Определение прогиба при косом изгибе
Рассмотрение понятия косого изгиба и типов опор стержней при изгибе. Определение внутренних усилий и деформаций. Построение эпюр поперечных сил и изгибающих моментов. Вычисление прогиба и угла поворота свободного конца консоли стержня заданной длины.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 25.12.2014 |
Размер файла | 102,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Учреждение образования Республики Беларусь
Международный государственный экологический университет
имени А.Д. Сахарова
КАФЕДРА ЭНЕРГОЭФФЕКТИВНЫХ ТЕХНОЛОГИЙ
Реферат
по теме "Определение прогиба при косом изгибе"
Выполнил
Студент 2 курса
группы 31042
С.А. Кунцевич
Минск 2014
Косой изгиб
Косым изгибом называется такой вид сложного сопротивления, при котором в поперечных сечениях балки возникают только изгибающие моменты и, и все силы, приложенные к балке, действуют в одной (силовой) плоскости, не совпадает ни с одной из главных плоскостей инерции.
Если изгибающий момент в поперечном сечении является единственной составляющей внутренних сил, изгиб называется чистым.
Изгиб называют поперечным, если в поперечных сечениях вместе с изгибающим моментом Ми возникают и поперечные силы Q. Поперечный изгиб встречается в реальных условиях нагружения чаще чистого изгиба.
Если плоскость действия изгибающего момента Ми проходит через центр масс поперечного сечения, т.е. через любую центральную ось сечения, изгиб называют простым или плоским, в противном случае изгиб называют косым. При плоском изгибе продольная ось стержня и после деформации остается в плоскости внешних сил, т.е. представляет плоскую кривую линию. При косом изгибе плоскость деформации не совпадает с плоскостью внешних сил. Косой изгиб относится к виду деформаций, называемых сложной деформацией. Определение опорных реакций изгибаемых стержней
Внутренние силы в поперечных сечениях изгибаемых стержней определяют с помощью метода сечений.
Использование уравнений равновесия и возможно для систем сил, действующих на свободные тела. Стержни, подвергаемые деформации изгиба, в реальных условиях обязательно имеют те или иные опоры, при отсутствии которых изгиб стержня был бы невозможен. Наличие опор (связей) ограничивает движение изгибаемого стержня и делает невозможным использование уравнений равновесия для определения внутренних сил.
Формально несвободные изгибаемые стержни можно считать свободными используя принцип освобождаемости от связей. Согласно ему, любое несвободное тело можно представить свободным, отбросив ограничивающие его движение связи (опоры) и заменив их действие силами реакции этих связей. Уравнения равновесия и можно использовать для определения внутренних сил в поперечных сечениях изгибаемых стержней при условии, что помимо внешних сил будут учитываться и силы реакций опор. Поэтому прежде чем определить внутренние силы в поперечных сечениях изгибаемых стержней, нужно уметь находить величину и направление реакций опор. Известно, что реакция связи (опоры) направлена всегда в сторону, противоположную той, куда связь не дает перемещаться телу. Если связь препятствует поступательному движению тела, ее реакция - сила; если связь препятствует вращательному движению, ее реакция - момент сил.
Различают три основных типа опор стержней при изгибе.
Подвижная шарнирная опора не препятствует вращению стержня и его перемещению вдоль опорной поверхности. Реакция опоры проходит через центр шарнира и направлена перпендикулярно опорной плоскости.
Неподвижная шарнирная опора допускает вращение стержня и препятствует его поступательному перемещению в любом направлении. Реакция проходит через центр шарнира и может иметь разное направление в зависимости от действия системы внешних сил. Разложим ее на составляющие в плоскости внешних сил, направленные вдоль и перпендикулярно продольной оси стержня.
Жесткая заделка или защемление не допускает ни линейных, ни угловых перемещений изгибаемого стержня. Полная реакция опоры состоит из силы, которую раскладываем на две составляющие, направленные вдоль и перпендикулярно продольной оси стержня и момента сил (реактивного момента), составляющие реакции опоры приложены в точке защемления стержня. Стержень, защемленный одним концом и не имеющий других опор, называют консолью. Консолью называют и выступающие за шарнирные опоры части стержня.
Далее, «заменив» опоры силами их реакций, составляют уравнения равновесия для системы сил, действующей на изгибаемый стержень. Независимых уравнений равновесия для плоской системы сил три. Задача статически определима, если число неизвестных составляющих реакций опор не более трех.
Это возможно при следующих вариантах крепления изгибаемых стержней: защемление стержня одним концом (контактные пружины) или крепление стержня с помощью подвижной и неподвижной шарнирных опор (валы). При большем количестве неизвестных составляющих реакций применяют иные, не рассматриваемые в пособии, способы решения.
Если при вычислении величину реакции опоры получили отрицательной, со знаком минус, то действительное направление реакции будет противоположно принятому, что обязательно нужно учитывать при определении внутренних сил.
Пример.
Определим реакции в опорах А и В изгибаемого стержня. Заменим подвижную опору В реакцией RB, а неподвижную шарнирную опору А - составляющими RAX и RAY. «Свободный» стержень под действием внешних сил и сил реакций опор находится в покое. Отсутствие возможных составляющих плоского движения (поступательные перемещения вдоль осей x и y и вращательное движение в плоскости действия сил, т.е. вокруг оси z) стержня выразим с помощью уравнений равновесия:
. (1)
Для действующей системы сил первое из уравнений (1) примет вид RAX = 0; второе: RB - F - RAY = 0 и третье: RB? - F?a - Me = 0. Из последнего уравнения определим, что RB = (F?a + Me)/?. Далее, подставим величину RB во второе уравнение, определим, что
RAY = F - RB = F - (F?a + Me)/?.
Определение внутренних усилий при изгибе. Построение эпюр поперечных сил и изгибающих моментов
При плоском поперечном изгибе в поперечных сечениях стержня возникают следующие составляющие внутренних сил - поперечная сила Q и изгибающий момент Ми. Для их определения используют метод сечений.
Поперечная сила направлена вдоль плоскости сечения и ее действие связано с действием касательных напряжений, т.е. ф = f (Q). Поперечная сила в любом поперечном сечении стержня численно равна алгебраической сумме проекций на плоскость сечения всех внешних сил и реакций опор, действующих по одну сторону от сечения. В сечении ее считают положительной, если равнодействующая сил, действующих слева от сечения, направлена вверх, или равнодействующая сил, действующих справа от сечения - вниз; и отрицательной - при противоположном направлении равнодействующих.
Изгибающий момент действует в плоскости, перпендикулярной поперечному сечению. Его действие связывают с действием нормальных напряжений, т.е. у = f (Ми). Изгибающий момент в любом поперечном сечении стержня численно равен алгебраической сумме моментов относительно центра масс сечения внешних сил и реакций опор, действующих по одну сторону от сечения. Изгибающий момент считается положительным, если стержень в сечении изгибается выпуклостью вниз, и отрицательным, если стержень в сечении изгибается выпуклостью вверх. Знак изгибающего момента в сечении можно определить, закрепив условно сечение и рассматривая действие сил, расположенных по любую сторону от него. Например: силы, действующие слева от сечения 1-1 и справа от сечения 2-2 изгибают стержень в этих сечениях выпуклостью вниз, т.е. Ми 1-1 > 0 и Ми 2-2 > 0.
При определении Q и Ми используется скользящая система координат, когда отсчет сечений ведут либо от крайнего левого, либо от крайнего правого сечения стержня. Для консольных жестко закрепленных с одной стороны стержней поперечную силу и изгибающий момент удобнее определить без нахождения реакций опоры, рассматривая по отношению к сечению силы, действующие на незакрепленный участок стержня. Значения Q и Ми в точке закрепления В будут равны составляющим реакции опоры, т.е.
QB = F = RBY, МиB = F??= MRB.
Поперечная сила Q и изгибающий момент Ми в общем случае зависят от положения сечения по длине стержня, т.е. от величины х. Проверку условий прочности проводят в опасных наиболее нагруженных сечениях, в сечениях с наибольшими внутренними силами и максимальными напряжениями. Для нахождения опасных сечений и для наглядного представления о характере изменения внутренних сил строят графики распределения поперечных сил Q = Q (x) и изгибающего момента Ми = Ми (х) по длине стержня, т.е. эпюры поперечных сил и изгибающего момента.
Стержень разбивают на участки, на протяжении которых нагрузка однородна. Для эпюр Q и Ми проводят линии, параллельные продольной оси стержня. Границы участков сносят на эти линии. Для каждого участка составляют общие выражения величины поперечной силы Q = Q (x) и изгибающего момента Ми = Ми (х), для чего рассматривают произвольные сечения в пределах участка. Далее строят эпюры Q и Ми, задавая аргументу х значения в пределах каждого участка. Величины поперечной силы и изгибающего момента откладывают как ординаты эпюры в масштабе: Рассмотрим изменение ф для стержня прямоугольного сечения. Статический момент заштрихованной площадки относительно нейтральной оси z равен
,
где - расстояние от оси z до центра масс отсеченной части сечения. Это уравнение параболы. Касательные напряжения определим по формуле учитывая, что Iz = bh3/12;
.
Эпюру касательных напряжений строим по трем точкам: фy = h/2 = фy = -h/2 = 0; фy = 0 = 1,5 (Q/A).
Наибольшие касательные напряжения в поперечном сечении действуют на уровне нейтральной оси. Для стержней прямоугольного сечения они в 1,5 раза больше того напряжения, которое получилось бы при равномерном распределении касательных напряжений по сечению.
Касательные напряжения при изгибе максимальны на нейтральной оси и при других формах поперечного сечения. Для стержней круглого поперечного сечения они равны
фmax = (4/3)(Q/A),
для стержней кольцевого сечения -
фmax = 2(Q/A).
Условие прочности стержней при изгибе по касательным напряжениям имеет вид фmax ? фadm, где фadm - допускаемое напряжение материала стержня на срез или сдвиг. Отметим, что касательные напряжения в поперечных сечениях изгибаемых стрежней много меньше нормальных, поэтому расчет на прочность ведут обычно по нормальным напряжениям в соответствии с выражением без учета влияния поперечных сил.
Определение деформаций при изгибе
При изгибе деформация в поперечном сечении стержня определяется перемещением у центра масс сечения в направлении, перпендикулярном первоначальному положению оси стержня, называемым прогибом иуглом поворота и сечения по отношению к своему первоначальному положению. Для нахождения деформаций во всех поперечных сечениях по длине стержня необходимо получить зависимости у = y(x) и и = и(x). Первую называют уравнением изогнутой оси или уравнением прогибов.
Касательная к изогнутой оси стержня в любой ее точке составит с первоначальной осью угол, равный углу поворота и сечения в данной точке. Тангенс угла и наклона касательной tg и = dy/dx. Но так как фактические значения углов поворота поперечных сечений при изгибе малы, порядка тысячных долей радиана, можно тангенс угла приравнять значению угла (tgи ? и) и найти связь между углом поворота сечения и прогибом в виде зависимости и ? ? dy/dx.
Из курса математики известна следующая зависимость для кривизны K линии, расположенной в плоскости x0y:
. (2)
Но так как (dy/dx)2 = tg2и = и2 << 1, то выражение (2) упростим, представив в виде
. (3)
Используя зависимость (5.67), свяжем кривизну оси стержня с изгибающим моментом Ми и жесткостью поперечного сечения EIz:
K = 1/с = Ми/(EIz). (4)
Сравнивая полученные выражения кривизны в зависимостях (3) и (4), получим дифференциальное уравнение изогнутой оси стержня:
, (5)
интегрирование которого не представляет затруднений. Выбор знака в выражении определяется принятой системой координат.
Принятый ранее знак изгибающего момента Ми не зависит от направления координатных осей.
Кривизна линии положительная, т.е. y'' = d2y/dx2 > 0, если вогнутость кривой совпадает с положительным направлением оси у (рис. 4, б, д) и наоборот.
При принятом направлении оси у вверх, знаки правой и левой частей уравнения (5) всегда одинаковы, т.е. при y'' > 0 и Ми > 0, а при y'' < 0 и Ми < 0. Поэтому выражение 5) представим как
d2y/dx2 = Ми/ (EIz). (6)
Для нахождения уравнений, определяющих деформации сечений стержня или их угловые и линейные перемещения, необходимо произвести интегрирование уравнения.
Проинтегрировав уравнение один раз, получим уравнение углов поворота
и = dy/dx = . (7)
Интегрируя уравнение (5.80) второй раз, получим уравнение прогибов
, (8)
где С и D - постоянные интегрирования, определяемые из граничных условий, каковыми являются условия крепления изгибаемых стержней.
Так, для стержня, жестко закрепленного одним концом, в месте крепления должны быть равны нулю и прогиб у, и угол поворота сечения. Для стержня, опирающегося на шарнирные крепления, прогиб равен нулю в местах крепления.
Пример.
Определить прогиб и угол поворота свободного конца консоли стержня длиной ?, нагруженного на конце сосредоточенной силой F. Жесткость стержня постоянна по длине и равна EI.
Начало координат примем в точке В жесткого закрепления стержня. Ось у направим вверх, ось х - вправо.
В произвольном поперечном сечении, отстоящем на расстоянии х от начала координат, изгибающий момент равен
Ми = -F (? - x).
Дифференциальное уравнение изогнутой оси примет вид EI(d2y/dx2) = -F(? - x). Интегрируя это уравнение, получим
EI(dy/dx) = -F Ч [?x - (x2/2)] + С.
Интегрируя далее, получим уравнение прогибов
EIy = -F [(?x2/2) - (x3/6)] + Cx + D.
Приняв во внимание, что в месте закрепления при х =0 прогиб у и угол поворота сечения и = dy/dx равны нулю, найдем, что постоянные интегрирования С =0 и D = 0. Тогда на свободном конце стержня при х = ?, прогиб y = (-F?3)/(3EI) и угол поворота торцового сечения
и = dy/dx = (-F?2)/(2EI).
косой изгиб стержень прогиб
Знак минус в выражениях прогиба и угла поворота указывает, что прогиб осуществляется в направлении, противоположном положительному направлению оси у, т.е. вниз, а торцовое сечение поворачивается по направлению движения часовой стрелки.
Размещено на Allbest.ru
...Подобные документы
Эпюры внутренних усилий. Составление уравнения равновесия и определение опорных реакций. Определение внутренних усилий и построение эпюр. Расчетная схема балки. Значения поперечных сил в сечениях. Определение значений моментов по характерным точкам.
контрольная работа [35,9 K], добавлен 21.11.2010Экспериментальное определение максимальных прогибов и напряжений при косом изгибе балки и их сравнение с аналогичными расчетными значениями. Схема экспериментальной установки для исследования косого изгиба балки. Оценка прочности и жесткости балки.
лабораторная работа [176,9 K], добавлен 06.10.2010Определение допустимого параметра нагрузки и расчет перемещения свободного конца консольного стержня переменного сечения. Выбор размеров поперечных сечений балки. Вычисление угла поворота свободного конца вала. Условия прочности заклепочного соединения.
контрольная работа [1,1 M], добавлен 26.05.2014Построение эпюр нормальных и поперечных сил, изгибающих и крутящих моментов. Напряжения при кручении. Расчет напряжений и определение размеров поперечных стержней. Выбор трубчатого профиля стержня, как наиболее экономичного с точки зрения металлоёмкости.
контрольная работа [116,5 K], добавлен 07.11.2012Ознакомление с простыми видами деформаций. Определение значения реакции в заделке и построение эпюры нормальных сил. Определение скручивающего момента в заделке. Построение эпюры поперечных сил и изгибающих моментов. Определение опорных реакций.
курсовая работа [837,8 K], добавлен 30.11.2022Расчетное и экспериментальное определение критических сил стержней большой и средней гибкости. Сравнительный анализ результатов расчета и эксперимента. Построение диаграммы критических напряжений, определение расчетных значений критической силы стержня.
лабораторная работа [341,9 K], добавлен 06.10.2010Оценка размеров поперечного сечения. Нахождение момента инерции относительно центральных осей. Расчет прочно-плотного заклепочного шва. Построение эпюр поперечных сил и изгибающих моментов. Проектный расчет вала при совместном действии кручения и изгиба.
курсовая работа [535,6 K], добавлен 19.11.2012Построение эпюр нормальных и перерезывающих сил, изгибающих и крутящих моментов для пространственной конструкции. Расчет напряжение и определение размеров поперечных сечений стержней. Применение формулы Журавского для определения касательного напряжения.
курсовая работа [364,5 K], добавлен 22.12.2011Расчет закрепленного вверху стального стержня, построение эпюры продольных усилий, перемещений поперечных сечений бруса. Выбор стальной балки двутаврового поперечного сечения. Построение эпюры крутящих, изгибающих моментов в двух плоскостях для вала.
контрольная работа [1,1 M], добавлен 06.08.2013Определение вращающих моментов и окружных усилий на каждом зубчатом колесе. Расчет диаметров вала по участкам. Проверочный расчет вала на выносливость и на жёсткость. Определение углов поворота сечений вала в опорах. Эпюры крутящих и изгибающих моментов.
курсовая работа [530,1 K], добавлен 08.01.2016Выбор материала зубчатой передачи и определение допускаемых напряжений. Определение нагрузок на валах. Расчетная схема быстроходного вала редуктора. Определение реакций в опорах. Расчет изгибающих моментов. Построение эпюр изгибающих и крутящих моментов.
курсовая работа [261,2 K], добавлен 13.07.2012Виды нагрузок, типы опор и балок. Шарнирно-неподвижная опора: схематическое устройство и условное обозначение. Растяжение-сжатие прямого бруса. Плоские и пространственные статистические определяемые рамы. Построение эпюр изгибающих и крутящих моментов.
реферат [407,8 K], добавлен 11.10.2013Определение размеров деталей или внешних нагрузок, при которых исключается возможность появления недопустимых с точки зрения нормальной работы конструкции деформаций. Напряжения в точках поперечного сечения при изгибе с кручением. Расчет на прочность.
курсовая работа [1017,9 K], добавлен 29.11.2013Построение эпюр для консольных балок. Величина максимального изгибающего момента. Момент сопротивления круглого поперечного сечения относительно центральной оси и прямоугольника относительно нейтральной оси. Поперечные силы и изгибающие моменты.
курсовая работа [63,3 K], добавлен 13.03.2011Определение нагрузок, действующих на закрылок. Выбор положения опор закрылка, построение эпюр изгибающих моментов и перерезывающих сил. Расчеты поясов и стенки лонжерона, определение толщины обшивки. Компоновка схемы силовой установки самолета.
курсовая работа [1,6 M], добавлен 27.04.2012Геометрические характеристики плоских сечений, зависимость между ними. Внутренние силовые факторы; расчеты на прочность и жесткость при растяжении-сжатии прямого стержня, при кручении прямого вала. Определение прочности перемещений балок при изгибе.
контрольная работа [1,9 M], добавлен 20.05.2012Совместное действие изгиба с кручением. Определение внутренних усилий при кручении с изгибом. Расчет валов кругового (кольцевого) поперечного сечения на кручение с изгибом. Определение размера брусьев прямоугольного сечения на кручение с изгибом.
курсовая работа [592,6 K], добавлен 11.09.2014Определение расчетной нагрузки и реакции опор. Построение эпюры поперечных сил методом характерных точек. Определение необходимого осевого момента сопротивления из условия прочности, оценка рациональной формы поперечного сечения в опасном сечении балки.
контрольная работа [290,8 K], добавлен 09.08.2010Приведение сил, действующих на зубчатые колеса, к геометрической оси вала. Построение эпюр внутренних силовых факторов. Определение в сечениях продольной силы, результирующих изгибающих моментов. Учет факторов, влияющих на предел выносливости материала.
контрольная работа [160,2 K], добавлен 18.03.2012Методика и основные этапы расчета стержня. Построение эпюры нормальных напряжений. Определение параметров статически неопределимого стержня. Вычисление вала при кручении. Расчет консольной и двухопорной балки. Сравнение площадей поперечных сечений.
контрольная работа [477,1 K], добавлен 02.04.2014