Материалы, применяемые в машиностроении

Рассмотрение видов твердых растворов. Методы измерения твердости металлов и сплавов. Выбор режима термической обработки, применяемой для устранения цементитной сетки в стали. Органическое стекло, его свойства и область применения в машиностроении.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 16.12.2014
Размер файла 1,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное образовательное учреждение

высшего профессионального образования

Мичуринский государственный аграрный университет

Кафедра стандартизации, метрологии и технического сервиса

Контрольная работа

По материаловедению

Выполнил:

Студент группы ИОБ 24 ЭК

Паршин П. В.

Проверила: Каткова Л.А.

Мичуринск-Наукоград 2013г.

1. Вопрос №1

цементитный сталь машиностроение органический

Твердыми растворами называют фазы, в которых один из компонентов сплава сохраняет свою кристаллическую решетку, а атомы других (или другого) компонентов располагаются в решетке первого компонента (растворителя), изменяя ее размеры (периоды). Таким образом, твердый раствор, состоящий из двух или нескольких компонентов, имеет один тип решетки и представляет собой одну фазу.

Существуют твердые растворы внедрения и твердые растворы замещения. При образовании твердых растворов внедрения атомы растворенного компонента B размещаются между атомами растворителя A в его кристаллической решетке. При образовании твердых растворов замещения атомы растворенного компонента B замещают часть атомов растворителя (компонент A) в его кристаллической решетке.

Рисунок 1 Твердые растворы: а - замещения, б - внедрения

Поскольку размеры растворенных атомов отличаются от размеров атомов растворителя, то образование твердого раствора сопровождается искажением кристаллической решетки растворителя.

Твердые растворы замещения могут быть с ограниченной и неограниченной растворимостью. В твердых растворах с ограниченной растворимостью концентрация растворенного компонента возможна до определенных пределов.

В твердых растворах с неограниченной растворимостью возможна любая концентрация растворенного компонента (от 0 до 100 %). Твердые растворы с неограниченной растворимостью образуются при соблюдении следующих условий: 1) у компонентов должны быть однотипные кристаллические решетки; 2) различие в атомных радиусах компонентов не должно превышать для сплавов на основе железа 9%, а для сплавов на основе меди 15%; 3) компоненты должны обладать близостью физико-химических свойств. Однако соблюдение этих свойств не всегда приводит к образованию твердых растворов замещения с неограниченной растворимостью. На практике, как правило, образуются твердые растворы с ограниченной растворимостью.

Твердые растворы внедрения могут быть только с ограниченной концентрации, поскольку число пор в решетке ограничено, а атомы основного компонента сохраняются в узлах решетки.

Твердые растворы замещения с неограниченной растворимостью на основе компонентов: Ag и Au, Ni и Cu, Mo и W, V и Ti, и т.д.

Твердые растворы замещения с ограниченной растворимостью на основе компонентов: Al и Cu, Cu и Zn, и т.д.

Твердые растворы внедрения: при растворении в металлах неметаллических элементов, как углерод, бор, азот и кислород. Например: Fe и С.

2. Вопрос №2

Твердость - это сопротивление материала проникновению в его поверхность стандартного тела (индентора), не деформирующегося при испытании.

Широкое распространение объясняется тем, что не требуются специальные образцы.

Это неразрушающий метод контроля. Основной метод оценки качества термической обработке изделия. О твердости судят либо по глубине проникновения индентора (метод Роквелла), либо по величине отпечатка от вдавливания (методы Бринелля, Виккерса, микротвердости).

Во всех случаях происходит пластическая деформация материала. Чем больше сопротивление материала пластической деформации, тем выше твердость.

Наибольшее распространение получили методы Бринелля, Роквелла, Виккерса и микротвердости. Схемы испытаний представлены на рисунке 3.

Твердость по Бринеллю

Испытание проводят на твердомере Бринелля

В качестве индентора используется стальной закаленный шарик диаметром D 2,5; 5; 10 мм, в зависимости от толщины изделия.

Нагрузка Р, в зависимости от диаметра шарика и измеряемой твердости: для термически обработанной стали и чугуна - P=30D2, литой бронзы и латуни - P=10D2, алюминия и других очень мягких металлов - P=2,5D2.

Продолжительность выдержки : для стали и чугуна - 10 с, для латуни и бронзы - 30 с.

Полученный отпечаток измеряется в двух направлениях при помощи лупы Бринелля.

Твердость определяется как отношение приложенной нагрузки Р к сферической поверхности отпечатка F:

Стандартными условиями являются D = 10 мм; Р = 3000 кгс; = 10 с. В этом случае твердость по Бринеллю обозначается НВ 250, в других случаях указываются условия: НВ D / P / ф, НВ 5/250/30 - 80.

Метод Роквелла

Основан на вдавливании в поверхность наконечника под определенной нагрузкой (рисунок 3 б)

Индентор для мягких материалов (до НВ 230) - стальной шарик диаметром 1/16” (Ш1,6 мм), для более твердых материалов - конус алмазный.

Нагружение осуществляется в два этапа. Сначала прикладывается предварительная нагрузка P0 (10 ктс) для плотного соприкосновения наконечника с образцом. Затем прикладывается основная нагрузка Р1, в течение некоторого времени действует общая рабочая нагрузка Р. После снятия основной нагрузки определяют значение твердости по глубине остаточного вдавливания наконечника h под нагрузкой P0.

В зависимости от природы материала используют три шкалы твердости (таблица 1)

Таблица 1 Шкалы для определения твердости по Роквеллу

Шкала

Обозн.

Индентор

Нагрузка, кг

Область применения

P0

P1

P2

A

HRA

Алмазный конус

10

50

60

Для особо твердых материалов

B

HRB

Стальной закаленный шарик

10

90

100

Для относительно мягких материалов

C

HRC

Алмазный конус

10

140

150

Для относительно твердых материалов

Метод Виккерса

Твердость определяется по величине отпечатка (рисунок 3 в).

В качестве индентора используется алмазная четырехгранная пирамида с углом при вершине 136°.

Твердость рассчитывается как отношение приложенной нагрузки P к площади поверхности отпечатка F:

Нагрузка Р составляет 5…100 кгс. Диагональ отпечатка d измеряется при помощи микроскопа, установленного на приборе.

Преимущество данного способа в том, что можно измерять твердость любых материалов, тонкие изделия, поверхностные слои. Высокая точность и чувствительность метода.

Способ микротвердости - для определения твердости отдельных структурных составляющих и фаз сплава, очень тонких поверхностных слоев (сотые доли миллиметра).

Аналогичен способу Виккерса. Индентор - пирамида меньших размеров, нагрузки при вдавливании Р составляют 5…500 кгс:

Метод царапания

Алмазным конусом, пирамидой или шариком наносится царапина, которая является мерой. При нанесении царапин на другие материалы и сравнении их с мерой судят о твердости материала.

Можно нанести царапину шириной 10 мм под действием определенной нагрузки. Наблюдают за величиной нагрузки, которая дает эту ширину.

Динамический метод (по Шору)

Шарик бросают на поверхность с заданной высоты, он отскакивает на определенную величину. Чем больше величина отскока, тем тверже материал.

В результате проведения динамических испытаний на ударный изгиб специальных образцов с надрезом (ГОСТ 9454) оценивается вязкость материалов и устанавливается их склонность к переходу из вязкого состояния в хрупкое.

Вязкость - способность материала поглощать механическую энергию внешних сил за счет пластической деформации.

Является энергетической характеристикой материала, выражается в единицах работы. Вязкость металлов и сплавов определяется их химическим составом, термической обработкой и другими внутренними факторами.

Также вязкость зависит от условий, в которых работает металл (температуры, скорости нагружения, наличия концентраторов напряжения).

3. Вопрос №3

Первичная кристаллизация сплавов системы железо-углерод начинается по достижении температур, соответствующих линии ABCD (линии ликвидус), и заканчивается при температурах, образующих линию AHJECF (линию солидус).

При кристаллизации сплавов по линии АВ из жидкого раствора выделяются кристаллы твердого раствора углерода в б-железе (д-раствор). Процесс кристаллизации сплавов с содержанием углерода до 0,1 % заканчивается по линии АН с образованием б (д)-твердого раствора. На линии HJB протекает перитектическое превращение, в результате которого образуется твердый раствор углерода в г-железе, т. е. аустенит. Процесс первичной кристаллизации сталей заканчивается по линии AHJE.

При температурах, соответствующих линии ВС, из жидкого раствора кристаллизуется аустенит. В сплавах, содержащих от 4,3% до 6,67% углерода, при температурах, соответствующих линии CD, начинают выделяться кристаллы цементита первичного. Цементит, кристаллизующийся из жидкой фазы, называется первичным. B точке С при температуре 1147°С и концентрации углерода в жидком растворе 4,3% образуется эвтектика, которая называется ледебуритом. Эвтектическое превращение с образованием ледебурита можно записать формулой ЖР4,3 Л[А2,14+Ц6,67]. Процесс первичной кристаллизации чугунов заканчивается по линии ECF образованием ледебурита.

Таким образом, структура чугунов ниже 1147°С будет: доэвтектических - аустенит+ледебурит, эвтектических - ледебурит и заэвтектических - цементит (первичный)+ледебурит.

Превращения, происходящие в твердом состоянии, называются вторичной кристаллизацией. Они связаны с переходом при охлаждении г-железа в б-железо и распадом аустенита.

Линия GS соответствует температурам начала превращения аустенита в феррит. Ниже линии GS сплавы состоят из феррита и аустенита.

Линия ЕS показывает температуры начала выделения цементита из аустенита вследствие уменьшения растворимости углерода в аустените с понижением температуры. Цементит, выделяющийся из аустенита, называется вторичным цементитом.

В точке S при температуре 727°С и концентрации углерода в аустените 0,8% образуется эвтектоидная смесь состоящая из феррита и цементита, которая называется перлитом. Перлит получается в результате одновременного выпадения из аустенита частиц феррита и цементита. Процесс превращения аустенита в перлит можно записать формулой А0,8 П[Ф0,03+Ц6,67].

Линия PQ показывает на уменьшение растворимости углерода в феррите при охлаждении и выделении цементита, который называется третичным цементитом.

Следовательно, сплавы, содержащие менее 0,008% углерода (точка Q), являются однофазными и имеют структуру чистого феррита, а сплавы, содержащие углерод от 0,008 до 0,03% - структуру феррит+цементит третичный и называются техническим железом.

Доэвтектоидные стали при температуре ниже 727єС имеют структуру феррит+перлит и заэвтектоидные - перлит+цементит вторичный в виде сетки по границам зерен.

В доэвтектических чугунах в интервале температур 1147-727єС при охлаждении из аустенита выделяется цементит вторичный, вследствие уменьшения растворимости углерода(линия ES). По достижении температуры 727єС (линия PSK) аустенит, обедненный углеродом до 0,8% (точка S), превращаясь в перлит. Таким образом, после окончательного охлаждения структура доэвтектических чугунов состоит из перлита, цементита вторичного и ледебурита превращенного (перлит+цементит).

Структура эвтектических чугунов при температурах ниже 727єС состоит из ледебурита превращенного. Заэвтектический чугун при температурах ниже 727єС состоит из ледебурита превращенного и цементита первичного.

Рисунок 2 а-диаграмма железо-цементит, б-кривая охлаждения для сплава, содержащего 2,2% углерода

Правило фаз устанавливает зависимость между числом степеней свободы, числом компонентов и числом фаз и выражается уравнением:

C = K + 1 - Ф,

где С - число степеней свободы системы;

К - число компонентов, образующих систему;

1 - число внешних факторов (внешним фактором считаем только температуру, так как давление за исключением очень высокого мало влияет на фазовое равновесие сплавов в твердом и жидком состояниях);

Ф - число фаз, находящихся в равновесии.

Сплав железа с углеродом, содержащий 2,2% С, называется доэвтектический чугун. Его структура при комнатной температуре - Перлит + Цементит + Ледебурит.

4. Вопрос №4

Изотермической обработкой, достаточной для получения твердости НВ = 150 для стали У8, является изотермический отжиг (рисунок 5). Структура после отжига - крупнопластинчатый перлит. При изотермическом отжиге сталь У8 нагревают до температуры на 30-50°С выше точки Ас1 (Ас1 = 730°С) и после выдержки охлаждают до температуры 650-680°С. Структура после отжига - крупнопластинчатый перлит.

Рисунок 3 Диаграмма изотермического превращения аустенита стали У8

Перлитное превращение переохлажденного аустенита протекает при температурах Ar1 = 500єC. В процессе превращения происходит полиморфное г>б-превращение и диффузионное перераспределение углерода в аустените, что приводит к образованию ферритно-цементитной структуры: А>Ф + Fe3C = Перлит.

Аустенит, практически однородный по концентрации углерода, распадается с образованием феррита и цементита, содержащего 6,67%С, т.е. состоит из двух фаз, имеющих различную концентрацию углерода. Ведущей, в первую очередь возникающей фазой при этом является карбид (цементит). Его зародыши, как правило, образуются на границах зерен аустенита.

В результате роста частиц этого карбида прилегающий к нему объем аустенита обедняется углеродом, снижает свою устойчивость и испытывает полиморфное г>б-превращение. При этом кристаллики феррита зарождаются на границе с цементитом, который облегчает этот процесс.

Последующий рост ферритных пластинок ведет к обогащению окружающего аустенита углеродом, что затрудняет дальнейшее развитие г>б-превращения. В обогащенном таким образом углеродом аустените зарождаются новые и растут ранее возникшие пластинки цементита. Вследствие этих процессов образования и роста частиц карбидов вновь создаются условия для возникновения новых и роста имеющихся кристалликов (пластинок) феррита. В результате происходит колониальный (совместный) рост кристалликов феррита и цементита, образующих перлитную колонию.

5. Вопрос №5

Для устранения грубой сетки вторичного цементита заэвтектоидные стали подвергают нормализации.

Нормализацией называется нагрев доэвтектоидной стали до температуры выше Ас3, а заэвтектоидной - выше Аcm на 40-50°С с последующим охлаждением на воздухе.

При температуре нагрева заэвтектоидной стали выше Аcm на 40-50°С имеем структуру аустенита (100%). При снижении температуры до Аrm начинают появляться первые зерна цементита. При дальнейшем снижении температуры до Аr1 из аустенита будут образовываться только зерна цементита, а содержание углерода в остающемся аустените будет уменьшаться и при температуре Аr1 достигнет 0,8%. Ускоренное охлаждение на воздухе способствует тому, что цементит не успевает образовать грубую сетку, понижающую свойства стали. При снижении температуры ниже Аr1 из аустенита будет образовываться перлит.

Заэвтектоидная сталь после нормализации имеет структуру перлита и цементита.

6. Вопрос №6

Среднеуглеродистая сталь, легированная хромом состоит из 0,4% углерода, 0,17-0,37% кремния, 0,50-0,80% марганца, 0,8-1,1% хрома. Максимальное содержание серы - 0,035%, фосфора - 0,035%.

Основные параметры при закалке - температура нагрева и скорость охлаждения. Температуру нагрева для сталей определяют по диаграммам состояния, скорость охлаждения - по диаграммам изотермического распада аустенита.

Для средненагруженных деталей небольших размеров применяют хромистые стали 40Х. С увеличением содержания углерода возрастает прочность, но снижаются пластичность и вязкость. Влияние температуры отпуска на механические свойства сталей показано на рис.1.

Рисунок 4 Отжиг поковок различного сечения из углеродистых и низколегированных сталей 40Х

Прокаливаемость хромистых сталей 40Х невелика. Хромистые стали склонны к отпускной хрупкости, поэтому после высокого отпуска охлаждение должно быть быстрым; для мелких деталей - в масле и для крупных - в воде.

Температура закалки. Доэвтектоидные стали нагревают до температуры выше критической точки Ас3 на 30-50°С. Если такие стали нагреть до температуры между критическими точками Асг и Ас3 и охладить, то в структуре закаленной стали, кроме мартенсита, будет присутствовать феррит, что существенно ухудшает свойства. Такая закалка называется неполной. Время нагрева зависит от размеров детали и теплопроводности стали, и его обычно определяют экспериментально. Для определения времени нагрева в справочниках приведены полуэмпирические формулы.

Превращение перлита в аустенит сопровождается полиморфным превращением Fe Fe, а также растворением цементита Fe3C в аустените. Превращение начинается с зарождения центров аустенитных зерен на поверхности раздела феррит-цементит. Экспериментально аустенит обнаруживается уже при небольших перегревах и очень малых выдержках. Это объясняется тем, что в стали поверхность раздела феррит-цементит сильно развита.

Образующиеся зерна аустенита вначале имеют такую же концентрацию углерода, как и исходная фаза - феррит, так как полиморфное превращение протекает с большей скоростью, чем диффузия углерода. Затем в аустените начинает растворяться вторая фаза перлита - цементит, содержание углерода в аустените увеличивается. К концу превращения в тех местах, где находились пластинки цементита, концентрация углерода в аустените становится более высокой по сравнению с участками, в которых до превращения был феррит. Поэтому для выравнивания состава аустенита требуется некоторое время, зависящее от температуры - чем выше температура, при которой совершалось превращение П А, тем быстрее завершится диффузионный процесс перераспределения углерода в аустените. На скорость превращения перлита в аустенит влияет степень дисперсности перлита - чем мельче пластинки цементита, тем быстрее образуется аустенит, так как в этом случае больше межфазная поверхность феррита с цементитом. Перлито-аустенитное превращение сопровождается уменьшением удельного объема примерно на 1%, поэтому происходит фазовый наклеп аустенита, т.е. деформация его кристаллической решетки. Таким образом, превращение совершается только в стали эвтектоидного состава. Доэвтектоидные стали после нагрева выше Ас1, состоят из аустенита и феррита и только после нагрева выше А~3 сталь приобретает строение однородного аустенита.

В углеродистых сталях образование аустенита и его гомогенизация протекают достаточно быстро - в течение нескольких минут. В легированных сталях для этих процессов требуется больше времени, так как концентрация легирующих элементов в феррите и карбидах различна, поэтому образующийся аустенит неоднороден не только по углероду, но и по концентрации легирующих элементов, скорость диффузии которых на несколько порядков меньше скорости диффузии углерода.

Начальные зерна аустенита всегда мелкие, так как в каждой перлитной колонии одновременно зарождается несколько центров кристаллизации аустенита. При дальнейшем нагреве зерна аустенита растут, причем в различных сталях с разной скоростью.

Стали различают по склонности к росту зерна аустенита при нагреве. Если зерно аустенита начинает быстро расти, даже при незначительном нагреве выше Av то сталь считают наследственно крупнозернистой; если зерно растет только при большом перегреве, то сталь является наследственно мелкозернистой. Даже стали одной марки, но разных плавок могут сильно различаться по склонности к росту аустенитного зерна. Это объясняется тем, что они содержат неодинаковое количество неметаллических включений (оксидов, нитридов, сульфидов и т.п.), которые могут затруднять рост аустенитного зерна при нагреве. Таким образом, склонность к росту аустенитного зерна является плавочной характеристикой.

Такие элементы, как ванадий, титан, молибден, вольфрам, алюминий, уменьшают склонность к росту зерна аустенита, а марганец и фосфор увеличивают ее. В стали 40Х присутствуют именно марганец и фосфор. Как правило, заэвтектоидные стали менее склонны к росту зерна. Условия выплавки стали также имеют большое значение, например, кипящая сталь обычно бывает наследственно крупнозернистой.

При последующем охлаждении зерна аустенита не измельчаются. Это следует учитывать при назначении режимов термической обработки, так как от размеров зерна существенно зависят механические свойства. Так, ударная вязкость мелкозернистой стали может в несколько раз превышать ударную вязкость крупнозернистой стали той же марки.

Различают величину зерна наследственного и действительного. Для определения наследственного зерна образцы нагревают до 930°С и затем определяют размер зерна. От размера зерна аустенита зависит поведение нагретой стали в различных процессах термической обработки и пластической деформации. Особенно чувствительна к размеру зерна аустенита ударная вязкость.

Действительная величина зерна - это размер зерна при обычных температурах, полученный после той или иной термической обработки.

Существует стандартная шкала величины зерна, согласно которой величину зерна характеризуют номером по восьмибалльной системе. Величину зерна определяют под микроскопом при увеличении в 100 раз и сравнивают с размерами зерна стандартной шкалы. Стали, имеющие зерно до номера 4, считают крупнозернистыми, а имеющие номер 5-8 - мелкозернистыми.

Превращения в стали при охлаждении. Если сталь охлаждать очень медленно, то происходящие превращения можно установить, пользуясь диаграммой состояния Fe-Fe3C. Термодинамическим условием этого превращения является некоторая степень переохлаждения (охлаждение ниже А1), когда свободная энергия перлита становится меньше свободной энергии аустенита.

При охлаждении стали с большей скоростью, кинетику и механизм превращения аустенита выясняют с помощью постановки специальных экспериментов. Превращение аустенита можно легко обнаружить с помощью наблюдений за изменениями магнитных характеристик образца, так как аустенит парамагнитен, а образующаяся механическая смесь феррита и цементита обладает ферромагнитными свойствами. С увеличением степени переохлаждения устойчивость переохлажденного аустенита уменьшается, но, достигнув минимума при переохлаждении ниже At на 150-200°С, вновь увеличивается.

Следовательно, это превращение является диффузионным. Время устойчивости аустенита и скорость его превращения зависят от разности свободных энергий, т.е. от степени переохлаждения. Скорость диффузии и разность свободных энергий зависят от степени переохлаждения противоположно: скорость диффузии экспоненциально уменьшается по мере понижения температуры превращения, а разность свободных энергий увеличивается. Максимальная скорость превращения соответствует переохлаждению ниже Ах на 150-200°С, т.е. соответствует минимальной устойчивости аустенита. При дальнейшем понижении температуры значительно уменьшается скорость диффузии, благодаря чему увеличивается устойчивость аустенита.

7. Вопрос №7

Органическое стекло - это прозрачный аморфный термопласт на основе сложных эфиров акриловой и метакриловой кислот. Чаще всего применяется полиметилметакрилат, иногда пластифицированный дибутилфталатом. Материал более чем в 2 раза легче минеральных стекол (1180 кг/м8), отличается высокой атмосферостойкостью, оптически прозрачен (светопрозрачность 92%), пропускает 75 % ультрафиолетового излучения (силикатные - 0,5 %). При температуре 80°С органическое стекло начинает размягчаться; при температуре 105-150°С появляется пластичность, что позволяет формовать из него различные детали. Критерием, определяющим пригодность органических стекол для эксплуатации, является не только их прочность, но и появление на поверхности и внутри материала мелких трещин, так называемого серебра. Этот дефект снижает прозрачность и прочность стекла. Причиной появления "серебра" являются внутренние напряжения, возникающие в связи с низкой теплопроводностью и высоким коэффициентом расширения.

Органическое стекло стойко к действию разбавленных кислот и щелочей, углеводородных топлив и смазочных материалов. Старение органического стекла в естественных условиях протекает медленно. Недостатком органического стекла является невысокая поверхностная твердость.

Увеличение термостойкости и ударной вязкости органического стекла достигается ориентированием; при этом увеличивается в несколько раз ударная вязкость и стойкость к "серебрению"; сополимеризацией или привитой полимеризацией полиметилмета-крилата с другими полимерами получают частично сшитую структуру (термостабильные стекла); применением многослойных стекол ("триплексов").

Органическое стекло (термопласт) относится к синтетическим конструкционным неметаллическим материалам. Область его применения и свойства идентичны другим подобным материалам. Применение их в машиностроении является одним из эффективных путей снижения металлоемкости конструкций, уменьшения их массы, повышения надежности и долговечности.

Оргстекло широко используют в машиностроении, авиации, радиотехнической и электротехнической промышленности и во многих других отраслях. При его формировании можно целенаправленно влиять на прочность, деформативность, теплопроводность, химическую стойкость и другие свойства.

Следует обратить внимание на определенную ошибочность существующего до сего времени мнения о том, что оргстекло как и все пластмассы является заменителем металла. Пластмассы, как и другие неметаллические материалы, по ряду свойств являются серьезными конкурентами металлов. Так, прочность на разрыв ориентированных стеклопластиков и углепластиков составляет 1600-2100 МПа. Многие из них по химической стойкости превосходят коррозионностойкие металлы и сплавы и являются превосходными материалами для химического и нефтяного машиностроения.

Тем не менее, нужно иметь в виду, что оргстекло как и в целом неметаллические материалы уступает металлам по прочности. Это ограничивает их самостоятельное применение в условиях действия повышенных механических нагрузок - статических, динамических и циклических. Оргстекло можно эксплуатировать при температурах, не превышающих 150-200°С, а то и ниже. Невысокие тепло - и электропроводность оргстекла, являясь важными характеристиками в электро - и радиотехнике, в других областях ограничивают его применение.

Значит речь должна идти не о заменителе металлов вообще (хотя в определенной мере, в определенных конструкциях это и так), а о материале, имеющем самостоятельное назначение или дающее хороший эффект в сочетании с металлами. Сильное различие в коэффициентах линейного термического расширения оргстекла и металлов требует от конструктора разработки мероприятий по компенсации изменений линейных размеров или возникающих от этого напряжений при создании этих материалов.

Техническая и экономическая целесообразность применения оргстекла в машиностроении и других областях техники определяется, с одной стороны, не сокращающимся дефицитом на металлы, особенно на никель и молибденсодержащие стали, цветные металлы и сплавы, с другой стороны, достаточной сырьевой базой, (а в некоторых случаях практически неисчерпаемой), более низкой себестоимостью, снижением монтажных и эксплуатационных затрат, более высокой долговечностью, особенно в изделиях, эксплуатируемых в условиях агрессивного воздействия окружающей среды (химическая, нефтяная, газовая, нефтехимическая и другие отрасли промышленности), малой массой изделия по сравнению с металлическим, что важно в таких отраслях, как самолетостроение, судостроение, автомобилестроение и т.п. Из него изготовляют светотехнические детали, оптические линзы и др. На основе полиметилметакрилата получают самоотверждающиеся пластмассы: ACT, стиракрил, АКР. Указанные материалы применяют для изготовления штампов, литейных моделей и абразивного инструмента.

Важным обстоятельством являются значительно меньшие энергетические затраты на производство изделий из оргстекла, чем из металлов. Себестоимость оргстекла превышает себестоимость конструкционных углеродистых сталей и находится на уровне стоимости высоколегированных сталей и сплавов. Однако экономический эффект c его применением достигается в результате резкого снижения массы изделия, затрат на изготовление и монтаж конструкции, эксплуатационных расходов.

Таким образом, оргстекло применяется в машиностроении в силу своей легкости, экономичности, практичности.

Размещено на Allbest.ru

...

Подобные документы

  • Назначение и виды термической обработки металлов и сплавов. Технология и назначение отжига и нормализации стали. Получение сварных соединений способами холодной и диффузионной сварки. Обработка металлов и сплавов давлением, ее значение в машиностроении.

    контрольная работа [2,6 M], добавлен 24.08.2011

  • Виды твёрдых растворов. Методы измерения твердости металлов. Диаграмма состояния железо-карбид железа. Диаграмма изотермического превращения аустенита для стали У8, кривая режима изотермической обработки, обеспечивающей получение твердости 150 НВ.

    контрольная работа [38,5 K], добавлен 28.08.2011

  • Рассмотрение правил проведения макро- и микроанализа металлов и сплавов, определению твердости, исследованию структур и свойств сталей и чугунов, цветных сплавов и пластмасс. Практические вопросы термической и химико-термической обработки металлов.

    учебное пособие [4,4 M], добавлен 20.06.2012

  • Методика производства стали в конвейерах, разновидности конвейеров и особенности их применения. Кристаллическое строение металлов и её влияние на свойства металлов. Порядок химико-термической обработки металлов. Материалы, применяющиеся в тепловых сетях.

    контрольная работа [333,8 K], добавлен 18.01.2010

  • Выбор и обоснование конструкционного материала для изготовления детали. Влияние химического состава стали на механические свойства, глубину прокаливаемости. Маршрутная технология предварительной и окончательной термической обработки. Контроль качества.

    курсовая работа [781,5 K], добавлен 20.11.2008

  • Определение температуры закалки, охлаждающей среды и температуры отпуска деталей машин из стали. Превращения при термической обработке и микроструктура. Состав и группа стали по назначению. Свойства и применение в машиностроении органического стекла.

    контрольная работа [1,3 M], добавлен 28.08.2011

  • Сущность и назначение термической обработки металлов, порядок и правила ее проведения, разновидности и отличительные признаки. Термомеханическая обработка как новый метод упрочнения металлов и сплавов. Цели химико-термической обработки металлов.

    курсовая работа [24,8 K], добавлен 23.02.2010

  • Понятие и виды ликвации, причины их возникновения и способы устранения. Сущность и методику измерения ударной вязкости механических свойств металла. Цементация стали: сущность процесса, структура, свойства и области применения. Титан и его сплавы.

    контрольная работа [1,1 M], добавлен 26.06.2013

  • Роль стали в машиностроении. Коррозия железоуглеродистых сплавов. Факторы, определяющие возникновение скачка потенциала между металлом и раствором. Сущность понятия "коррозия". Способы решения проблемы коррозии металлов. Производство стали и чугуна.

    реферат [23,5 K], добавлен 26.01.2010

  • Анализ влияния термической обработки на износостойкость стали, применяемой для изготовления ножей куттера. Испытания на трение и износ, при помощи машины типа "II-I-б". Влияние температуры закалки и стадий образования карбидов на износостойкость стали.

    статья [169,0 K], добавлен 22.08.2013

  • Общие положения и классификация видов термической обработки металлов, условия их практического использования. Основные превращения в стали, их характеристика и влияющие факторы. Выбор температуры и времени нагрева и его технологическое обоснование.

    реферат [127,2 K], добавлен 12.10.2016

  • Понятие, общая характеристика и виды термической обработки стали. Особенности основных этапов собственно-термической обработки стали, а именно отжига, нормализации, закалки, отпуска и старения. Отпускная хрупкость I, II рода и способы ее устранения.

    лабораторная работа [38,9 K], добавлен 15.04.2010

  • Краткий обзор и характеристики твердых материалов. Группы металлических и неметаллических твердых материалов. Сущность, формирования строения и механические свойства твердых сплавов. Производство и применение непокрытых и покрытых твердых сплавов.

    реферат [42,3 K], добавлен 19.07.2010

  • Характеристика стали 60С2А, химический состав и механические свойства. Структурные превращения в стали при термической обработке. Выбор оборудования для обработки детали. Разработка технологии термообработки и маршрутной технологии изготовления пружины.

    курсовая работа [2,7 M], добавлен 05.12.2014

  • Подходы к выбору марки стали для деталей машин. Назначение, конструкция и материалы валов. Критерии их работоспособности и расчет. Анализ условий работы детали и требования, предъявляемые к материалу, графическое изображение режима термической обработки.

    курсовая работа [531,6 K], добавлен 22.04.2014

  • Физико-химические основы термической и химико-термической обработки материалов. Структуры и превращения в системе железо-углерод. Защитно-пассивирующие неорганические и лакокрасочные покрытия. Основы строения вещества. Кристаллизация металлов и сплавов.

    методичка [1,2 M], добавлен 21.11.2012

  • Требования к конструкционным материалам. Экономические требования к материалу определяются. Марки углеродистой стали обыкновенного качества. Углеродистые качественные стали. Цветные металлы и сплавы. Виды термической и химико-термической обработки стали.

    реферат [1,2 M], добавлен 17.01.2009

  • Трубы (газо- и нефтепроводы) и основные требования к ним. Влияние параметров контролируемой прокатки на структуру и свойства низкоуглеродистой низколегированной стали 10Г2ФБ. Влияние исходной структуры стали после дополнительной термической обработки.

    курсовая работа [1,5 M], добавлен 02.07.2012

  • Виды термической обработки металлов. Превращения, протекающие в структуре стали при нагреве и охлаждении. Образование аустенита. Рост аустенитного зерна. Снятие напряжения после ковки, сварки, литья. Диаграммы изотермического образования аустенита.

    презентация [50,4 K], добавлен 14.10.2013

  • Условие работы плашка, резьбонарезного инструмента для нарезания наружной резьбы вручную или на металлорежущем станке. Характеристика стали, ее химические, механические и других свойства. Методы контроля режимов термической обработки и качества изделия.

    курсовая работа [761,4 K], добавлен 12.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.