Метанол

История обнаружения метанола в продуктах сухой перегонки древесины. Химическая формула метанола, основные способы его получения. Преимущества метода синтеза метанола из окиси углерода и водорода. Особенности применения метанола в качестве растворителя.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 23.12.2014
Размер файла 16,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Минестерство Образования и науки Российской Федераций

Государственное Бюджетное образование учереждение

Высшее профессионально обрзование

"Тюменский Государственный Нефтегазовый Университет"

Филиал "Тобольский Индустрильный Институт"

Отделение: СПО

метанол растворитель химическая формула

Реферат

на тему: Метанол

Автор: Вербах Андрей

План

  • 1. Открытия Метанола
  • 2. Добывание
  • 3. Применение
  • 4. Физические свойства
  • 5. Действие на организм

1. Открытия Метанола

Метаномл (метиловый спирт, древесный спирт, карбинол, метилгидрат, гидроксид метила) - CH3OH, простейший одноатомный спирт, бесцветная ядовитая жидкость. Метанол - это первый представитель гомологического ряда одноатомных спиртов. С воздухом в объёмных концентрациях 6,72-36,5 % образует взрывоопасные смеси (температура вспышки 15,6°C). Метанол смешивается в любых соотношениях с водой и большинством органических растворителей. Метанол был впервые обнаружен Боулем в 1661 году в продуктах сухой перегонки древесины. Через два столетия, в 1834 году, его выделили в чистом виде Думас и Пелигот. Тогда же была установлена химическая формула метанола. В 1857 году Бертло получил метанол омылением метилхлорида.

2. Добывание

Способы получения метилового спирта могут быть различны: сухая перегонка древесины, термическое разложение формиатов, гидрирование метилформиата, омыление метилхлорида, каталитическое неполное окисление метана, каталитическое гидрирование. окиси и двуокиси углерода. До промышленного освоения каталитического способа метанол получали в основном сухой перегонкой древесины. "Лесохимический метиловый спирт" загрязнен ацетоном и другими трудноотделимыми примесями. В настоящее время этот метод получения метанола практически не имеет промышленного значения. По причинам технического и главным образом экономического характера промышленное развитие получил метод синтеза метанола из окиси углерода и водорода. В 1913 г. был разработан синтетический способ получения метанола из окиси углерода и водорода на цинк-хромовом катализаторе при давлении 250-350 кгс/см2. Позднее, в 1923 г. этот процесс был осуществлен в Германии в промышленном масштабе и в дальнейшем интенсивно развивался и совершенствовался. История развития отечественного промышленного синтеза метанола началась в 1934 г. выпуском ~30 т/сут. метанола на двух небольших агрегатах Новомосковского химического комбината. Сырьем для производства метанола служил водяной газ, полученный газификацией кокса. В настоящее время основное количество метанола вырабатывается на базе природного газа. Процесс синтеза осуществляется при 250-300 кгс/см2 и 380°С. В соответствии с Директивами XXIV съезда КПСС об ускоренном развитии химической промышленности и расширении ассортимента химической продукции производство метанола, являющееся в настоящее время крупнотоннажным производством, растет бурными темпами.

3. Применение

В органической химии метанол используется в качестве растворителя. Метанол используется в газовой промышленности для борьбы с образованием гидратов (из-за низкой температуры замерзания и хорошей растворимости). В органическом синтезе метанол применяют для выпуска формальдегида, формалина, уксусной кислоты и ряда эфиров (например, МТБЭ и ДМЭ), изопрена и др. Наибольшее его количество идёт на производство формальдегида, который используется для производства карбамидоформальдегидных и фенолформальдегидных смол. Значительные количества CH3OH используют в лакокрасочной промышленности для изготовления растворителей при производстве лаков. Кроме того, его применяют (ограниченно из-за гигроскопичности и отслаивания) как добавку к жидкому топливу для двигателей внутреннего сгорания. Используется в топливных элементах. Благодаря высокому октановому числу, что позволяет увеличить степень сжатия до 16 [источник не указан 738 дней] и большей на 20 % энергетической мощностью заряда на основе метанола и воздуха, метанол используется для заправки гоночных мотоциклов и автомобилей. Метанол горит в воздушной среде, и при его окислении образуется двуокись углерода и вода: 2CH_3OH + 3O_2 \to 2CO_2 + 4H_2O. Для получения биодизеля растительное масло переэтерифицируется метанолом при температуре 60°C и нормальном давлении приблизительно так: 1 т масла + 200 кг метанола + гидроксид калия или натрия. Во многих странах метанол применяется в качестве денатурирующей добавки к этанолу при производстве парфюмерии. В России использование метанола в потребительских товарах запрещено. При добыче газа гидраты могут образовываться в стволах скважин, промысловых коммуникациях и магистральных газопроводах. Отлагаясь на стенках труб, гидраты резко уменьшают их пропускную способность. Для борьбы с образованием гидратов на газовых промыслах вводят в скважины и трубопроводы различные ингибиторы (метиловый спирт, гликоли). Работа топливных элементов основана на реакции окисления метанола на катализаторе в диоксид углерода. Вода выделяется на катоде. Протоны (H+) проходят через протонообменную мембрану к катоду где они реагируют с кислородом и образуют воду. Электроны проходят через внешнюю цепь от анода к катоду снабжая энергией внешнюю нагрузку. Реакции:

На аноде CH3OH + H2O > CO2 + 6H+ + 6e?

На катоде 1.5O2 + 6H+ + 6e? > 3H2O

Общая для топливного элемента:

CH3OH + 1,5O2 > CO2 + 2H2O

Получение диметилового эфира дегидратацией метанола при 300-400°C и 2-3 МПа в присутствии гетерогенных катализаторов - алюмосиликатов - степень превращения метанола в диметиловый эфир - 60 % или цеолитов - селективность процесса близка к 100 %. Диметиловый эфир (C2H6O) - экологически чистое топливо без содержания серы, содержание оксидов азота в выхлопных газах на 90 % меньше, чем у бензина. Цетановое число диметилового дизеля более 55, при том что у классического нефтяного 38-53. Метил-трет-бутиловый эфир получается при взаимодействии метанола с изобутиленом в присутствии кислых катализаторов (например, ионообменных смол). Метил-трет-бутиловый эфир (C5H12O) применяется в качестве добавки к моторным топливам, повышающей октановое число бензинов (антидетонатор). Максимальное законодательное содержание МТБЭ в бензинах Европейского союза - 15 %, в Польше - 5 %. В России в среднем составе бензинов содержание МТБЭ составляет до 12 % для АИ92 и до 15 % для АИ95, АИ98.

4. Физические свойства

Метанол - бесцветная жидкость с запахом, подобным запаху этилового спирта; tкип 64,5°С, плотность 0,7924 г/см3 (20°С). С воздухом в объёмных концентрациях 6,72-36,5% М. с. образует взрывоопасные смеси; температура вспышки 15,6°С.М. с. смешивается во всех соотношениях с водой и большинством органических растворителей. Удельный вес при 0°/0° = 0,8142 (Копп); при 15°/15° = 0,79726; при 25°/25° = 0,78941 (Perkin); при 64,8°/4° = 0,7476 (Шифф); при 0°/4° = 0,81015; при 15,56°/4° = 0,79589 (Dittmar и Fawsitt). Капиллярная постоянная при температуре кипения a І =5,107 (Шифф); Критическая температура 241,9° (Шмидт). Упругость пара при 15° = 72,4 мм; при 29,3° = 153,4 мм; при 43° = 292,4 мм; при 53° = 470,3 мм; при 65,4° = 756,6 мм (Д. Коновалов). Теплота горения равна 170,6, теплота образования 61,4 (Штоман, Клебер и Лангбейн). Метанол дает со многими солями соединения, подобные кристаллогидратам (сольваты), например: CuSO4 • 2СН3ОН; LiCl • 3СН3ОН; MgCl2 • 6СН3ОН; CaCl2 • 4СН3ОН представляет собой шестисторонние таблицы, разлагаемые водой, но не разрушаемые нагреванием до 100° (Kane). Соединение ВаО • 2СН3ОН • 2Н2O получается в виде блестящих призм при растворении ВаО в водном Метаноле и испарении на холоде полученной жидкости при комнатной температуре (Форкранд). С едкими щелочами метанол образует соединения 5NaOH • 6СН3ОН; 3KOH • 5СН3OH (Геттиг). При действии металлических калия и натрия легко дает алкоголяты, присоединяющие к себе кристаллизационный метанол и иногда воду. При пропускании паров метанола через докрасна накаленную трубку получается C2H2 и др. продукты (Бертло). При пропускании паров метанола над накаленным цинком получается окись углерода, водород и небольшие количества болотного газа (Jahn). Медленное окисление паров метанола при помощи раскаленной платиновой или медной проволоки представляет лучшее средство для получения больших количеств формальдегида: 2СН3ОН+О2=2НСНО+2Н2О. При действии хлористого цинка и высокой температуры метанол дает воду и алканы, а также небольшие количества гексаметилбензола (Лебедь и Грин). Метанол, нагретый с нашатырем в запаянной трубке до 300°, дает моно-, ди - и триметиламины (Бертло). При пропускании паров метанола над KOH при высокой температуре выделяется водород и образуются последовательно муравьинокислый, щавелевокислый и, наконец, углекислый калий. Концентрированная серная кислота дает метилсерную кислоту CH3HSO4, которая при дальнейшем нагревании с Метанолом дает метиловый эфир (см.).

При перегонке метанола с избытком серной кислоты в отгон переходит диметилсерная кислота (CH3) 2SO4. При действии серного ангидрида SO3 получается CH (OH) (SO3H) 2 и CH2 (SO3H) 2 (см. Метилен). Метанол при действии соляной кислоты, пятихлористого фосфора и хлористой серы дает хлористый метил СН3Cl. Действием HBr и H2SO4 получают бромистый метил. Подкисленный 5% -й серной кислотой и подвергнутый электролизу, метанол дает СО2, СО, муравьинометиловый эфир, метилсерную кислоту и метилаль СН2 (ОСН3) 2 (Ренар). При нагревании метанола с хлористо-водородными солями ароматических оснований (анилином, ксилидином, пиперидином) легко происходит замещение водорода в бензольном ядре метилом (Гофман, Ладенбург); реакция имеет большое техническое значение при приготовлении метилрозанилина и других искусственных пигментов.

5. Действие на организм

Токсичность метанола выше, чем этанола. Это яд, действующий на нервную и сосудистую системы, прием внутрь 5 - 10 мл может привести к тяжелому отравлению, слепоте, а 30 мл - к смертельному исходу. Более высокая токсичность метанола по сравнению с этанолом объясняется тем, что продукты его превращений в организме - чрезвычайно опасный формальдегид и муравьиная кислота, которые вызывают ацидоз и смерть от дыхательной недостаточности.

Размещено на Allbest.ru

...

Подобные документы

  • Метанол как один из основных продуктов многотоннажной химии. Описание химико-технологической схемы производства метанола. Вредные вещества, образующиеся в результате синтеза метанола. Паспорта ингредиентных загрязнителей и паспорта опасности отходов.

    курсовая работа [562,6 K], добавлен 11.05.2014

  • Описание аппарата синтеза метанола из конвертированного газа на медьсодержащем катализаторе. Теоретический анализ процесса. Обоснование оптимальных технологических параметров. Описание технологической схемы синтеза, анализ экологической безопасности.

    курсовая работа [389,7 K], добавлен 23.06.2014

  • Применение метилового спирта как самостоятельного продукта во многих отраслях промышленности. Масштабы мирового производства метанола, его крупнейшие производители в Российской Федерации. Обзор и анализ основных методов производства метилового спирта.

    реферат [2,0 M], добавлен 23.10.2016

  • Геолого-физическая характеристика Губкинского газового месторождения. Описание конструкции и методов вскрытия скважин. Изучение схемы подготовки газа на Губкинском промысле и экономическое обоснование работы установки по установки регенерации метанола.

    дипломная работа [3,9 M], добавлен 25.05.2019

  • Анализ текущего состояния разработки Губкинского газоконденсатного промысла, конструкции скважин. Расчет количества ингибитора для установки регенерации, анализ эффективности использования существующего оборудования для регенерации насыщенного метанола.

    дипломная работа [5,4 M], добавлен 25.05.2019

  • Анализ организационно-правовых форм предприятий России. Производственная и организационная структура управления ОАО "Метафракс". Метрологическое обеспечение производства метанола. Автоматизация системы управления технологическими процессами предприятия.

    отчет по практике [684,2 K], добавлен 18.04.2015

  • Физико-химические процессы при приготовление многокомпонентных катализаторов. Получение катализаторов методом осаждения. Анализ влияния условий приготовления на величину поверхности силикагеля. Катализаторы для процессов дегидрирования метанола.

    дипломная работа [998,9 K], добавлен 20.05.2015

  • Абсорбционная колонна для поглощения метанола из смеси с воздухом водой при нормальных условиях. Материальный, конструктивный и гидравлический расчеты аппарата. Выбор вспомогательного оборудования. Чертеж аппарата в двух проекциях с разработкой узла.

    курсовая работа [1016,1 K], добавлен 21.03.2015

  • Характеристика методов производства карбинола. Обоснование выбранного метода в месте строительства. Физико-химические данные процесса производства карбинола. Технико-технологические расчеты. Строительные и економические расчеты проекта. Безопасность.

    дипломная работа [766,9 K], добавлен 29.11.2007

  • Автоматизация, интенсификация и усложнение металлургических процессов. Контролируемые и регулируемые параметры в испарителе. Функциональная схема автоматизации технологических процессов. Функция одноконтурного и программного регулирования Ремиконта Р-130.

    контрольная работа [73,9 K], добавлен 11.05.2014

  • Технология измерения газоанализатором КГА-8С уровня окиси углерода, кислорода, двуокиси серы, окиси азота, водорода, сероводорода, метана в помещении. Технические характеристики, устройство и принцип работы прибора. Ремонт и техническое обслуживание.

    реферат [88,3 K], добавлен 11.04.2013

  • Основные направления использования окиси этилена, оптимизация условий его получения. Физико-химические основы процесса. Материальный баланс установки получения оксида этилена. Расчет конструктивных размеров аппаратов, выбор материалов для изготовления.

    отчет по практике [1,2 M], добавлен 07.06.2014

  • Общая характеристика целлюлозно-бумажного производства, строение и свойства древесной коры. Основные способы окорки древесины, классификация машин. Устройство и принцип действия корообдирочных барабанов, расчет их конструктивных размеров и мощности.

    курсовая работа [3,3 M], добавлен 26.02.2012

  • Особенности и свойства многослойных печатных плат: достоинства и недостатки. Основные способы получения по методу создания электрических межслойных соединений. Базовые технологические процессы получения МПП, химическая и электрохимическая металлизация.

    курсовая работа [2,8 M], добавлен 01.04.2011

  • История применения красителей, номенклатура их производства, техническая и химическая классификации. Химические свойства, применение, способы и стадии промышленного производства оптических отбеливателей. Способы очистки сточных вод от красителей.

    курсовая работа [412,5 K], добавлен 02.05.2011

  • Виды биотоплива в зависимости от агрегатного состояния, способа получения и сфер применения. Преимущества использования древесных гранул перед другими видами топлива. Процесс брикетирования, торрефикация древесины. Технология производства биогаза.

    реферат [1,2 M], добавлен 20.10.2013

  • Технология переработки природного газа. Реакция паровой конверсии монооксида углерода - следующая стадия в схеме получения водорода после конверсии метана. Состав катализатора низкотемпературной конверсии, обеспечивающий оптимизацию температурного режима.

    курсовая работа [704,8 K], добавлен 16.12.2013

  • Свойства, химическая формула и способы получения оксида ванадия. Общая характеристика основных технологий извлечения ванадия из отходов промышленных производств. Проблемы переработки отработанных ванадиевых катализаторов сернокислотного производства.

    курсовая работа [62,9 K], добавлен 11.10.2010

  • Технология и химические реакции стадии производства аммиака. Исходное сырье, продукт синтеза. Анализ технологии очистки конвертированного газа от диоксида углерода, существующие проблемы и разработка способов решения выявленных проблем производства.

    курсовая работа [539,8 K], добавлен 23.12.2013

  • Современные процессы переработки нефти. Выбор и обоснование метода производства; технологическая схема, режим атмосферной перегонки двукратного испарения: физико-химические основы, характеристика сырья. Расчёт колонны вторичной перегонки бензина К-5.

    курсовая работа [893,5 K], добавлен 13.02.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.