Задачи обработки воды и типология примесей. Методы, технологические процессы и сооружения для очистки воды, классификация основных технологических схем. Основные критерии для выбора технологической схемы и состава сооружений для подготовки питьевой воды.

    реферат [1,2 M], добавлен 09.03.2011

  • Оценка качества воды в источнике. Обоснование принципиальной технологической схемы процесса очистки воды. Технологические и гидравлические расчеты сооружений проектируемой станции водоподготовки. Пути обеззараживания воды. Зоны санитарной охраны.

    курсовая работа [532,4 K], добавлен 02.10.2012

  • Расчет принципиальной тепловой схемы. Расчет расширителя (сепаратора) непрерывной продувки. Расчет расходов химически очищенной и сырой воды. Определение количества котлоагрегатов, устанавливаемых в котельных. Тепловой баланс котельного агрегата.

    курсовая работа [240,5 K], добавлен 03.11.2009

  • Проблемы воды и общий фон развития мембранных технологий. Химический состав воды и золы ячменя. Технологическая сущность фильтрования воды. Описание работы фильтр-пресса и его расчет. Сравнительный анализ основных видов фильтров для очистки воды.

    курсовая работа [3,5 M], добавлен 08.05.2010

  • Описание натуральных соков в сухом виде: паст, гранул, порошков. Характеристика и значение химического состава плодов и ягод. Технологическая сущность процесса очистки воды, схемы производства нектара "Мультифруктовый". Материальный баланс производства.

    курсовая работа [307,4 K], добавлен 26.10.2009

  • Подготовка воды для ликероводочного производства. Принципиальная технологическая схема получения водки. Купажирование напитков, каскадная фильтрация ликероводочных изделий. Технология получения пищевого уксуса. Производство твердого диоксида углерода.

    учебное пособие [3,1 M], добавлен 09.02.2012

  • Методы обеззараживания воды в технологии водоподготовки. Электролизные установки для обеззараживания воды. Преимущества и технология метода озонирования воды. Обеззараживание воды бактерицидными лучами и конструктивная схема бактерицидной установки.

    реферат [1,4 M], добавлен 09.03.2011

  • Классификация сточных вод и методы их очистки. Основные направления деятельности предприятия "Мосводоканал". Технологическая схема автомойки и процесс фильтрации воды. Структурная схема управления системой очистки воды, операторы программы CoDeSys.

    отчет по практике [5,4 M], добавлен 03.06.2014

  • Минеральные воды как растворы, содержащие различные минеральные соли, органические вещества и газы, анализ основных видов. Общая характеристика схемы комплекса технологического оборудования "Аква" для подготовки и фасования питьевой негазированной воды.

    презентация [1,2 M], добавлен 08.04.2015

  • Теоретические сведения о системах обратного осмоса (гиперфильтрации), лучшего из известных способов фильтрации воды. Явление осмоса. Описание обратноосмотических мембран их устройство. Фирмы-производители мембран, характеристика выпускаемой продукции.

    реферат [855,3 K], добавлен 11.01.2011

  • Мембранная технология очистки воды. Классификация мембранных процессов. Преимущества использования мембранной фильтрации. Универсальные мембранные системы очистки питьевой воды. Сменные компоненты системы очистки питьевой воды. Процесс изготовления ПКП.

    реферат [23,1 K], добавлен 10.02.2011

  • Определение расчетной производительности станции. Выбор технологической схемы очистки воды для целей водоснабжения. Устройства для приготовления раствора коагулянта и его дозирования. Обеззараживание воды и уничтожение в ней запахов и привкусов.

    курсовая работа [824,1 K], добавлен 17.03.2022

  • Классификация примесей, содержащихся в воде для заполнения контура паротурбинной установки. Показатели качества воды. Методы удаления механических, коллоидно-дисперсных примесей. Умягчение воды способом катионного обмена. Термическая деаэрация воды.

    реферат [690,8 K], добавлен 08.04.2015

  • Расчет и корректировка исходного состава воды, коагуляция с известкованием, содированием и магнезиальным обескремниванием. Оборотные системы охлаждения, расчет осветлителя и состава воды после осветлителя, проверка и корректировка состава исходной воды.

    курсовая работа [169,1 K], добавлен 25.11.2010

  • Особенности воды, её химические и физические свойства, определение жёсткости и методы ее устранения. Неблагоприятное воздействие жесткой воды на техническое и промышленное оборудование, а также на ткань, посуду, продукты питания и кожу человека.

    курсовая работа [33,5 K], добавлен 16.05.2009

  • Биохимическая технология получения спирта. Способы осахаривания разваренной массы, сбраживания зерно-картофельного сусла. Расчет продуктов спиртового производства. Подбор технологического оборудования. Учет и контроль производства. Расход воды и пара.

    курсовая работа [943,3 K], добавлен 17.03.2015

  • Выбор и обоснование технологической схемы подготовки воды и сооружений. Определение полной производительности станции и расчетных расходов. Узел приготовления и дозирования раствора флокулянта и коагулянта. Расчет горизонтальных отстойников и смесителей.

    дипломная работа [136,0 K], добавлен 29.08.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.