Технология производства древесноволокнистых плит (ДВП)

Сырьевая база производства. Породы древесины, гниль и другие дефекты. Форма, влажность и плотность древесного сырья. Производство мягких древесноволокнистых плит и физико-химические основы рассматриваемого процесса. Использование воды и энергии.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 04.12.2014
Размер файла 3,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Реферат

Пояснительная записка содержит 51 страниц, 13 рисунков, 9 таблиц, 10 источников.

ОТХОДЫ ЛЕСОПИЛЕНИЯ, ЩЕПА, ДРЕВЕСНОВОЛОКНИСТЫЕ ПЛИТЫ, ДРЕВЕСНОВОЛОКНИСТАЯ МАССА, ДРЕВЕСНОВОЛОКНИСТЫЙ КОВЕР, ДРЕВЕСНОВОЛОКНИСТОЕ ПОЛОТНО, СУХОЙ МЕТОД ПРОИЗВОДСТВА.

Целью данной курсовой работы является рассмотрение технологии производства древесноволокнистых плит (ДВП). Рассмотрены основные методы производства, наиболее подробно рассмотрен и проанализирован сухой способ производства ДВП.

Для этого было рассмотрено основное сырье, технология, физико-химические основы производства, основное оборудование, жизненный цикл продукции. Проведен анализ использования сырья и материалов.

В работе также рассмотрены источники воздействия данного производства на окружающую среду. Сделаны выводы о возможных методах уменьшения негативного воздействия.

Графический материал включает 1 лист иллюстративного материала формата А1, на котором изображена технологическая схема производства ДВП сухим способом.

Содержание

Введение

1. Сырьевая база производства

1.1 Породы древесины

1.2 Кора

1.3 Гниль и другие дефекты

1.4 Форма, влажность и плотность древесного сырья

2. Характеристика способов производства

2.1 Мокрый способ производства ДВП

2.1.1 Производство мягких древесноволокнистых плит

2.2 Сухого способ производства ДВП

2.2.1 Производство ДВП периодическим способом с применением многоэтажного гидравлического пресса

2.2.2 Производство непрерывным способом с применением каландрового пресса

3. Физико-химические основы рассматриваемого процесса

4. Технологическая схема производства

4.1 Технологическая схема процесса

4.2 Характеристика основного оборудования

4.3 Анализ использования сырья и материалов

4.4 Использование воды и энергии

4.4.1 Использование воды

4.4.2 Использование электроэнергии

5. Жизненный цикл продукции и основные виды воздействия производства на окружающую среду

5.1 Жизненный цикл продукции

5.2 Основные виды воздействия производства на окружающую среду

Заключение

Список использованных источников

Введение

Древесноволокнистые плиты (ДВП) в настоящее время производятся в довольно больших объемах во многих странах мира (США, Япония, Швеция, Россия и другие), в том числе и в Республике Беларусь. В СНГ функционирует более 60 крупных предприятий. Эти плиты не только полноценно заменяют натуральную древесину в листовом виде, но и обладают целым рядом полезных свойств (теплопроводность, звукопоглощение, звукоизоляция, огнестойкость, биостойкость), не присущих древесине, поэтому имеют широкую область применения, которая непрерывно расширяется, в особенности в производстве мебели, где ДВП в виде МДФ хорошо известны как конструкционный и отделочный материал. Основное количество ДВП производится на предприятиях, расположенных в Бобруйске, Витебске, Борисове, Пинске, Мостах, Ивацевичах. В ОАО «Мозырьдрев» запланирован ввод в действие цеха по производству особого вида ДВП по сухому способу - изоляционных с широким диапазоном толщины и свойств. Их отличительной особенностью являются экологическая чистота и целевое направление использования - в строительстве зданий и сооружений. Около 26 % ДВП используется на внутреннем рынке, остальное поступает на экспорт (в Россию, Польшу, Литву и др.). На долю Республики Беларусь приходится 0,43 % общемирового производства ДВП. ДВП производят из неделовой древесины и древесных отходов, а именно сырьём является технологическая щепа, а также отходы лесопильных и деревообрабатывающих предприятий. ДВП успешно используют в домостроении, при изготовлении мебели и тары, в машиностроении в качестве экологически чистого конструкционного и отделочного материала. Это обуславливает необходимость увеличения объёмов выпуска плит, расширения ассортимента и повышения качества [1]. В связи с этим считаю данную тему актуальной для изучения.

1. Сырьевая база для производства древесноволокнистых плит

Выбор сырья определяется экономической целесообразностью с учетом величины его запасов, условий заготовки, доставки и хранения. Для производства древесноволокнистых плит в качестве первичного сырья применяют стволовую древесину хвойных и лиственных пород, древесину рубок ухода за лесом, стебли однолетних растений.

В качестве вторичного древесного сырья используют отходы лесопильной и деревообрабатывающей промышленности (горбыли, рейки, вырезки и торцы), в том числе отходы фанерной промышленности (карандаши, шпон-рванин), лесосечные отходы (сучья, ветки), опилки.

Из недревесных отходов сырьем для производства древесноволокнистых плит служат: отходы производства древесноволокнистых плит - плитные обрезки; старая бумага - макулатура (для производства мягких плит); отходы бумагоделательной промышленности - коста, пучки неразделившихся волокон.

Отходы лесопиления и деревообработки и сырье древесное для технологической переработки - основные виды сырья для получения технологической щепы в производстве древесноволокнистых плит.

Технологическая щепа поступает на предприятия ДВП из смежных цехов и как готовая продукция с других предприятий. Использование отходов от обработки и сушеной древесины нежелательно.

В качестве сырья для производства ДВП могут применяться почти все породы древесины, произрастающие в европейской части. Практическое значение в производстве ДВП мокрого и сухого способов имеют хвойные породы - ель, сосна, пихта и лиственные - береза, осина.

Качественные требованиям к лесоматериалам определяются ОСТ 13-76 «Сырье древесное для технологической переработки. Размеры и технические требования» и ГОСТ 23827 « Сырье древесное тонкомерное. Технические условия», к щепе - ГОСТ 15815 « Щепа технологическая» и ТУ 15-396 «Щепа технологическая и сучьев».

1.1 Породы древесины

Для производства древесноволокнистых плит мокрым способом хвойные породы в общем объеме потребления занимают преобладающее место, сухим способом - лиственные породы. Это объясняется тем, что каждая породная группа, а в каждой группе каждая порода имеет свои индивидуальные особенности как по физическим свойствам, так и по химическому составу: плотности древесины, ее прочности, длине и толщине волокна, содержанию основных компонентов древесины (целлюлоза, гексозаны, пентозаны, лигнин, пектиновые вещества), которые предпочтительны для мокрого или сухого способов (таблица 1.1) [4].

Таблица 1.1 - Химический состав экстактивных веществ

Порода древесины

Белковые вещества

Вещества, растворимые в горячей воде

Жиры, воски и смолы

Зола

1

2

3

4

5

Ель

0,7

?

2,3

0,50

Пихта

0,7

?

2,0

0,40

Сосна

0,8

2,3

3,0-4,9

0,20-0,40

Лиственница

?

13,6-15,3

1,8-2,4

0,28-0,53

Кедр

?

4,9

4,5

0,19

Осина

0,6

4,2

3,1-3,4

0,30-0,52

Тополь

0,7

?

3,2

1,00

Береза

0,8

0,7

1,8-2,2

0,23-0,40

Бук

1,0

?

2,4

1,20

Повышенное содержание легкогидролизуемых веществ у древесины лиственных пород ухудшает качество оборотных вод, снижает выход древесноволокнистой массы при мокром способе.

Для механических свойств древесноволокнистой массы имеют значение величина клеток древесины и другие их особенности. У клеточных элементов лиственной древесины значительно меньше (примерно в три раза) длина волокон по сравнению с трахеидами хвойных пород (таблица 1.2).

Таблица 1.2 - Размеры волокон отечественных пород, мм

Порода древесины

Длина

Ширина

Порода древесины

Длина

Ширина

1

2

3

4

5

6

Трахеиды хвойных

Либриформ лиственных

Сосна

2,6-4,4

0,030-0,075

Осина

0,8-17,0

0,020-0,046

Ель

2,6-3,8

0,025-0,069

Береза

0,8-1,6

0,014-0,040

Пихта

2,6-3,5

0,024-0,045

Тополь

0,7-1,6

0,020-0,044

В связи с дефицитом хвойного сырья значительно увеличилось использование древесины лиственных пород для производства плит мокрым способом. Средний расход древесины лиственных пород на производство древесноволокнистых плит мокрым способом в европейской части составил примерно 59-73%.

Увеличение доли лиственной древесины стало возможным благодаря применению на ряде предприятий упрочняющих добавок (альбумина, фенолформальдегидной смолы), а также совершенствованию технологических процессов производства плит и его оборудования.

Физико-механические свойства перерабатываемой древесины зависят от предела прочности той или иной породы древесины, что сказывается на процессе образования элементов щепы и на расходе энергии. Наибольшая энергия затрачивается на рубку тополя, сосны, пихты, лиственницы.

1.2 Кора

Для производства древесноволокнистых плит используют щепу, полученную из неокоренного сырья. Кора (корка и луб) физическими свойствами и химическим составом значительно отличается от стволовой древесины. Кора содержит большое количество экстрактивных веществ и лигнина. Количество пентозанов и целлюлозы значительно меньше, чем в стволовой древесине. Среднее объемное содержание коры на стволовой древесине следующее, процент: ель - 9,5; сосна - 12; береза - 13; осина - 14; пихта - 11; лиственница - 18. древесина плита сырье

Содержание коры в технологической щепе из стволовой древесины по ГОСТ 15815 допускается до 15%, в щепе из сучьев - до 20%. Более высокое содержание затрудняет процесс обезвоживания волокнистого ковра, ухудшает внешний вид готовых плит и качество оборотных и сточных вод, снижает выход древесноволокнистой массы и показатель прочности плит.

Выход древесноволокнистой массы из коры примерно на 26% ниже, чем из стволовой, из коры ели - на 12-13 %. Наличие коры березы вызывает затруднения при отделке твердых древесноволокнистых плит лакокрасочными материалами. Кора в тонкомерных сортиментах представлена в основном лубом. Корковый слой у такой древесины отсутствует или имеется в зачаточном состоянии, толщина коры 1-4 мм.

1.3 Гниль и другие дефекты

В зависимости от глубины изменений различают гниль Й, ЙЙ и ЙЙЙ стадий. В гнилой древесине увеличивается число обрывков волокон и средняя длина волокна меньше, чем у здоровой древесины примерно в 1,4-1,8 раза. В древесине, поврежденной дереворазрушающими грибами, по сравнению со здоровой, наблюдается сильное увеличение содержания минеральных веществ, веществ, растворимых в горячей воде, и снижение количества пентозанов. Поперечные разрезы волокон у древесины, пораженной гнилью, меньше, чем у здоровой.

Изменение структуры клеточной стенки отражается на прочности отдельных волокон. Потери древесины, обусловленные гниением, вызывают снижение ее плотности.

Особенности химического состава гнили способствуют снижению выхода древесноволокнистой массы, ухудшению прочностных свойств плит и качества оборотных вод, что сказывается на производстве ДВП. При изготовлении ДВП допускается изготовление щепы, полученной из необлагороженного сырья.

В сырье древесном для технологической переработки ядровая гниль не допускается более: для Й и ЙЙ сортов - 1/4 и для ЙЙЙ сорта - 2/3 толщины соответствующего торца выходом на второй торец не более: для Й сорта - 1/3, ЙЙ сорта - 1/2 и ЙЙЙ сорта - 2/3 его толщины. Содержание гнили в сырье древесном тонкомерном не допускается. Содержание гнили в технологической щепе по ГОСТ 15815 разрешается до 5% от массы щепы. Щепа с содержанием гнили более 5% используется при соответствующей корректировке технологического режима.

Обугленные поверхности древесины для производства щепы не допускаются. Наличие обугленных частиц и металлических включений в щепе отрицательно влияет на качественные показатели плит и состояние оборудования, особенно на размольной гарнитуре дефибраторов и рафинаторов. Содержание минеральных включений разрешается не более 1%. При пропуске через гидромоечную установку содержание их снижается на 90-95%.

1.4 Форма, влажность и плотность древесного сырья

Размеры древесного сырья зависят от приемных устройств рубильных машин, наличия специального оборудования для разделки сырья. Размеры древесного сырья для технологической переработки установлены по длине 1-6 м с градацией 1 м независимо от сортности сырья, по толщине для Й сорта - 4 см и выше, для ЙЙ и ЙЙЙ сортов - 2см и выше. При поставке сырья в расколотом виде наибольшая толщина не должна превышать 40 см. Высота оставляемых сучьев не более 5 см.

Отходы лесопиления и деревообработки используют длиной до 4,5-6,5 м. Тонкомерное сырье, получаемое при рубке ухода за лесом и на лесосеках главного пользования при осветлении, прочистке, прореживании, применяется неокоренным, с обрубленными сучьями, с толщиной в верхнем отрубе 2-6 см при длине 1-3 м.

Оптимальная относительна влажность щепы 30-50%. Влажность древесины, поступающей на предприятия, из-за периодичности поставки, различия сроков хранения и ряда других факторов значительно колеблется. Для выравнивания влажности рекомендуется перемешивать щепу в процессе приготовления, загрузки, выгрузки, выдерживать в складах (бункерах), пропускать через гидромойку.

Плотность древесного вещества почти не зависит от породы древесины и составляет в среднем 1540 кг/м?. Плотность древесины как физического тела зависит от объема пор и влажности древесины. В производстве ДВП важнейшую роль играет условная плотность древесины - отношение массы образца в абсолютно сухом состоянии к объему при влажности, равной пределу гигроскопичности или больше его.

2. Характеристика способов производства

Наиболее распространенные способы изготовления древесноволокнистых плит - мокрый и сухой. Промежуточные между ними - мокросухой и полусухой способы, которые получили меньшее распространение.

Мокрый способ основан на формировании ковра из древесноволокнистой массы в водной среде и горячем прессовании нарезанных из ковра отдельных полотен, находящихся во влажном состоянии (при относительной влажности около 70%). При сухом способе ковер формируется из высушенной древесноволокнистой массы в воздушной среде. Плиты получают горячим прессованием полотен, имеющих влажность 5-8%. Полусухой способ основан на формировании ковра из высушенной древесноволокнистой массы в воздушной среде и горячем прессовании полотен, имеющих влажность около 20%, а мокросухой - на формировании ковра из древесноволокнистой массы в водной среде, сушке полотен и горячем прессовании сухих полотен, имеющих влажность, близкую к нулю.

В нашей стране плиты выпускают по мокрому и сухому способам производства. В процессе изготовления плит любым из названных способов древесину измельчают в щепу; затем ее превращают в волокна, из которых формируют ковер, разрезанный далее на полотна. Сухие полотна прессуют в твердые плиты. Влажные полотна или прессуют, получая твердые и полутвердые плиты, или сушат, получая мягкие (изоляционные) плиты. Указанными выше способами можно изготовить волокнистые плиты из любых органических материалов, поддающихся расщеплению на волокна.

2.1 Мокрый способ производства ДВП

Данный способ включает следующие основные стадии [1]:

– получение древесноволокнистой массы;

– проклейка древесноволокнистой массы;

– отлив древесноволокнистого ковра;

– горячее прессование плит;

– пропитка маслом, термическая обработка и увлажнение древесноволокнистых плит;

– форматная резка плит;

– контроль качества.

2.1.1 Производство мягких древесноволокнистых плит

Технологическая схема производства мягких (изоляционных) древесноволокнистых плит на участках приема и подготовки древесного сырья и химических добавок не отличается от схемы производства твердых плит. Но волокнистая масса используется с более высокой на 15-18 ДС степенью помола, т.е. составляет 36-40 ДС. Это достигается применением третьей ступени размола на дисковой мельнице, которую устанавливают на потоке массы, поступающей из рафинаторного бассейна.

В качестве упрочняющей добавки используют малотоксичную фенолоформальдегидную смолу при повышенном на 1-2% расходе по сравнению с расходом для твердых плит. В качестве гидрофобизатора применяют эмульсии с парафин содержащими веществами, а для проклейки плит применяют канифольно-парафиновую эмульсию или эмульсию с сульфатным мылом.

Формирование древесноволокнистого ковра производят на плоскосеточной отливной машине с увеличенной до 2440 мм и более шириной сетки при пониженной до 4 м/мин скорости.

Плиты впускают толщиной от 8 до 25 мм. После отливной машины полотна влажностью порядка 65% автоматически питателем подаются в роликовую сушилку. Промышленное применение нашли 8-,12-и 20-ярусные сушилки с многократной циркуляцией сушильного агента воздуха, подогреваемого в калориферах с применением в качестве теплоносителя насыщенного водяного пара давлением 1,0-1,2 МПа.

Мягкие плиты дополнительной термообработке и кондиционированию не подвергаются.

2.2 Сухого способ производства ДВП

В настоящее время известно несколько технологических схем производства ДВП сухим способом с применением различного оборудования.

Независимо от принятого оборудования технологический процесс производства древесноволокнистых плит сухим способом составляют следующие операции: приемка, хранение сырья и химикатов; приготовление щепы; пропарка, размол щепы на волокна; подготовка связующего и гидрофобизирующих добавок; смешение волокна со связующими и другими добавками; сушка волокна; формирование ковра; предварительное уплотнение (подпрессовка); прессование; кондиционирование плит; механическая обработка плит.

При производстве древесноволокнистых плит сухим способом применяют древесину различных пород, причем в отличие от производства мокрым способом здесь отдается предпочтение древесине лиственных пород, что обусловлено спецификой воздушного ковра. Короткие и ровные волокна лиственных пород, при прочих равных условиях, обеспечивают более равномерную плотность ковра, чем длинные волокна хвойных пород.

Древесина различных пород вследствие особенностей ее структуры требует специфической обработки, поэтому плиты с наименьшим содержанием связующего получают при использовании одной породы. Однако возможно и смешивание различных пород древесины, но при этом следует учитывать особенности ее строения. Плиты с хорошими показателями получают при смешивании пород с одинаковыми или близкими плотностями. При смешивании пород с различной плотностью плиты различаются массой и скоростью волокон в воздушном потоке, поэтому равномерная сушка не может быть обеспечена. Следует также учитывать, что породы древесины разной плотности требуют разных сроков сушки.

2.2.1 Производство ДВП периодическим способом с применением многоэтажного гидравлического пресса

Принципиальная особенность сухого способа производства состоит в формировании древесноволокнистого ковра из сухих волокон и прессование в горячем гидравлическом прессе полотна без транспортной сетки, что значительно сокращает цикл последнего указанного процесса.

Периодический способ производства ДВП включает следующие стадии [1]:

приготовление древесноволокнистой массы. На заводах по производству ДВП сухого способа принята одноступенчатая схема размола щепы с использованием пропарочно - размольной установки, работающей по методу «Бауэра». Установка «Бауэр» состоит из пропарочной камеры рафинера с двумя размольными дисками, вращающимися в разные стороны. Диаметр размольных дисков - 915 мм, частота вращения - 1500 мин-1. При оценке качества древесноволокнистой массы большое значение придается фракционному составу волокон и их степени помола. Удовлетворительной считают такую древесноволокнистую массу, в которой крупная фракция, оставшаяся на сите № 10 (10 отверстий или ячеек на 1 дюйм сетки), составляет 10%, средняя фракция на сите № 80 - 70% и мелкая на сите № 200 - 20%. Для определения степени помола волокон применяют прибор ВНИИдрев, принцип действия которого основан на определений сопротивления волокон потоку проходящего через него воздуха. Навеску высыпают в рабочую трубку, внутри которой расположена сетка. В трубе вакуум- насосом создается разряжение. Волокна в потоке воздуха скоростью до 1 м/с осаждаются на сетке, покрывая ее тонким слоем. Разряжение под слоем волокон характеризует степень помола выраженную в единицах ВНИИдрев. Древесноволокнистая масса для наружных слоев плит должна иметь степень помола 350 единиц, для внутренних - не менее 250 единиц, что ориентировочно составляет 13,7 и 12 ДС.

введение связующей и гидрофобизирующей добавки. В качестве связующего, вводимого в древесноволокнистую массу, применяют фенолоформальдегидную смолу (например, марки СФЖ-3014), расход которой зависит от толщины плиты: при толщине плиты 6-8 мм - 4-5% от массы сухого волокна, при 10-12 мм - 6-8%. Рабочий раствор фенолоформальдегидной смолы готовят 25%-ной концентрации; его вязкость по вискозиметру ВЗ-4 должна быть 11-25 с. Раствор смолы вводят в массу сразу после мельницы размола. Для придания плите гидрофобных свойств в ее композицию добавляют восковые продукты (парафин). Парафин вводят в расплавленном виде при температуре

80 - 90 ?С путем впрыскивания его в щепу перед шаровым затвором пропарочного котла. Расход парафина составляет 1% от массы сухого древесного волокна.

сушка древесных волокон. После размола абсолютная влажность волокнистой массы достигает 120%. Снижают влажность волокна до 6-8% в две ступени в сушилках. В качестве сушильного агента используются горячий воздух и смесь топочных газов с воздухом. Волокна сушатся во взвешенном состоянии. На первой ступени сушки волокна после размола транспортируются по трубопроводу воздухом, подогретым в воздухонагревателе до температуры 160-170 ?С. Увлажненный воздух и пар отделяются от волокон в циклоне и через выпускную трубу удаляются в атмосферу. Продолжительность сушки на первой ступени 4-5 с. Через ротационный разгрузочный клапан и рыхлитель волокна температурой около 70 ?С и абсолютной влажностью 65-67 % поступают на вторую ступень сушки в барабанную сушилку системы «Бютнер», в которой сушильным агентом служит смесь топочных газов с воздухом. Температура сушильного агента перед сушилкой - 190 ?С, а при поступлении в барабан - 150 ?С. В барабане сушилки сушильный агент движется винтообразно по внутренней цилиндрической его поверхности; при этом волокна интенсивно перемешиваются. Время сушки зависит от шага винтообразного потока, который регулируется направляющими лопатками, расположенными в нижнем канале, и может составлять 8-15 с. После сушки волокна направляются по воздуховоду в циклон, где отделяются от сушильного агента. Температура удаляемого сушильного агента, которая не должна превышать 70 ?С, контролируется системой автоматического регулирования. Сухие волокна проходят пневмосистему охлаждения, после чего направляются на формирование ковра. Процесс сушки волокон требует строгого контроля из-за высокой пожаро- и взрывоопасности.

формирование древесноволокнистого ковра. Формирование древесноволокнистого ковра осуществляется на движущейся сетке в воздушной среде. Участок формирования, предназначенный для изготовления пятислойного ковра, состоит из вакуум-формирующей машины с пятью головками, системы пневмотранспорта, ленточно-валкового предварительного пресса, узла раскроя ковра и плитного форпресса. Сетка вакуум-формирующей машины движется со скоростью 9-50 м/мин, которая зависит от высоты формируемого ковра. Максимальная общая высота формируемого ковра 560 мм. Ковер формируется последовательно в результате перемещения сетки от одной формующей головки к другой. Плотность получаемого древесноволокнистого ковра, зависящая от плотности древесины, степени помола волокна, вакуума под сеткой и других факторов, составляет 15-25 кг/м3.

подпрессовка древесноволокнистого ковра. После вакуум-формирующей машины древесноволокнистый ковер поступает в ленточно-валковый пресс, где предварительно подпрессовывается. Пресс состоит из двух пар валков и регистровых валиков, на которые натянуты ленты, шириной 2250 мм. Скорость движения лент регулируется в пределах 9-50 м/мин. Нижняя лента проходит под сеткой вакуум-формирующей машины и движется со скоростью, равной скорости сетки. Верхняя часть пресса состоит из двух секций, соединенных между собой шарнирно. В первой секции регистровые валики расположены наклонно под углом приблизительно 6 градусов по отношению к нижним, что позволяет постепенно уплотнять уходящий в пресс ковер. Просвет между регистровыми валиками во входной части пресса, таким образом, может достигнуть 600 мм. Регистровые валики второй секции расположены горизонтально, параллельно нижним валикам. Расстояние между валиками регулируют в пределах 200 мм. Древесноволокнистый ковер во время подпрессовки значительно уплотняется, становясь транспортабельным. При этом высота ковра уменьшается примерно в 2,5 раза. Оценкой качества ковра служит равномерность распределения плотности ковра и состояние его кромок на следующей стадии технологического процесса - форматной обрезке. Толщина древесноволокнистых полотен после первичной подпрессовки устанавливается в зависимости от толщины изготовляемых плит, мм: для плит толщиной 6 мм - 100, толщиной 8 мм - 140. Древесноволокнистые полотна толщиной свыше 120 мм не могут быть направлены в горячий гидралический пресс из-за недостаточного просвета между плитами пресса, поэтому они подвергаются дополнительной предварительной подпрессовке в одноэтажном плитном форпрессе периодического действия. Форпресс состоит из нижней (неподвижной) и верхней (подвижной) плит, максимальное расстояние между которыми 460 мм. Выгруженное древесноволокнистое полотно из форпресса поступает на участок, где проверяют его качество.

горячее прессование плит. Горячее прессование ведут в 22-этажном гидравлическом прессе, оснащенном механизмом одновременного смыкания плит. ДВП прессуются непосредственно между поверхностями горячих плит пресса без глянцевых, транспортных листов и сеток, которые используются при мокром способе производства. Спрессованные ДВП вдвигаются в приводные ролики, которые направляют их в разгрузочную этажерку, откуда они по одной поступают на конвейер, подающий их на участок обрезки кромок. Разгруженный пресс продувается сжатым воздухом от осевшего волокна.

кондиционирование плит. После продольной обрезки кромок плиты подаются с помощью 88-полочной вагонетки в камеру кондиционирования. Камера разделена на четыре зоны: в зоне 1 происходит выравнивание температуры плит, в ней поддерживаются температура воздуха 60-65?С и относительная влажность воздуха 50%; в зонах 2 и 3 плиты увлажняются при температуре 65-75?С и относительной влажности воздуха 75-80%; в зоне 4 плиты охлаждаются при температуре 20-30?С и относительной влажности воздуха 65-70%. Время тепловлажной обработки составляет 11,3 часа выгруженные из камеры кондиционирования вагонетки с плитами направляются к разгрузочному типпелю. Уложенные пачки плит подвергаются выдержке в течение не менее суток, во время которой снимаются внутренние напряжения в плитах. Завершающий этап технологического процесса - форматная резка плит и, если необходимо, их механическая обработка.

2.2.2 Производство непрерывным способом с применением каландрового пресса

В производстве ДВП сухим способом перспективным является применение метода непрерывного прессования, т. е. превращение древесноволокнистого ковра в плиту во время его движения с последующей резкой плитной ленты на требуемые форматы. В качестве прессового агрегата могут быть использованы каландр (обогреваемый барабан) или гусеничный плитный пресс. Сухой способ производства плит методом непрерывного каландрового прессования реализуется с применением оборудования фирмы «Бизон» (ФРГ). Этим способом выпускают плиты двусторонней гладкости толщиной 2,5; 3,2; 4,0; 6,5 мм, максимальной шириной 2400мм, длиной 2000; 2440; 2500; 2800; 3600 мм. Технологический процесс изготовления ДВП методом непрерывного каландрового прессования включает в себя следующие операции: приемку сырья и материалов; нормилизацию технологической щепы; приготовление и введение гидрофобизирующего вещества (парафина), связующего вещества (карбидо- и фенолоформальдегидной смолы), пластифицирующей добавки (карбамида или гексаметилентетрамина), отвердителя (хлористого или сульфата аммония); размолщепы на волокна; сушка древесноволокнистой массы; формирование древесноволокнистого ковра; прессование древесноволокнистой плитной ленты; раскрой плитной ленты на форматы; упаковку и укладку плит.

3. Физико-химические основы производства древесноволокнистых плит

Размол щепы - это одна из ответственных операций технологии производства древесноволокнистых плит. От качества и степени размола зависят процессы отлива и обезвоживания ковра, прессования и термовлагообработки плит, и соответственно, качественные показатели готовых плит. Полученная в процессе размола древесноволокнистая масса, насыщенная водой и дополнительно разбавленная ею в циклоне, представляет собой водную суспензию древесных волокон. Суспензия при значительном разбавлении ее водой приобретает вязкость, соответствующую воде, а при повышении содержания волокон вязкость смеси увеличивается, причем при определенной степени концентрации смесь теряет свойства текучести и перестает быть жидкостью. Концентрацию массы (в процентах) определяют по формуле

К =

где m1 - масса абсолютно сухого волокна в пробе, г; m2 - масса всей пробы, г.

Концентрация массы в трубопроводе после первичного размола составляет ? 33%, в циклоне при отделении пара концентрация повышается, однако подаваемой водой массу разбавляют и обычно направляют в промежуточный бассейн. Перед вторичным размолом концентрация должна быть не ниже 4%, на отливе - 0,9-1,8%.

Древесноволокнистая масса грубого помола разработкой характеризуется малой разработкой волокон и содержит много пучков волокон. Масса тонкого помола преимущественно состоит из фибриллированных волокон, которые приобрели большую гибкость и способность плотного формования на сетке. Наилучшей оценкой качества волокон является непосредственное изучение их структуры через микроскоп и измерение при помощи специальных приборов длины, диаметра и удельной поверхности волокна.

Для оценки качества волокнистой массы наибольшее распространение получил прибор дефибратор-секунда. Он построен с учетом того, что градус (степень) помола массы выражается в ее способности к обезвоживанию в единицу времени. Обозначается градус помола массы символом ДС. Средние показатели требуемой степени размола при производстве твердых плит составляют при первой ступени размола 15-18, второй - 20-26 ДС.

Кроме характеристики волокнистой массы по степени размола, часто пользуются данными фракционного состава волокна. Фракционирование - это разделение волокон по их размерам. Большинство приборов для фракционирования основано на пропуске определенного количества разбавленной массы через сита с отверстиями, соответствующими группам качественной оценки. Существует несколько методов фракционирования.

На рисунке 3.1 показана зависимость средней длины и толщины волокон в составе древесноволокнистой массы от ее фракционного состава и градуса (степени) помола, выраженной в ДС.

Рисунок 3.1 - График зависимости средней длины и толщины волокон от фракционного состава и градуса помола массы

Установки пропарки и размола щепы рассчитаны на давление насыщенного пара до 1,2 МПа. Пропарка щепы в подогревателе продолжается до 4 мин. Высокое давление насыщенного пара рекомендовалось фирмой «Дефибратор» для создания благоприятных условий размола и снижения расхода электроэнергии на приготовление волокна. Однако в связи с работой по сокращению количества потребляемой воды и решением проблемы очистки сточных вод этой же фирмой выдвинуто предложение о снижении температуры гидротермообработки.

Это объясняется тем, что древесина содержит водорастворимые вещества, а при повышенной температуре в результате гидролитического разложения растворимая часть их значительно увеличивается, снижая выход древесноволокнистой массы и ухудшая характеристику сточных вод. Влияние давления насыщенного пара при размоле на расход электроэнергии и на потери древесной массы отображено графически на рисунке 3.2

Рисунок 3.2 - График зависимости расхода электроэнергии и потерь древесной массы от давления пара при размоле

График показывает возможность экономии расхода сырья при повышенной потребности в электроэнергии с оптимальным давлением пара порядка 0,6 МПа. Однако выбор этого давления должен определяться технико-экономическим расчетом, учитывающим как полученную экономию по снижению затрат на сырье и организацию очистки сточных вод, так и дополнительные затраты на повышенный расход электроэнергии и другие технологические нужды. При изготовлении древесноволокнистой массы с применением низкого давления пара масса получается более гидрофильной, что отрицательно сказывается на свойствах плит, особенно по показателям водопоглощения и набухания. Избежать этого можно повышением температуры прессования, удлинением времени закалки или добавкой гидрофильных веществ.

Древесноволокнистая масса поступает на отлив с концентрацией в пределах 0,9-1,8% и должна быть более низкой при тонком помоле волокна. Вследствие развитой внешне поверхности волокон, полученной при размоле, создаются условия большей степени их сцепления и переплетения. Эта связь усиливается в процессе вакуумного отсоса и механического отжима воды из полотна. Относительную влажность полотна доводят до 68-72%. В таком состоянии полотно становится транспортабельным, а кроме того, максимальное удаление воды снижает расход пара и сокращает время на продолжительную сушку плит. Особенно это важно при производстве мягких плит, так как сушат их не в прессах, а сушильных камерах.

Скорость истечения древесноволокнистой массы должна быть несколько меньше скорости сетки. Наиболее оптимальной считают скорость на 5-10% меньше, чем скорость сетки. При более низкой скорости большее число волокон занимает продольную ориентацию, при увеличении скорости возрастает поперечная ориентация волокон.

Выливание массы на сеточный стол - первая стадия обезвоживания под воздействием силы тяжести. В этот момент начинает формоваться ковер. Правильно подобранная концентрация массы в зависимости от длины волокон и характера размола создает условия структурного соединения их между собой. Если концентрация слишком низкая, волокна осаждаются по отдельности, не создавая достаточной связи, больше подвергаясь направленной ориентации. Интенсивное обезвоживание происходит по всей ширине регистровой части, имеющей подъем 2,5-3,0 градуса.

Скорость обезвоживания древесноволокнистого ковра на регистровой части сеточного стола снижается по мере повышения сухости ковра. На последних валиках волокнистый слой уплотнен настолько, что возникшие капиллярные силы удерживаю воду и дальнейшее обезвоживание становится возможны только отсасыванием. Исследования показывают, что скорость обезвоживания волокнистого ковра прямо пропорциональна толщине слоя массы на сетке, вязкости воды и удельному сопротивлению фильтрации массы. Действующий напор массы в регистровой части имеет небольшую величину, состоящую из напора массы над сеткой и усиливает засасывания. Величина напора значительно возрастает при создании вакуума под сеткой. На скорость обезвоживания сильно влияет вязкость воды, которая зависти от температуры ( оптимальна температура отливаемой массы составляет 40-50 ?С (таблица 3.1).

Таблица 3.1 - Зависимость воды от температуры

Показатель

Значения

Температура, ?С

0

10

20

30

40

50

60

70

80

90

100

Вязкость воды, сантипуазы

1,79

1,30

1,00

0,80

0,65

0,55

0,47

0,40

0,35

0,31

0,28

Удельное сопротивление фильтрации массы характеризуется удельной поверхностью волокон, которая, в свою очередь, определятся качеством размола массы. Сопротивление фильтрации возрастает с увеличением поверхности волокон. Зависимость между скоростью обезвоживания и степенью помола массы подтверждается многочисленными опытами. На рисунке 3.3 приведен график зависимости при отливе образцов плит с различной концентрацией отлива.

Размещено на http://www.allbest.ru/

Рисунок - 3.3 Зависимость времени обезвоживания слоя массы от степени ее размола при концентрации отлива: 1 - 0,75; 2 - 1,5; 3 - 2,0; 4 - 2,5

При интенсивном обезвоживании под действием большого фильтрационного напора происходит относительный сдвиг волокон. Нарушение структуры наблюдается также при чрезмерном давлении валковыми прессами на влажный ковер. Исследованиями установлена необходимость равномерного прироста нагрузки на ковер от 0,012 до 0,5 МПа и более. Для современных отливных машин величину вакуума в отсасывающих устройствах рекомендуют от 0,012-0,015 до 0,030-0,035 МПа с постепенным его наращиванием, а линейное давление валов прессовой части машины должно составлять то 300 до 1200-1500 Н/см. Но даже в этом случае не обеспечивается плавность нагружения, оно носит ступенчатый характер, поэтому изменение нагрузки в процессе обезвоживания предрасполагает к разрушению структуры ковра.

Прессование - основная операция технологического процесса, опреде-ляющая качество выпускаемых плит и производительность оборудования. Во время прессования влажное древесноволокнистое полотно подвергается большому давлению при высокой температуре и превращается в древесноволокнистую плиту. Это превращение происходит вследствие физических, химических и морфологических изменений насыщенного влагой древесного волокна.

Влажность древесноволокнистых полотен определяется степенью обезвоживания в отливной машине. Относительная влажность полотен перед запрессовкой составляет 68-72%. При низкой влажности (меньше 65%) наблюдается ухудшение качества плит и иногда даже расслоение. Это явление находит различные объяснения. Отсутствие достаточной влаги на первой фазе прессование отрицательно сказывается на гидропластических свойствах волокон. Вода и образуемый пар воздействуют на волокна. Между набухающими волокнами происходит более тесный контакт. По мере удаления воды усиливается связь между волокнами, и эта связь тем большая, чем продолжительней процесс отвода воды . Однако длительность данного процесса должна быть оптимальной, поскольку слишком глубокий гидролиз древесины может вызвать усиленное выделение углеводов и сахаристых веществ, образующих пятна на плитах. На рисунках 3.4 и 3.5 приведены диаграммы зависимости удельного давления прессования и влажности прессуем полотен при различных параметрах [1].

Рисунок 3.4 - Диаграмма обезвоживания плиты в зависимости от толщины отливки из дефибраторной массы (градус помола 9,2 градус ШР) при массе 1 м2, кг: 1 - 7,4; 2 - 5,6; 3 - 3,7

Рисунок 3.5 - Диаграмма обезвоживания плиты в зависимости от степени размола (масса отливки 5-6 кг), градус ШР: 1 - 6; 2 - 9,2; 3 - 16

Толщина древесноволокнистых полотен и степень размола массы обратно пропорциональны скорости обезвоживания. Чем толще полотно и чем выше степень размола массы, тем труднее осуществить обезвоживание.

После первой фазы прессования (отжим) переходят ко второй - сушке плит, так как дальнейшее удаление воды возможно только ее испарением. Для ведения процесса сушки снижают удельное давление прессования, чтобы создать благоприятные условия удаления пара из полотен.

Время сброса давления составляет около 15 с. Его поддерживают на уровне 0,8 МПа, что несколько ниже давления выходящего пара. Для обеспечения равномерного выделения пара из влажного волокнистого полотна давления в период сушки сохраняют постоянным

Сушка можно проводить и при большом давлении. При этом улучшается физико-механические свойства плит, однако сушка проходит медленно и возникает опасность образования пятен и пригаров. При более низком давлении увеличивается его разность с давлением выходящего пара, и это приводит к повреждению внутренней структуры плит, а затем к их расслоению.

Снижение давления перед фазой сушки для получения плиты с нужной плотностью не оказывает влияния на последнюю. Плотность плиты определяется на первой фазе прессования. Кроме того, для получения твердой плиты с плотностью 0,9 г/см3 достаточно удельного давления 0,4МПа (рисунок 3.6) [1].

Рисунок 3.6 - Диаграмма зависимости плотности отдельного давления прессования

Большое влияние на ход ведения процесса прессования оказывает также температура плит пресса. При мокром способе производства древесноволокнистых плит температура прессования составляет 200-215 ?С. Однако она может быть повышена при определенных условиях до 230 ?С, что предусмотрено в прессовых установках последних моделей. Повышение температуры прессования вызвано стремлением ускорить процесс выпаривания воды из древесноволокнистого полотна. Однако при температуре выше 230 ? С усиливается процесс распада органических соединений, сопровождающийся ухудшением качества волокон, в результате чего плиты получаются хрупкими и слабыми.

Фирма «Дефибратор», исследуя диапазон температур 187-210 ?С, установила, что повышение температуры прессования проводит к улучшению качества физико-механических свойств плит. рост прочности на стратегический изгиб плит наблюдается при увеличении температуры с 200 до 210 ? С. Прирост прочности при этом перепаде температур составил примерно 12-14%.

На продолжительность сушки влияет и степень размола массы, и толщина прессуемых полотен. Чем выше степень размола массы и больше толщина плиты. Тем период сушки продолжительней. Время ее в зависимости от конкретных условий составляет 3,5-7 мин.

Во время второй фазы прессования вода удаляется до тех пор, пока относительная влажность древесноволокнистой плиты не составит 7%. Эта влажность необходима для проведения реакций конденсации в заключительной фазе прессования.

4. Технологическая схема производства

4.1 Технологическая схема процесса

В настоящее время существует несколько способов технологических схем производства древесноволокнистых плит сухим способом с применением различного оборудования. Технологическая схема производства плит сухим способом представлена в приложении 1(А1). Независимо от принятого оборудования технологический процесс производства древесноволокнистых плит сухим способом составляют следующие операции: приемка, хранение сырья и химикатов; приготовление щепы; пропарка, размол щепы на волокна; подготовка связующего и гидрофобизирующих добавок, смешивание волокна со связующим и другими добавками; сушка волокна; формирование ковра; предварительное уплотнение (подпрессовка); прессование; кондиционирование плит; механическая обработка плит.

По принятой в проекте технологической схеме (рисунок 4.1.1) [2] на одном из заводов долготье кранами выгружают из барж и подают в бассейн. В зимний период долготье из штабелей подают в бассейн автопогрузчиками. В зимний период воду в бассейне нагревают для оттаивания бревен. Из бассейна бревна конвейерами направляются к рубительной машине 1. Сырье, идущее для наружных слоев плит, окаривают. Бревна диаметром свыше 450 мм перед рубительной машиной проходят через колун. После рубительной машины щепа подается в циклон 2, а затем на щепосортировачную установку 3, где крупные отходы направляются на доизмельчение в дезинтегратор 4 и затем снова на сортировку, мелочь собирается в бункер и в дальнейшем сжигается в котельной.

Щепа, пройдя сортировку, пневмотранспортом подается в бункер хранения щепы 5, которые обеспечивают ее запас на 8-часовую работу размольного отделения. Вибрационные питатели, установленные под бункерами запаса, подают щепу на скребковые конвейера, с которых она поступает на распределительные конвейера для подачи к расходным бункерам щепы 6. При заполнении расходных бункеров излишки щепы конвейером возвращаются в соответствующий бункер запаса. Из расходного бункера щепа через шлюзовой затвор поступает в пропарочный котел 7. Пропаривают и размалываю щепу в пропарочно-размольной системе «Бауэр».

В цехе установлены четыре системы, работающие независимо друг от друга. Пропарочные котлы непрерывного действия, горизонтальные. В них распределительным соплом впрыскиваются гидрофобные добавки. Пропарочная щепа под давлением поступает в винтовой питатель, передающий ее в размольную установку (рафинер) 9. В данном производстве используется рафинер «Бауэр-418». В момент прохождения щепы через рафинер включается дозирующая система, и через расходные баки 8 водный раствор смолы и парафина заданной концентрации поступает через распыливающее сопло на выходящее из рафинера волокно.

После рафинеров волокно с введенным связующим направляют на сушилки первой ступени 10. Температура волокна на выходе из сушилки первой ступени50?С, абсолютная влажность около 67%, температура агента при выходе из циклона 110 ?С.

Пар и влага удаляются в атмосферу через выпускные отверстия, а волокно опускается на дно циклона, проходит через ротационный воздушны затвор и поступает разбиватель, который разбивает комочки на отдельные волокна до поступления в окончательную сушку. В цехе четыре линии сушилок. Сушилка второй ступени 11 предназначена для окончательной сушки волокна. Агентом сушки служат продукты сгорания от дизельного топлива в смеси с воздухом.

Конструкция сушки обеспечивает точное соблюдение температурного режима. Температура волокна на выходе из сушилки 50 ?С. Абсолютная влажность 5±0,5%, температура выходящего из циклона воздуха 70 ?С.

Высушенное до абсолютной влажности 5% древесное волокно пневмотранспортом подается к циклонам, а затем в питающие бункеры-дозаторы четырех формующих головок вакуум-формирующей машины 12. В бункеры-дозаторы I, II, IV, V головок волокно поступает от каждой из четырех самостоятельных систем размола и сушки волокна, причем в I и V бункеры поступает волокно для наружных слоев, а во II и IV бункеры - для внутренних. В бункер-дозатор III формующей головки подается излишек волокна от формования и обрезки ковра. Принятая система подготовки и распределения волокна позволят получить волокно разного качества. После каждой формующей головки щеточный валик выравнивает ковер на сетке машины. Излишек волокна снимается с поверхности ковра валиками и возвращается в бункер-дозатор III формующей головки.

Под сеткой формирующей машины расположены вакуумные отсосы, предназначенные для удаления воздуха из ковра и уплотнения волокна на сетке. Сетчатый конвейер формирующей машины продвигается поочередно под каждой головкой.

После формировании ковер проходит ленточный пресс установку предварительной подпрессовки 13. Максимальная толщина ковра после непрерывной подпрессовки 200 мм, масса ковра, подвергаемого подпрессовке, для плит толщиной 2 мм - 2 кг/м 2 ; 12 мм - 10 кг/м 2 . Насыпная масса волокна до подпрессовки около 18 кг/м3.

После уплотнения ковер поступает на формующую головку отделочного слоя 14, а затем на конвейер, на котором установлены пилы продольной резки 16, весовой измеритель плотности с металлоискателем и контрольным устройством для измерения толщины ковра, а также передвижная поперечная пила15. Ковер взвешивается непрерывно, его масса регистрируется прибором на пульте управления фомирующей машины. Волокно обрезанных кромок возвращается на III формующую головку.

Полотна обрезанные по ширине и длине, загружаются в загрузочную этажерку 17 и поступают на конвейер ускорения и затем проходят в плитный фортпресс холодной подпрессовки. Фортпресс предназначен для уплотнения более толстых полотен до размеров, обеспечивающих их укладку в горячий пресс. Полотно, подвергаемое холодной подпрессовке, имеет размеры: максимальный 19305650 мм, минимальный 17505450 мм. За фортпрессом расположен бракерный участок, на котором волокно выбраковывается автоматически в зависимости от показаний весов и металлоискателя. Ковры с отклонениями по массе ( ±3% для тонких и ±5% для толстых плит) или содержащие металлические включения автоматически сбрасываются в дробилку и из нее направляются пневмотранспортом за пределы корпуса.

После фортпресса полотна подают на качающийся конвейер для распределения и передачи их на двухъярусный конвейер. Три секции двухъярусного конвейера помещают одновременно по два полотна в загрузочное устройство пресса. Эти секции необходимы для накапливания полотен во время непосредственной загрузки пресса и возвращения загрузочного устройства в исходное положение. После заполнения загрузочное устройство направляет одновременно все полотна в промежутки пресса без поддонов.

При прессовании плит толщиной 3 мм в течение 20 с от начала смыкания плит пресса 18 удельное давление на полотно достигает 6,5-7 МПа, затем давление снижают для удаления влаги. После прессования загрузочное устройство выталкивает плиты из пресса в разгрузочное устройство 19, которое укладывает их по одной на конвейер. Далее плиты поступают к станку продольной резки для обрезки по ширине, после чего их направляют на станок поперечной резки для обрезки по длине.

Обрезка плит сразу же после прессования является предварительной и проводится для улучшения условий загрузки плит в 88-полочную вагонетку, с помощью которой плиты подаются в камеру кондиционирования 20. Число полок в вагонетке определяется этажность пресса: одна вагонетка вмещает плиты четырех запрессовок. Вагонетка загружается с помощью типпельного устройства. Операции, связанные с движением вагонеток, механизированы. Камера разделена на четыре зоны: зону выравнивания температуры, две зоны увлажнения и одну зону охлаждения. Внутри камеры плиты движутся в поперечном направлении. Время выдержки плит толщиной 3,2 мм около 4,5 ч.

Пройдя камеры увлажнения, плиты автоматически разгружаются с тележек и на конвейер для сортировки плит, затем укладываются на деревянные поддоны. Электропогрузчики с вилочными захватами перевозят поддоны с плитами на промежуточный склад для выдержки их в стопах. Суточная выдержка плит необходима для выравнивания напряжений, возникающих в них, перед окончательной обрезкой.

После выдержки плиты электропогрузчиками подают на линию форматной резки. Плиты автоматически, по одной, передаются к станку продольной резки 21. Станок приспособлен для раскроя плит разной ширины. Кроме того, при необходимости плиты уменьшают по ширине пилой продольной распиловки. Затем плиты автоматически подаются к станку поперечной резки 22 для обрезки их по длине. После форматной резки плиты укладываются на накопители плит 23 и аккумуляторным автопогрузчиком 24 отвозят на склад готовой продукции.

4.2 Характеристика основного оборудования

...

Подобные документы

  • Сырьё для производства древесноволокнистых плит и требования к нему. Классификация древесноволокнистых плит. Физические, механические, технологические и специфические свойства плит. Связующие материалы и химические добавки, используемые в производстве.

    реферат [1,0 M], добавлен 11.07.2015

  • Назначение цеха по производству древесноволокнистых плит. Основные требования, предъявляемые к сырью, химикатам и готовой продукции. Описание технологической схемы производства древесных плит. Техническая характеристика плоскосеточной отливной машины.

    курсовая работа [274,6 K], добавлен 20.02.2013

  • Технологическая схема производства древесноволокнистых плит. Сырье, его подготовка и хранение. Проклейка древесноволокнистой массы. Пропитка маслом, термическая обработка и увлажнение плит. Расчет и подбор основного и вспомогательного оборудования.

    курсовая работа [79,6 K], добавлен 17.11.2009

  • Основы технологии химической переработки древесных плит. Определение средневзвешенной плотности сырья и подбор технологического оборудования. Расчет вспомогательного оборудования, склада химикатов, расхода сырья и материалов на единицу продукции.

    курсовая работа [200,9 K], добавлен 28.05.2015

  • Выбор и обоснование технологической схемы производства, подбор основного и вспомогательного оборудования. Проектирование цеха по производству мягких теплоизоляционных древесноволокнистых плит. Контроль производства и качества выпускаемой продукции.

    курсовая работа [61,5 K], добавлен 06.08.2015

  • Разработка проекта цеха по производству гипсостружечных плит заданной мощности. Подбор состава сырья, проектирование способа производства и обоснование технологического процесса производства гипсовых стружечных плит. Выбор туннельной сушильной камеры.

    дипломная работа [532,7 K], добавлен 14.01.2014

  • Древесноволокнистые плиты: разновидности и марки изделий, характеристика исходных сырьевых материалов, способы производства, технологические операции. Подбор основного и вспомогательного оборудования. Методы контроля производственного процесса, продукции.

    курсовая работа [332,4 K], добавлен 12.10.2014

  • Виды, свойства и области применения строительной фанеры, древесностружечных и древесноволокнистых плит, их достоинства и недостатки. Сырье, применяемое для их производства, методы изготовления. Способы улучшения эстетических и защитных качеств ДСП и ДВП.

    реферат [221,9 K], добавлен 09.12.2012

  • Характеристика цементно-стружечных плит по ГОСТ 26816-86 "Плиты цементно-стружечные. Технические условия". Выбор пресса, ритма конвейера. Расчет древесного сырья, вяжущего, химических добавок и воды. Технология производства цементно-стружечной плиты.

    курсовая работа [349,4 K], добавлен 30.11.2013

  • Расчет производственной мощности цеха по производству древесноволокнистых плит. Использование сырья в деревообрабатывающем производстве. Оперативный план работы сборочно-отделочного цеха мебельного производства. План-график выпуска боковых щитов.

    курсовая работа [56,0 K], добавлен 14.01.2014

  • Определение состава одной тонны готовых плит и массы абсолютно сухой части плиты. Расчет количества стружки, поступающей на прессование с учетом потерь на шлифование и обрезку, древесины до измельчения и смолы для производства древесностружечных плит.

    контрольная работа [32,8 K], добавлен 13.07.2015

  • Выбор и обоснование технологической схемы производства древесностружечных плит. Выбор способа производства древесностружечных плит, их размеры, назначение. Обоснование выбора способа производства трехслойных древесностружечных плит, характеристика сырья.

    курсовая работа [114,6 K], добавлен 20.11.2009

  • Номенклатура продукции, характеристика сырья и полуфабрикатов. Обоснование способа производства двускатных балок и ребристых плит. Расчет состава бетонных смесей. Определение потребности в сырьевых материалах и полуфабрикатах. Контроль качества сырья.

    курсовая работа [323,2 K], добавлен 05.06.2015

  • Технология изготовления материалов и древесных плит. Расчет расхода сырья, смолы и химикатов. Режим работы цеха. Фонд рабочего времени. Коэффициент использования оборудования. Содержание связующего в осмоленных древесных частицах. Сушка стружки.

    курсовая работа [176,1 K], добавлен 10.08.2014

  • Современное состояние и особенности производства теплоизоляционных материалов, его организация на основе местного сырья. Расчет производительности технологической линии. Производство теплоизоляционных плит на минеральном волокне (базальтовом волокне).

    дипломная работа [337,3 K], добавлен 01.08.2015

  • Состав сырьевой смеси. Описание технологической схемы производства твёрдых древесноволокнистых плит. Техническая характеристика и перечень применяемого оборудования. Содержание вредных химических веществ, выделяемых плитами в производственных помещениях.

    курсовая работа [2,6 M], добавлен 20.10.2014

  • Санитарно-гигиенические свойства древесностружечных плит и виды сырья для их производства. Расчет производительности цеха: годовой фонд рабочего времени; характеристика параметров режима горячего прессования; определение производительности прессов.

    курсовая работа [112,4 K], добавлен 12.10.2013

  • Режим работы цеха и производственная программа. Технология производства акустических плит повышенной жесткости по способу "мокрого" формования. Подбор оборудования и тепловых установок. Входной и приемный контроль сырья, материалов и полуфабрикатов.

    курсовая работа [79,7 K], добавлен 21.12.2016

  • Производство технологических расчетов производства фанеры. Определение потребности в сырье и шпоне. Расчет производительности основного оборудования. Формирование стружечного ковра. Форматная обрезка плит. Шлифование и сортировка древесно-стружечных плит.

    курсовая работа [2,7 M], добавлен 07.01.2012

  • Технологический процесс изготовления плит, его этапы и предъявляемые требования, номенклатура, карта процесса. Материальный баланс. Сведения об отходах производства, сточных водах и выбросов в атмосферу, способ их утилизации, охрана окружающей среды.

    курсовая работа [36,9 K], добавлен 20.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.